1
|
Dhaliwal D, Shepherd TG. Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: a review. Clin Exp Metastasis 2021; 39:291-301. [PMID: 34822024 PMCID: PMC8971148 DOI: 10.1007/s10585-021-10136-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy in the developed world. EOC metastasis is unique since malignant cells detach directly from the primary tumor site into the abdominal fluid and form multicellular aggregates, called spheroids, that possess enhanced survival mechanisms while in suspension. As such, altered cell adhesion properties are paramount to EOC metastasis with cell detachment from the primary tumor, dissemination as spheroids, and reattachment to peritoneal surfaces for secondary tumor formation. The ability for EOC cells to establish and maintain cell–cell contacts in spheroids is critical for cell survival in suspension. Integrins are a family of cell adhesion receptors that play a crucial role in cell–cell and cell-extracellular matrix interactions. These glycoprotein receptors regulate diverse functions in tumor cells and are implicated in multiple steps of cancer progression. Altered integrin expression is detected in numerous carcinomas, where they play a role in cell migration, invasion, and anchorage-independent survival. Like that observed for other carcinomas, epithelial-mesenchymal transition (EMT) occurs during metastasis and integrins can function in this process as well. Herein, we provide a review of the evidence for integrin-mediated cell adhesion mechanisms impacting steps of EOC metastasis. Taken together, targeting integrin function may represent a potential therapeutic strategy to inhibit progression of advanced EOC.
Collapse
Affiliation(s)
- Dolly Dhaliwal
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada.,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Trevor G Shepherd
- The Mary & John Knight Translational Ovarian Cancer Research Unit, Lawson Health Research Institute and London Health Sciences Centre, London, ON, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Obstetrics & Gynaecology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada. .,London Regional Cancer Program, 790 Commissioners Rd E, Room A4-836, London, ON, N6A 4L6, Canada.
| |
Collapse
|
2
|
Chen WC, Hsu HP, Li CY, Yang YJ, Hung YH, Cho CY, Wang CY, Weng TY, Lai MD. Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin. Int J Oncol 2016; 49:1881-1889. [PMID: 27633757 PMCID: PMC5063452 DOI: 10.3892/ijo.2016.3691] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cell (CSC) markers have been identified for CSC isolation and proposed as therapeutic targets in various types of cancers. CD90, one of the characterized markers in liver and gastric cancer, is shown to promote cancer formation. However, the underexpression level of CD90 in ovarian cancer cells and the evidence supporting the cellular mechanism have not been investigated. In the present study, we found that the DNA copy number of CD90 is correlated with mRNA expression in ovarian cancer tissue and the ovarian cancer patients with higher CD90 have good prognosis compared to the patients with lower CD90. Although the expression of CD90 in human ovarian cancer SKOV3 cells enhances the cell proliferation by MTT and anchorage-dependent growth assay, CD90 inhibits the anchorage-independent growth ability in vitro and tumor formation in vivo. CD90 overexpression suppresses the sphere-forming ability and ALDH activity and enhances the cell apoptosis, indicating that CD90 may reduce the cell growth by the properties of CSC and anoikis. Furthermore, CD90 reduces the expression of other CSC markers, including CD133 and CD24. The inhibition of CD133 is attenuated by the mutant CD90, which is replaced with RLE domain into RLD domain. Importantly, the CD90-regulated inhibition of CD133 expression, anchorage-independent growth and signal transduction of mTOR and AMPK are restored by the β3 integrin shRNA. Our results provide evidence that CD90 mediates the antitumor formation by interacting with β3 integrin, which provides new insight that can potentially be applied in the development of therapeutic strategies in ovarian cancer.
Collapse
Affiliation(s)
- Wei-Ching Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Hui-Ping Hsu
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chung-Yen Li
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Ya-Ju Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Hsuan Hung
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chien-Yu Cho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Tzu-Yang Weng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| |
Collapse
|
3
|
Nishida E, Chen C, Morita A, Shimizu J. Inhibition of T cell activation through down-regulation of TCR-CD3 expression mediated by an anti-CD90 Ab. Immunol Lett 2011; 136:163-70. [DOI: 10.1016/j.imlet.2011.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/27/2010] [Accepted: 01/12/2011] [Indexed: 12/20/2022]
|
4
|
Leyton L, Quest AF, Bron C. Thy-1/CD3 coengagement promotes TCR signaling and enhances particularly tyrosine phosphorylation of the raft molecule LAT. Mol Immunol 1999; 36:755-68. [PMID: 10593514 DOI: 10.1016/s0161-5890(99)00086-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Clustering of the glycosyl-phosphatidylinositol (GPI)-anchored protein Thy-1 on the cell surface leads to T cell activation. However, despite the similarity to TCR-mediated events, cell signaling triggered by Thy-1 crosslinking, reportedly occurs in a manner independent of the TCR/CD3 complex. To investigate the relationship between responses resulting from Thy-1 or TCR engagement, a biochemically well defined system employing only affinity purified antibodies was used to crosslink these surface molecules and activation was assessed by monitoring tyrosine phosphorylation, intracellular calcium influx and IL-2 production. By these criteria, anti-CD3 mAbs moderately activated EL-4 thymoma or 2B4 hybridoma cell lines, while costimulation with anti-Thy-1-mAb strongly enhanced TCR signaling. Furthermore, a Thy-1 loss mutant cell line, did not respond to stimulation through CD3 despite expressing all essential signaling molecules. Together these results emphasized the existence of a poorly appreciated mutual interdependence between Thy-1 and CD3 for efficient cellular signaling. Thy-1/CD3-mediated activation enhanced mostly tyrosine phosphorylation of a 40 kDa protein which was identified as a transmembrane protein lacking N-linked oligosaccharides. These biochemical properties are identical to those described for a recently cloned adaptor protein called 'Linker for Activation of T cells' (LAT). Indeed, polyclonal Abs raised against a LAT-peptide (amino acids 103-131) specifically recognized the 40 kDa protein. LAT is present in microdomains of the plasma membrane enriched in sphingolipids, cholesterol, GPI-anchored proteins and a variety of signaling molecules. By contrast, the TCR/CD3 complex is excluded from these domains at least until stimulation takes place. Hence, we propose that Thy-1 promotes TCR/CD3 dependent signaling by facilitating LAT phosphorylation on tyrosine and the subsequent recruitment of downstream effector molecules.
Collapse
Affiliation(s)
- L Leyton
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| | | | | |
Collapse
|
5
|
Horejsí V, Cebecauer M, Cerný J, Brdicka T, Angelisová P, Drbal K. Signal transduction in leucocytes via GPI-anchored proteins: an experimental artefact or an aspect of immunoreceptor function? Immunol Lett 1998; 63:63-73. [PMID: 9761367 DOI: 10.1016/s0165-2478(98)00054-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Membrane proteins anchored in the membrane via a glycolipid glycosylphosphatidylinositol (GPI) as well as some glycolipids are able to transduce signals and induce diverse functional responses in cells upon their cross-linking via antibodies or natural ligands. In some cases this signaling capacity seems to be due to associations of these molecules with specific transmembrane proteins. GPI-anchored proteins are components of membrane microdomains enriched in glycosphingolipids and cholesterol and devoid of most transmembrane proteins. These membrane specializations are relatively resistant to solubilization in solutions of some mild detergents at low temperatures. These 'GPI-microdomains' contain also cytoplasmic signaling molecules such as Src-family protein tyrosine kinases and trimeric G-proteins. Thus, at least some signaling elicited upon cross-linking of GPI-anchored proteins and glycolipids may be due to perturbation of the signaling molecules associated with these microdomains. It is suggested that these specialized areas of the membrane rich in signaling molecules interact with immunoreceptors (TCR, BCR, Fc receptors) cross-linked upon their interactions with ligands and importantly contribute to initiation of proximal phases of their signaling pathways.
Collapse
Affiliation(s)
- V Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | | | | | |
Collapse
|