1
|
Advanced LC-MS Methods for N-Glycan Characterization. ADVANCES IN THE USE OF LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS) - INSTRUMENTATION DEVELOPMENTS AND APPLICATIONS 2018. [DOI: 10.1016/bs.coac.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
2
|
Lang C, Yang R, Yang Y, Gao B, Zhao L, Wei W, Wang H, Matsukawa S, Xie J, Wei D. An Acid-Adapted Endo-α-1,5-L-arabinanase for Pectin Releasing. Appl Biochem Biotechnol 2016; 180:900-916. [PMID: 27246002 DOI: 10.1007/s12010-016-2141-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
An arabinanase gene was cloned by overlap-PCR from Penicillium sp. Y702 and expressed in Pichia pastoris. The recombinant enzyme was named AbnC702 with 20 U/mg of endo-arabinanase activity toward linear α-1,5-L-arabinan. The optimal pH and temperature of AbnC702 were 5.0 and 50 °C, respectively. The recombinant AbnC702 was highly stable at pH 5.0-7.0 and 50 °C. It could retain about 72.3 % of maximum specific activity at pH 5.0 after incubation for 2.5 h, which indicated AbnC702 was an acid-adapted enzyme. The K m and V max values were 24.8 ± 4.7 mg/ml and 88.5 ± 5.6 U/mg, respectively. A three-dimensional structure of AbnC702 was made by homology modeling, and the counting of acidic/basic amino residues within the region of 10 Å around the active site, as well the hydrogen bonds within the area of 5 Å around the active site, might theoretically interpret the acid adaptability of AbnC702. Analysis of hydrolysis products by thin layer chromatography (TLC) combined with high-performance liquid chromatography (HPLC) verified that the recombinant AbnC702 was an endo-1,5-α-L-arabinanase, which yielded arabinobiose and arabinotriose as major products. AbnC702 was applied in pectin extraction from apple pomace with synergistic action of α-L-arabinofuranosidase.
Collapse
Affiliation(s)
- Chong Lang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Rujian Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shingo Matsukawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China
| |
Collapse
|
3
|
Maier M, Reusch D, Bruggink C, Bulau P, Wuhrer M, Mølhøj M. Applying mini-bore HPAEC-MS/MS for the characterization and quantification of Fc N-glycans from heterogeneously glycosylated IgGs. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:342-352. [PMID: 27614258 DOI: 10.1016/j.jchromb.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/12/2016] [Accepted: 08/02/2016] [Indexed: 11/30/2022]
Abstract
High-performance anion-exchange chromatography (HPAEC) coupled to pulsed amperometric detection (PAD) is a highly sensitive method for the analysis of oligosaccharides without the need for prior derivatization. However, the method suffers from the lack of chemical information with peak assignments based on the retention times of authentic standards or known peaks of reference materials. Here we applied HPAEC coupled on-line with electrospray ion trap mass spectrometry (HPAEC-MS) using a prototype mini-bore (1mm I.D.) CarboPac PA200 column and challenged the analytical separation based method for the structural assignment of heterogeneous mixtures of N-glycans derived from immunoglobulin G from human plasma, glyco-engineered CHO cells, and Sp2/0 mouse myeloma cells. Compared to an analytical scale 3mm I.D. column, the mini-bore column demonstrated a superior performance with up to 8-fold improved limit of detection for specific N-glycans determined by PAD. Quantitative evaluation by extracted ion current chromatograms revealed detection limits in the 50-100 femtomole range using ion trap MS operated in positive ionization mode. In our hands HPAEC-MS/MS allowed the detection and quantification of even low abundant glycan species including biantennary complex-type, high mannose, hybrid and hybrid bisected structures. In comparison to the detection of N-glycans as lithiated or sodiated adducts, we obtained a 65-fold improved signal-to-noise ratio with protonated ions only. Relative quantitative evaluation by single ion current chromatograms was successfully applied and demonstrated an excellent performance with respect to selectivity in the relative quantification of heterogeneous samples of N-glycans compared to HPAEC-PAD and HILIC-UPLC of 2-AB labelled N-glycans.
Collapse
Affiliation(s)
- Maria Maier
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Dietmar Reusch
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Cees Bruggink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Patrick Bulau
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Michael Mølhøj
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, D-82377 Penzberg, Germany.
| |
Collapse
|
4
|
Ion chromatography-mass spectrometry: A review of recent technologies and applications in forensic and environmental explosives analysis. Anal Chim Acta 2014; 806:27-54. [DOI: 10.1016/j.aca.2013.10.047] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/21/2013] [Accepted: 10/27/2013] [Indexed: 11/18/2022]
|
5
|
Efficient separation of oxidized cello-oligosaccharides generated by cellulose degrading lytic polysaccharide monooxygenases. J Chromatogr A 2013; 1271:144-52. [DOI: 10.1016/j.chroma.2012.11.048] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 11/23/2022]
|
6
|
Bauer S. Mass spectrometry for characterizing plant cell wall polysaccharides. FRONTIERS IN PLANT SCIENCE 2012; 3:45. [PMID: 22645587 PMCID: PMC3355817 DOI: 10.3389/fpls.2012.00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 02/23/2012] [Indexed: 05/23/2023]
Abstract
Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching, and modifications are obtained from characteristic fragmentation patterns.
Collapse
Affiliation(s)
- Stefan Bauer
- Energy Biosciences Institute, University of CaliforniaBerkeley, CA, USA
| |
Collapse
|
7
|
Mikshina PV, Gurjanov OP, Mukhitova FK, Petrova AA, Shashkov AS, Gorshkova TA. Structural details of pectic galactan from the secondary cell walls of flax (Linum usitatissimum L.) phloem fibres. Carbohydr Polym 2012; 87:853-861. [DOI: 10.1016/j.carbpol.2011.08.068] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
8
|
Karlsson G. Development and Application of Methods for Separation of Carbohydrates by Hydrophilic Interaction Liquid Chromatography. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b10609-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
9
|
Westphal Y, Kühnel S, Schols HA, Voragen AG, Gruppen H. LC/CE–MS tools for the analysis of complex arabino-oligosaccharides. Carbohydr Res 2010; 345:2239-51. [DOI: 10.1016/j.carres.2010.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/18/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022]
|
10
|
Ralet MC, Lerouge P, Quéméner B. Mass spectrometry for pectin structure analysis. Carbohydr Res 2009; 344:1798-807. [DOI: 10.1016/j.carres.2008.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 01/01/2023]
|
11
|
Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 2009; 344:1879-900. [PMID: 19616198 DOI: 10.1016/j.carres.2009.05.021] [Citation(s) in RCA: 986] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 11/15/2022]
Abstract
Plant cell walls consist of carbohydrate, protein, and aromatic compounds and are essential to the proper growth and development of plants. The carbohydrate components make up approximately 90% of the primary wall, and are critical to wall function. There is a diversity of polysaccharides that make up the wall and that are classified as one of three types: cellulose, hemicellulose, or pectin. The pectins, which are most abundant in the plant primary cell walls and the middle lamellae, are a class of molecules defined by the presence of galacturonic acid. The pectic polysaccharides include the galacturonans (homogalacturonan, substituted galacturonans, and RG-II) and rhamnogalacturonan-I. Galacturonans have a backbone that consists of alpha-1,4-linked galacturonic acid. The identification of glycosyltransferases involved in pectin synthesis is essential to the study of cell wall function in plant growth and development and for maximizing the value and use of plant polysaccharides in industry and human health. A detailed synopsis of the existing literature on pectin structure, function, and biosynthesis is presented.
Collapse
Affiliation(s)
- Kerry Hosmer Caffall
- University of Georgia, Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, Athens, 30602, United States
| | | |
Collapse
|
12
|
Sanz ML, Martínez-Castro I. Recent developments in sample preparation for chromatographic analysis of carbohydrates. J Chromatogr A 2007; 1153:74-89. [PMID: 17257608 DOI: 10.1016/j.chroma.2007.01.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/11/2006] [Accepted: 01/08/2007] [Indexed: 11/17/2022]
Abstract
Carbohydrates are a very important group of compounds due to their roles as structural materials, sources of energy, biological functions and environmental analytes; they are characterized by their structural diversity and the high number of isomers they present. While many advances have been made in carbohydrate analysis, the sample preparation remains difficult. This review aims to summarize the most important treatments which have been recently developed to be applied prior to the analysis of carbohydrates by chromatographic techniques. Due to the multiplicity of structures and matrices, many different techniques are required for clean-up, fractionation and derivatization. A number of new techniques which could be potentially adequate for carbohydrate characterization have also been revised.
Collapse
Affiliation(s)
- M L Sanz
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva, 3 E-28006 Madrid, Spain
| | | |
Collapse
|
13
|
Matamoros Fernández LE. Introduction to ion trap mass spectrometry: Application to the structural characterization of plant oligosaccharides. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2006.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Karlsson G, Winge S, Sandberg H. Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection. J Chromatogr A 2005; 1092:246-9. [PMID: 16199233 DOI: 10.1016/j.chroma.2005.08.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 08/04/2005] [Accepted: 08/08/2005] [Indexed: 10/25/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) was used to separate monosaccharides that are common in N-linked oligosaccharides in glycoproteins and other compounds. A TSKgel Amide-80 column was eluted with 82% acetonitrile, in 5 mM ammonium formate (pH 5.5). Column temperature was 60 degrees C and evaporative light scattering was used for detection (ELSD). With this method, L-fucose, D-galactose, D-mannose, N-acetyl-D-glucosamine, N-acetylneuraminic acid, and D-glucuronic acid were separated, with detection limits of 0.3-0.5 microg for each monosaccharide, and intermediate precisions were 3-6% RSD (n=6).
Collapse
|
15
|
ØBro J, Harholt J, Scheller HV, Orfila C. Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. PHYTOCHEMISTRY 2004; 65:1429-38. [PMID: 15231417 DOI: 10.1016/j.phytochem.2004.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 05/03/2004] [Indexed: 05/07/2023]
Abstract
A rhamnogalacturonan I polysaccharide was isolated from potato (Solanum tuberosum cv. Posmo) tuber cell walls and characterised by enzymatic digestion with an endo-beta-1 --> 4-galactanase and an endo-alpha-1 --> 5-arabinanase, individually or in combination. The reaction products were separated using size-exclusion chromatography and further analysed for monosaccharide composition and presence of epitopes using the LM5 anti-beta-1 --> 4-galactan and LM6 anti-alpha-1 --> 5-arabinan monoclonal antibodies. The analyses point to distinct structural features of potato tuber rhamnogalacturonan I, such as the abundance of beta-1 --> 4-galactan side chains that are poorly substituted with short arabinose-containing side chains, the presence of alpha-1 --> 5-arabinan side chains substituted with beta-1 --> 4-galactan oligomers (degree of polymerisation > 4), and the presence of alpha-1 --> 5-arabinans that resist enzymatic degradation. A synergy between the enzymes was observed towards the degradation of arabinans but not towards the degradation of galactans. The effect of the enzymes on isolated RG I is discussed in relation to documented effects of enzymes heterologously expressed in potato tubers. In addition, a novel and rapid method for the determination of the monosaccharide and uronic acid composition of cell wall polysaccharides using high-performance anion exchange chromatography with pulsed amperometric detection is described.
Collapse
Affiliation(s)
- Jens ØBro
- Biotechnology Group, Danish Institute of Agricultural Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
16
|
Matamoros Fernández LE, Obel N, Scheller HV, Roepstorff P. Differentiation of isomeric oligosaccharide structures by ESI tandem MS and GC–MS. Carbohydr Res 2004; 339:655-64. [PMID: 15013403 DOI: 10.1016/j.carres.2003.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 08/11/2003] [Accepted: 09/14/2003] [Indexed: 11/29/2022]
Abstract
A mixture of arabinoxylan oligosaccharides from wheat seedling was permethylated and analyzed by electrospray ion trap MS and GC-MS. The presence of isomeric structures differing in degree of branching and position of the branched residue along the xylose backbone was demonstrated for oligosaccharides with four and five monosaccharide residues. No isomeric structures were found for oligosaccharides with three monosaccharide residues. Linkage analysis by GC-MS reveals that xylose residues were substituted with single arabinoxyl residues at C-3.
Collapse
Affiliation(s)
- Lobvi E Matamoros Fernández
- Department of Biochemistry and Molecular Biology, Institute of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | |
Collapse
|
17
|
Quéméner B, Désiré C, Debrauwer L, Rathahao E. Structural characterization by both positive and negative electrospray ion trap mass spectrometry of oligogalacturonates purified by high-performance anion-exchange chromatography. J Chromatogr A 2003; 984:185-94. [PMID: 12564689 DOI: 10.1016/s0021-9673(02)01729-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.
Collapse
Affiliation(s)
- Bernard Quéméner
- Institut National de la Recherche Agronomique, Unité de Recherche sur les Polysaccharides, leurs Organisations et leurs Interactions (URPOI), rue de la Géraudière, BP 71627, 44316 Nantes Cedex 3, France.
| | | | | | | |
Collapse
|
18
|
Quéméner B, Désiré C, Lahaye M, Debrauwer L, Negroni L. Structural characterisation by both positive- and negative-ion electrospray mass spectrometry of partially methyl-esterified oligogalacturonides purified by semi-preparative high-performance anion-exchange chromatography. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2003; 9:45-60. [PMID: 12748401 DOI: 10.1255/ejms.526] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The off-line coupling of high-performance anion-exchange chromatography (HPAEC) to electrospray ionisation/ion trap mass spectrometry (ESI-ITMS) is described. The Dionex carbohydrate membrane desalter (CMD) has been assessed as an on-line chromatographic desalting system to remove the high sodium concentration necessary for the HPAEC separation of partially methyl-esterified oligogalacturonides. The developed HPAEC configuration proved to be suitable for indirect coupling with ESI-ITMS. This paper provides some interesting features of positive- and negative-ion multistage tandem mass spectrometry (MS(n)) analysis of these acidic oligosaccharides. The spectra acquired in both negative- and positive-ion modes show characteristic fragment ions resulting from glycosidic bond and cross-ring cleavages. Some new mass spectrometric fragmentation routes are also described. The positive-ion mode gave more complex spectra but was as informative as the negative-ion mode. ESI-ITMS was revealed to be, as previously reported from direct use on an unseparated enzymatic digest, a powerful sequencing technique for the determination of linkage type and the methyl ester distribution of partially methyl-esterified oligogalacturonides. Moreover, unlike matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS), it gives valuable information on the elution behaviour of these oligomers in relation to their structure, namely the HPAEC co-elution of isomeric structures.
Collapse
Affiliation(s)
- Bernard Quéméner
- Institut National de la Recherche Agronomique, Unité de Recherche sur les Polysaccharides, leurs Organisations et leurs Interactions (URPOI), rue de la Géraudière, BP 71627, 44316 Nantes, France.
| | | | | | | | | |
Collapse
|
19
|
Stoll T, Schieber A, Carle R. High-performance liquid chromatographic separation and on-line mass spectrometric detection of saturated and unsaturated oligogalacturonic acids. Carbohydr Res 2002; 337:2481-6. [PMID: 12493233 DOI: 10.1016/s0008-6215(02)00348-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the simultaneous determination of saturated and unsaturated oligogalacturonic acids up to degree of polymerization (dp) of 7 by high-performance liquid chromatography (HPLC) is presented. For this purpose, a Cyclobond I 2000 column and a volatile mobile phase consisting of ammonium formate and methanol were used, allowing direct coupling of HPLC to a mass spectrometer via an electrospray interface (ESI-MS) without additional desalting. The analytical system was used for the characterization of digests obtained by incubation of polygalacturonic acid with commercial enzyme preparations.
Collapse
Affiliation(s)
- Thomas Stoll
- Institute of Food Technology, Section Plant Foodstuff Technology, Hohenheim University, Garbenstrasse 25, D-70599 Stuttgart, Germany
| | | | | |
Collapse
|
20
|
Cescutti P, Rizzo R. Divalent cation interactions with oligogalacturonides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:3262-3267. [PMID: 11453760 DOI: 10.1021/jf001213a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The conformational properties of high and low molecular weight galacturonides were investigated in relation to the ability of oligomers with degree of polymerization >10 to act as elicitors of plant defense mechanisms. Oligomers from polygalacturonate were obtained by means of enzymatic hydrolysis. Two fractions exhibiting high and low average degrees of polymerization were isolated by solvent fractionation and characterized by means of electrospray mass spectrometry. The conformational behaviors of the two fractions were investigated in the presence of different divalent cations using circular dichroism. Calcium, copper, and zinc ions were able to induce a conformational transition in both fractions. When in the presence of the high molecular weight fraction, copper and zinc ions were much more effective than calcium ions, whereas the efficiency was much reduced with low molecular weight oligomers.
Collapse
Affiliation(s)
- P Cescutti
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | | |
Collapse
|
21
|
Kabel M, Schols H, Voragen A. Mass determination of oligosaccharides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry following HPLC, assisted by on-line desalting and automated sample handling. Carbohydr Polym 2001. [DOI: 10.1016/s0144-8617(00)00203-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Thayer JR, Rohrer JS, Avdalovic N, Gearing RP. Improvements to in-line desalting of oligosaccharides separated by high-pH anion exchange chromatography with pulsed amperometric detection. Anal Biochem 1998; 256:207-16. [PMID: 9473279 DOI: 10.1006/abio.1997.2519] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-pH anion exchange chromatography with pulsed amperometric detection (HPAEC/PAD) (1) is routinely used to separate neutral and charged oligosaccharides differing by branch, linkage, and positional isomerism. Oligosaccharides are eluted in 0.1 M NaOH with gradients of sodium acetate (up to 0.25 M). Analyses of HPAEC/PAD-purified oligosaccharides generally require neutralization and removal of eluent salts. To facilitate the process, we designed and produced a cation-exchange system to remove sodium ions (Na+) from the eluent after oligosaccharide detection [the Carbohydrate Membrane Desalter (CMD), with a volatile regenerant]. Exchange of >99.5% of eluent Na+ for hydronium ions (H3O+) within the CMD generates dilute acetic acid (removable by vacuum evaporation). The exchange process desalts up to 0.35 M Na+ at 1.0 ml/min. Oligosaccharides collected after on-line desalting, evaporated and resuspended in their original volume of deionized water contained < or = 350 muM residual Na+ when the eluting sodium concentration was 300 mM. This represents a desalting efficiency of >99.8%. Recovery of neutral and sialylated oligosaccharides under these conditions ranged from 75 to 100%. With the CMD system and postcollection evaporation, HPAEC/PAD can purify oligosaccharides ready for further characterization. As a proof test, oligosaccharides from a human monoclonal antibody were separated by HPAEC/PAD, desalted with the CMD system, dried, and analyzed by matrix-assisted laser desorption-ionization, time-of-flight mass spectrometry.
Collapse
Affiliation(s)
- J R Thayer
- Dionex Corporation, Sunnyvale, California
| | | | | | | |
Collapse
|
23
|
Hotchkiss AT, El-Bahtimy K, Fishman ML. Analysis of Pectin Structure by HPAEC-PAD. PLANT CELL WALL ANALYSIS 1996. [DOI: 10.1007/978-3-642-60989-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Characterization of Oligosaccharides Derived from Plant Cell Wall Polysaccharides by On-Line High-Performance Anion-Exchange Chromatography Thermospray Mass Spectrometry. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/978-3-642-60989-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
25
|
Pellerin P, Vidal S, Williams P, Brillouet JM. Characterization of five type II arabinogalactan-protein fractions from red wine of increasing uronic acid content. Carbohydr Res 1995; 277:135-43. [PMID: 8548786 DOI: 10.1016/0008-6215(95)00206-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Five arabinogalactan-protein conjugates (AGP) were separated from red wine by two successive anion-exchange chromatography steps and further purified to apparent homogeneity by affinity and size-exclusion chromatography. Together they represent more than 40% of total wine polysaccharides, confirming the abundance of AGPs in red wine. The five purified fractions had a common arabinogalactan core with characteristics typical of wine type II AGPs, but differed mainly in their uronic acid content, as evidenced by differences in the strength of their binding to the anion-exchanger. Their uronic acid content and glycosidic linkage composition revealed that the three less acidic AGPs contained from 3 to 7% glucuronic acid, half in terminal non-reducing positions and half in terminal Rhap-(1-->4)-Glc pA-(1-->sequences. The two more acidic AGP-containing fractions contained both glucuronic (6.1 and 13.3%, respectively) and galacturonic (1.9 and 2.3%, respectively) acid in association with 2- and 2,4-linked rhamnose, indicating the presence of AG-rhamnogalacturonan fragments.
Collapse
Affiliation(s)
- P Pellerin
- Institut National de la Recherche Agronomique, Institut des Produits de la Vigne, Laboratoire des Polyméres et des Techniques Physico-Chimiques, Montpellier, France
| | | | | | | |
Collapse
|