1
|
Sah MK, Naskar K, Adhikari S, Smits B, Meyer J, Somers MF. On the quantum dynamical treatment of surface vibrational modes for reactive scattering of H2 from Cu(111) at 925 K. J Chem Phys 2024; 161:014306. [PMID: 38953445 DOI: 10.1063/5.0217639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
We construct the effective Hartree potential for H2 on Cu(111) as introduced in our earlier work [Dutta et al., J. Chem. Phys. 154, 104103 (2021), and Dutta et al., J. Chem. Phys. 157, 194112 (2022)] starting from the same gas-metal interaction potential obtained for 0 K. Unlike in that work, we now explicitly account for surface expansion at 925 K and investigate different models to describe the surface vibrational modes: (i) a cluster model yielding harmonic normal modes at 0 K and (ii) slab models resulting in phonons at 0 and 925 K according to the quasi-harmonic approximation-all consistently calculated at the density functional theory level with the same exchange-correlation potential. While performing dynamical calculations for the H2(v = 0, j = 0)-Cu(111) system employing Hartree potential constructed with 925 K phonons and surface temperature, (i) the calculated chemisorption probabilities are the highest compared to the other approaches over the energy domain and (ii) the threshold for the reaction probability is the lowest, in close agreement with the experiment. Although the survival probabilities (v' = 0) depict the expected trend (lower in magnitude), the excitation probabilities (v' = 1) display a higher magnitude since the 925 K phonons and surface temperature are more effective for the excitation process compared to the phonons/normal modes obtained from the other approaches investigated to describe the surface.
Collapse
Affiliation(s)
- Mantu Kumar Sah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Bauke Smits
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F Somers
- Leiden Institute of Chemistry, Gorlaeus Building, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
2
|
Stark W, Westermayr J, Douglas-Gallardo OA, Gardner J, Habershon S, Maurer RJ. Machine Learning Interatomic Potentials for Reactive Hydrogen Dynamics at Metal Surfaces Based on Iterative Refinement of Reaction Probabilities. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:24168-24182. [PMID: 38148847 PMCID: PMC10749455 DOI: 10.1021/acs.jpcc.3c06648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
The reactive chemistry of molecular hydrogen at surfaces, notably dissociative sticking and hydrogen evolution, plays a crucial role in energy storage and fuel cells. Theoretical studies can help to decipher underlying mechanisms and reaction design, but studying dynamics at surfaces is computationally challenging due to the complex electronic structure at interfaces and the high sensitivity of dynamics to reaction barriers. In addition, ab initio molecular dynamics, based on density functional theory, is too computationally demanding to accurately predict reactive sticking or desorption probabilities, as it requires averaging over tens of thousands of initial conditions. High-dimensional machine learning-based interatomic potentials are starting to be more commonly used in gas-surface dynamics, yet robust approaches to generate reliable training data and assess how model uncertainty affects the prediction of dynamic observables are not well established. Here, we employ ensemble learning to adaptively generate training data while assessing model performance with full uncertainty quantification (UQ) for reaction probabilities of hydrogen scattering on different copper facets. We use this approach to investigate the performance of two message-passing neural networks, SchNet and PaiNN. Ensemble-based UQ and iterative refinement allow us to expose the shortcomings of the invariant pairwise-distance-based feature representation in the SchNet model for gas-surface dynamics.
Collapse
Affiliation(s)
- Wojciech
G. Stark
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Julia Westermayr
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | | | - James Gardner
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Scott Habershon
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Tchakoua T, Powell AD, Gerrits N, Somers MF, Doblhoff-Dier K, Busnengo HF, Kroes GJ. Simulating Highly Activated Sticking of H 2 on Al(110): Quantum versus Quasi-Classical Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:5395-5407. [PMID: 36998253 PMCID: PMC10041643 DOI: 10.1021/acs.jpcc.3c00426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
We evaluate the importance of quantum effects on the sticking of H2 on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2 + Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Collapse
Affiliation(s)
- Theophile Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Andrew D. Powell
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Nick Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F. Somers
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Katharina Doblhoff-Dier
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Heriberto F. Busnengo
- Instituto
de Física Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario, Argentina
- Facultad
de Ciencias Exactas, Ingeniería y
Agrimensura, UNR, Av.
Pellegrini 250, 2000 Rosario, Argentina
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
4
|
Smits B, Somers MF. The quantum dynamics of H 2 on Cu(111) at a surface temperature of 925 K: Comparing state-of-the-art theory to state-of-the-art experiments 2. J Chem Phys 2023; 158:014704. [PMID: 36610948 DOI: 10.1063/5.0134817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
State-of-the-art 6D quantum dynamics simulations for the dissociative chemisorption of H2 on a thermally distorted Cu(111) surface, using the static corrugation model, were analyzed to produce several (experimentally available) observables. The expected error, especially important for lower reaction probabilities, was quantified using wavepackets on several different grids as well as two different analysis approaches to obtain more accurate results in the region where a slow reaction channel was experimentally shown to be dominant. The lowest reaction barrier sites for different thermally distorted surface slabs are shown to not just be energetically, but also geometrically, different between surface configurations, which can be used to explain several dynamical effects found when including surface temperature effects. Direct comparison of simulated time-of-flight spectra to those obtained from state-of-the-art desorption experiments showed much improved agreement compared to the perfect lattice BOSS approach. Agreement with experimental rotational and vibrational efficacies also somewhat improved when thermally excited surfaces were included in the theoretical model. Finally, we present clear quantum effects in the rotational quadrupole alignment parameters found for the lower rotationally excited states, which underlines the importance of careful quantum dynamical analyses of this system.
Collapse
Affiliation(s)
- B Smits
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Building, 2300 RA Leiden, The Netherlands
| | - M F Somers
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Building, 2300 RA Leiden, The Netherlands
| |
Collapse
|
5
|
Tchakoua T, Gerrits N, Smeets EWF, Kroes GJ. SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces. J Chem Theory Comput 2022; 19:245-270. [PMID: 36529979 PMCID: PMC9835835 DOI: 10.1021/acs.jctc.2c00824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.
Collapse
Affiliation(s)
- T. Tchakoua
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - N. Gerrits
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,PLASMANT,
Department of Chemistry, University of Antwerp, BE-2610Antwerp, Belgium
| | - E. W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,ALTEN
Nederland, Technology, Fascinatio Boulevard 582, 2909 VACapelle a/d IJssel, The Netherlands
| | - G.-J. Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,E-mail: . Phone: +31 71 527 4396
| |
Collapse
|
6
|
Zhao C, Zhu A, Gao S, Wang L, Wan X, Wang A, Wang WH, Xue T, Yang S, Sun D, Wang W. Phonon Resonance Catalysis in NO Oxidation on Mn-Based Mullite. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunning Zhao
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ao Zhu
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Gao
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lijing Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiang Wan
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ansheng Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Wei-Hua Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Tao Xue
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, P. R. China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Deyan Sun
- Department of Physics, East China Normal University, Shanghai 200062, P. R. China
| | - Weichao Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Dynamic study of the D + DAu reaction based on a new ground potential energy surface. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Formulation of temperature dependent effective Hartree potential incorporating quadratic over linear molecular DOFs-surface modes couplings and its effect on quantum dynamics of D2 (v = 0, j = 0)/D2 (v = 0, j = 2) on Cu(111) metal surface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Smeets EF, Kroes GJ. Performance of Made Simple Meta-GGA Functionals with rVV10 Nonlocal Correlation for H 2 + Cu(111), D 2 + Ag(111), H 2 + Au(111), and D 2 + Pt(111). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:8993-9010. [PMID: 34084265 PMCID: PMC8162760 DOI: 10.1021/acs.jpcc.0c11034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Accurately modeling heterogeneous catalysis requires accurate descriptions of rate-controlling elementary reactions of molecules on metal surfaces, but standard density functionals (DFs) are not accurate enough for this. The problem can be solved with the specific reaction parameter approach to density functional theory (SRP-DFT), but the transferability of SRP DFs among chemically related systems is limited. We combine the MS-PBEl, MS-B86bl, and MS-RPBEl semilocal made simple (MS) meta-generalized gradient approximation (GGA) (mGGA) DFs with rVV10 nonlocal correlation, and we evaluate their performance for the hydrogen (H2) + Cu(111), deuterium (D2) + Ag(111), H2 + Au(111), and D2 + Pt(111) gas-surface systems. The three MS mGGA DFs that have been combined with rVV10 nonlocal correlation were not fitted to reproduce particular experiments, nor has the b parameter present in rVV10 been reoptimized. Of the three DFs obtained the MS-PBEl-rVV10 DF yields an excellent description of van der Waals well geometries. The three original MS mGGA DFs gave a highly accurate description of the metals, which was comparable in quality to that obtained with the PBEsol DF. Here, we find that combining the three original MS mGGA DFs with rVV10 nonlocal correlation comes at the cost of a slightly less accurate description of the metal. However, the description of the metal obtained in this way is still better than the descriptions obtained with SRP DFs specifically optimized for individual systems. Using the Born-Oppenheimer static surface (BOSS) model, simulations of molecular beam dissociative chemisorption experiments yield chemical accuracy for the D2 + Ag(111) and D2 + Pt(111) systems. A comparison between calculated and measured E 1/2(ν, J) parameters describing associative desorption suggests chemical accuracy for the associative desorption of H2 from Au(111) as well. Our results suggest that ascending Jacob's ladder to the mGGA rung yields increasingly more accurate results for gas-surface reactions of H2 (D2) interacting with late transition metals.
Collapse
Affiliation(s)
- Egidius
W. F. Smeets
- Gorlaeus Laboratories, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Gorlaeus Laboratories, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
10
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
11
|
Dutta J, Mandal S, Adhikari S, Spiering P, Meyer J, Somers MF. Effect of surface temperature on quantum dynamics of H 2 on Cu(111) using a chemically accurate potential energy surface. J Chem Phys 2021; 154:104103. [PMID: 33722025 DOI: 10.1063/5.0035830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The effect of surface atom vibrations on H2 scattering from a Cu(111) surface at different temperatures is being investigated for hydrogen molecules in their rovibrational ground state (v = 0, j = 0). We assume weakly correlated interactions between molecular degrees of freedom and surface modes through a Hartree product type wavefunction. While constructing the six-dimensional effective Hamiltonian, we employ (a) a chemically accurate potential energy surface according to the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)]; (b) normal mode frequencies and displacement vectors calculated with different surface atom interaction potentials within a cluster approximation; and (c) initial state distributions for the vibrational modes according to Bose-Einstein probability factors. We carry out 6D quantum dynamics with the so-constructed effective Hamiltonian and analyze sticking and state-to-state scattering probabilities. The surface atom vibrations affect the chemisorption dynamics. The results show physically meaningful trends for both reaction and scattering probabilities compared to experimental and other theoretical results.
Collapse
Affiliation(s)
- Joy Dutta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Souvik Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Paul Spiering
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Mark F Somers
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
12
|
Smeets EWF, Kroes GJ. Designing new SRP density functionals including non-local vdW-DF2 correlation for H 2 + Cu(111) and their transferability to H 2 + Ag(111), Au(111) and Pt(111). Phys Chem Chem Phys 2020; 23:7875-7901. [PMID: 33291129 DOI: 10.1039/d0cp05173j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific reaction parameter density functionals (SRP-DFs) that can describe dissociative chemisorption molecular beam experiments of hydrogen (H2) on cold transition metal surfaces with chemical accuracy have so far been shown to be only transferable among different facets of the same metal, but not among different metals. We design new SRP-DFs that include non-local vdW-DF2 correlation for the H2 + Cu(111) system, and evaluate their transferability to the highly activated H2 + Ag(111) and H2 + Au(111) systems and the non-activated H2 + Pt(111) system. We design our functionals for the H2 + Cu(111) system since it is the best studied system both theoretically and experimentally. Here we demonstrate that a SRP-DF fitted to reproduce molecular beam sticking experiments for H2 + Cu(111) with chemical accuracy can also describe such experiments for H2 + Pt(111) with chemical accuracy, and vice versa. Chemically accurate functionals have been obtained that perform very well with respect to reported van der Waals well geometries, and which improve the description of the metal over current generalized gradient approximation (GGA) based SRP-DFs. From a systematic comparison of our new SRP-DFs that include non-local correlation to previously developed SRP-DFs, for both activated and non-activated systems, we identify non-local correlation as a key ingredient in the construction of transferable SRP-DFs for H2 interacting with transition metals. Our results are in excellent agreement with experiment when accurately measured observables are available. It is however clear from our analysis that, except for the H2 + Cu(111) system, there is a need for more, more varied, and more accurately described experiments in order to further improve the design of SRP-DFs. Additionally, we confirm that, when including non-local correlation, the sticking of H2 on Cu(111) is still well described quasi-classically.
Collapse
Affiliation(s)
- Egidius W F Smeets
- Univeristeit Leiden, Leiden Institute of Chemistry, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
13
|
Zhu L, Zhang Y, Zhang L, Zhou X, Jiang B. Unified and transferable description of dynamics of H2 dissociative adsorption on multiple copper surfaces via machine learning. Phys Chem Chem Phys 2020; 22:13958-13964. [DOI: 10.1039/d0cp02291h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Schematic of the developed neural network potential energy surface enabling a unified and transferable description of dynamics of H2 dissociative adsorption on multiple copper surfaces.
Collapse
Affiliation(s)
- Lingjun Zhu
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Xueyao Zhou
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes
- Department of Chemical Physics, University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
14
|
Smeets EWF, Füchsel G, Kroes GJ. Correction to "Quantum Dynamics of Dissociative Chemisorption of H 2 on the Stepped Cu(211) Surface″. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:31295. [PMID: 31897267 PMCID: PMC6936654 DOI: 10.1021/acs.jpcc.9b11115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
[This corrects the article DOI: 10.1021/acs.jpcc.9b06539.].
Collapse
|
15
|
Smeets EF, Füchsel G, Kroes GJ. Quantum Dynamics of Dissociative Chemisorption of H 2 on the Stepped Cu(211) Surface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:23049-23063. [PMID: 31565113 PMCID: PMC6757508 DOI: 10.1021/acs.jpcc.9b06539] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Reactions on stepped surfaces are relevant to heterogeneous catalysis, in which a reaction often takes place at the edges of nanoparticles where the edges resemble steps on single-crystal stepped surfaces. Previous results on H2 + Cu(211) showed that, in this system, steps do not enhance the reactivity and raised the question of whether this effect could be, in any way, related to the neglect of quantum dynamical effects in the theory. To investigate this, we present full quantum dynamical molecular beam simulations of sticking of H2 on Cu(211), in which all important rovibrational states populated in a molecular beam experiment are taken into account. We find that the reaction of H2 with Cu(211) is very well described with quasi-classical dynamics when simulating molecular beam sticking experiments, in which averaging takes place over a large number of rovibrational states and over translational energy distributions. Our results show that the stepped Cu(211) surface is distinct from its component Cu(111) terraces and Cu(100) steps and cannot be described as a combination of its component parts with respect to the reaction dynamics when considering the orientational dependence. Specifically, we present evidence that, at translational energies close to the reaction threshold, vibrationally excited molecules show a negative rotational quadrupole alignment parameter on Cu(211), which is not found on Cu(111) and Cu(100). The effect arises because these molecules react with a site-specific reaction mechanism at the step, that is, inelastic rotational enhancement, which is only effective for molecules with a small absolute value of the magnetic rotation quantum number. From a comparison to recent associative desorption experiments as well as Born-Oppenheimer molecular dynamics calculations, it follows that the effects of surface atom motion and electron-hole pair excitation on the reactivity fall within chemical accuracy, that is, modeling these effect shifts extracted reaction probability curves by less than 1 kcal/mol translational energy. We found no evidence in our fully state-resolved calculations for the "slow" reaction channel that was recently reported for associative desorption of H2 from Cu(111) and Cu(211), but our results for the fast channel are in good agreement with the experiments on H2 + Cu(211).
Collapse
Affiliation(s)
- Egidius
W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gernot Füchsel
- Institut
für Chemie und Biochemie - Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
16
|
Smeets EF, Voss J, Kroes GJ. Specific Reaction Parameter Density Functional Based on the Meta-Generalized Gradient Approximation: Application to H 2 + Cu(111) and H 2 + Ag(111). J Phys Chem A 2019; 123:5395-5406. [PMID: 31149824 PMCID: PMC6600505 DOI: 10.1021/acs.jpca.9b02914] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Indexed: 01/08/2023]
Abstract
Specific reaction parameter density functionals (SRP-DFs), which can describe dissociative chemisorption reactions on metals to within chemical accuracy, have so far been based on exchange functionals within the generalized gradient approximation (GGA) and on GGA correlation functionals or van der Waals correlation functionals. These functionals are capable of describing the molecule-metal surface interaction accurately, but they suffer from the general GGA problem that this can be done only at the cost of a rather poor description of the metal. Here, we show that it is possible also to construct SRP-DFs for H2 dissociation on Cu(111) based on meta-GGA functionals, introducing three new functionals based on the "made-simple" (MS) concept. The exchange parts of the three functionals (MS-PBEl, MS-B86bl, and MS-RPBEl) are based on the expressions for the PBE, B86b, and RPBE exchange functionals. Quasi-classical trajectory (QCT) calculations performed with potential energy surfaces (PESs) obtained with the three MS functionals reproduce molecular beam experiments on H2, D2 + Cu(111) with chemical accuracy. Therefore, these three non-empirical functionals themselves are also capable of describing H2 dissociation on Cu(111) with chemical accuracy. Similarly, QCT calculations performed on the MS-PBEl and MS-B86bl PESs reproduced molecular beam and associative desorption experiments on D2, H2 + Ag(111) more accurately than was possible with the SRP48 density functional for H2 + Cu(111). Also, the three new MS functionals describe the Cu, Ag, Au, and Pt metals more accurately than the all-purpose Perdew-Burke-Ernzerhof (PBE) functional. The only disadvantage we noted of the new MS functionals is that, as found for the example of H2 + Cu(111), the reaction barrier height obtained by taking weighted averages of the MS-PBEl and MS-RPBEl functionals is tunable over a smaller range (9 kJ/mol) than possible with the standard GGA PBE and RPBE functionals (33 kJ/mol). As a result of this restricted tunability, it is not possible to construct an SRP-DF for H2 + Ag(111) on the basis of the three examined MS meta-GGA functionals.
Collapse
Affiliation(s)
- Egidius
W. F. Smeets
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes Voss
- SLAC
National Accelerator Laboratory, SUNCAT Center Interface Science &
Catalysis, 2575 Sand
Hill Rd, Menlo Park, California 94025, United States
| | - Geert-Jan Kroes
- Leiden
Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
17
|
Cao K, Füchsel G, Kleyn AW, Juurlink LBF. Hydrogen adsorption and desorption from Cu(111) and Cu(211). Phys Chem Chem Phys 2018; 20:22477-22488. [PMID: 30140805 DOI: 10.1039/c8cp03386b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a combined experimental-theoretical study on structural and coverage dependences of the adsorption and desorption of molecular hydrogen on atomically flat Cu(111) and highly stepped Cu(211) surfaces. For molecules with identical incident energy from supersonic molecular beams, we find a reduced dissociative sticking probability for the stepped surface compared to Cu(111). DFT calculations of activation barriers to dissociation for the clean and partially precovered surfaces, as well as quantitative analysis of TPD spectra, support that the A-type step of the (211) surface causes an upward shift in activation barriers to dissociation and lowering of the desorption barrier. The new data allow us to determine low sticking probabilities at conditions where King and Wells measurements fail to determine the reactivity. They are also fully consistent with the unexpected observation that monoatomic steps on a surface lower the reactivity toward the dissociation of a diatomic molecule.
Collapse
Affiliation(s)
- Kun Cao
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Wijzenbroek M, Helstone D, Meyer J, Kroes GJ. Dynamics of H2 dissociation on the close-packed (111) surface of the noblest metal: H2 + Au(111). J Chem Phys 2016; 145:144701. [DOI: 10.1063/1.4964486] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark Wijzenbroek
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Darcey Helstone
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jörg Meyer
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
19
|
Kroes GJ, Díaz C. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces. Chem Soc Rev 2016; 45:3658-700. [DOI: 10.1039/c5cs00336a] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
State-of-the-art theoretical models allow nowadays an accurate description of H2/metal surface systems and phenomena relative to heterogeneous catalysis. Here we review the most relevant ones investigated during the last 10 years.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry
- Gorlaeus Laboratories
- Leiden University
- 2300 RA Leiden
- The Netherlands
| | - Cristina Díaz
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
20
|
Kroes GJ. Toward a Database of Chemically Accurate Barrier Heights for Reactions of Molecules with Metal Surfaces. J Phys Chem Lett 2015; 6:4106-14. [PMID: 26722785 DOI: 10.1021/acs.jpclett.5b01344] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Being able to calculate reaction barrier heights to within chemical accuracy (errors < 1 kcal/mol) is crucial to the accurate modeling of chemical reactions. Although accurate databases exist that can help theorists with benchmarking new electronic structure theories on gas-phase chemical reactions, no such databases exist for reactions of molecules with metal surfaces. Nonetheless, most chemicals are made in heterogeneously catalyzed processes, of which many take place over metal particles. Presently, barrier heights for molecule-metal surface reactions have been determined with chemical accuracy for only two systems, that is, H2 + Cu(111) and H2 + Cu(100). This has been done with semiempirically determined density functionals, which were fitted through comparisons of dynamics results with molecular beam sticking probabilities. The prospects of extending the database with chemically accurate data for other molecule-metal reactions, either with the use of semiempirical density functional theory or with first-principles theory, are discussed.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University , P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
21
|
Nattino F, Genova A, Guijt M, Muzas AS, Díaz C, Auerbach DJ, Kroes GJ. Dissociation and recombination of D2 on Cu(111): Ab initio molecular dynamics calculations and improved analysis of desorption experiments. J Chem Phys 2014; 141:124705. [DOI: 10.1063/1.4896058] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Francesco Nattino
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Alessandro Genova
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marieke Guijt
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Alberto S. Muzas
- Departamento de Química Módulo 13, Universitad Autónoma de Madrid, 28049 Madrid, Spain
| | - Cristina Díaz
- Departamento de Química Módulo 13, Universitad Autónoma de Madrid, 28049 Madrid, Spain
| | - Daniel J. Auerbach
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
22
|
Yuan J, Cheng D, Sun Z, Chen M. Time-dependent quantum wave packet and quasiclassical trajectory studies of the Au(2S) + H2(X1∑+g) → AuH(X1∑+g) + H(2S) reaction. Mol Phys 2014. [DOI: 10.1080/00268976.2014.920113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Kyriakou G, Davidson ERM, Peng G, Roling LT, Singh S, Boucher MB, Marcinkowski MD, Mavrikakis M, Michaelides A, Sykes ECH. Significant quantum effects in hydrogen activation. ACS NANO 2014; 8:4827-4835. [PMID: 24684530 PMCID: PMC4073644 DOI: 10.1021/nn500703k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 05/29/2023]
Abstract
Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.
Collapse
Affiliation(s)
- Georgios Kyriakou
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155-58132, United States
- Department of Chemistry, University of Hull, Cottingham Road, Hull HU6 7RX, U.K
| | - Erlend R. M. Davidson
- London Centre for Nanotechnology, University College London, London WC1E 6BT, U.K
- Department of Chemistry, University College London, London WC1E 6BT, U.K
- Thomas Young Centre, University College London, London WC1E 6BT, U.K
| | - Guowen Peng
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Luke T. Roling
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Suyash Singh
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Matthew B. Boucher
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02144, United States
| | - Matthew D. Marcinkowski
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155-58132, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Angelos Michaelides
- London Centre for Nanotechnology, University College London, London WC1E 6BT, U.K
- Department of Chemistry, University College London, London WC1E 6BT, U.K
- Thomas Young Centre, University College London, London WC1E 6BT, U.K
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155-58132, United States
| |
Collapse
|
24
|
Mondal A, Wijzenbroek M, Bonfanti M, Díaz C, Kroes GJ. Thermal Lattice Expansion Effect on Reactive Scattering of H2 from Cu(111) at Ts = 925 K. J Phys Chem A 2013; 117:8770-81. [DOI: 10.1021/jp4042183] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arobendo Mondal
- Indian Institute of Science Education and Research Kolkata (IISER-K),
741252, Nadia, West Bengal, India
| | - Mark Wijzenbroek
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| | - Matteo Bonfanti
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| | - Cristina Díaz
- Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry,
Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
25
|
7D Quantum Dynamics of H2Scattering from Cu(111): The Accuracy of the Phonon Sudden Approximation. Z PHYS CHEM 2013. [DOI: 10.1524/zpch.2013.0405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Sementa L, Wijzenbroek M, van Kolck BJ, Somers MF, Al-Halabi A, Busnengo HF, Olsen RA, Kroes GJ, Rutkowski M, Thewes C, Kleimeier NF, Zacharias H. Reactive scattering of H2 from Cu(100): Comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment. J Chem Phys 2013; 138:044708. [DOI: 10.1063/1.4776224] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Kroes GJ. Towards chemically accurate simulation of molecule-surface reactions. Phys Chem Chem Phys 2012; 14:14966-81. [PMID: 23037951 DOI: 10.1039/c2cp42471a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective addresses four challenges facing theorists whose aim is to make quantitatively accurate predictions for reactions of molecules on metal surfaces, and suggests ways of meeting these challenges, focusing on dissociative chemisorption reactions of H(2), N(2), and CH(4). Addressing these challenges is ultimately of practical importance to a more accurate description of overall heterogeneously catalysed reactions, which play a role in the production of more than 90% of man-made chemicals. One challenge is to describe the interaction of a molecule with a metal surface with chemical accuracy, i.e., with errors in reaction barrier heights less than 1 kcal mol(-1). In this framework, the potential of a new implementation of specific reaction parameter density functional theory (SRP-DFT) will be discussed, with emphasis on applications to reaction of H(2) with metal surfaces. Two additional challenges are to come up with improved descriptions of the effects of phonons and electron-hole pairs on reaction of molecules like N(2) on metal surfaces. Phonons can be tackled using sudden approximations in quantum dynamics, and through Ab Initio Molecular Dynamics (AIMD) calculations using classical dynamics. To additionally achieve an accurate description of the effect of electron-hole pair excitation on dissociative chemisorption within a classical dynamics framework, it may be possible to combine AIMD with electronic friction. The fourth challenge we will consider is how to achieve an accurate quantum mechanical description of the dissociative chemisorption of a polyatomic molecule, like methane, on a metal surface. A method of potential interest is the Multi-Configuration Time-Dependent Hartree (MCTDH) method.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
28
|
Wijzenbroek M, Somers MF. Static surface temperature effects on the dissociation of H2 and D2 on Cu(111). J Chem Phys 2012; 137:054703. [DOI: 10.1063/1.4738956] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Bonfanti M, Díaz C, Somers MF, Kroes GJ. Hydrogen dissociation on Cu(111): the influence of lattice motion. Part I. Phys Chem Chem Phys 2011; 13:4552-61. [DOI: 10.1039/c0cp01746a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Díaz C, Olsen RA, Auerbach DJ, Kroes GJ. Six-dimensional dynamics study of reactive and non reactive scattering of H2 from Cu(111) using a chemically accurate potential energy surface. Phys Chem Chem Phys 2010; 12:6499-519. [DOI: 10.1039/c001956a] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Díaz C, Pijper E, Olsen RA, Busnengo HF, Auerbach DJ, Kroes GJ. Chemically Accurate Simulation of a Prototypical Surface Reaction: H
2
Dissociation on Cu(111). Science 2009; 326:832-4. [DOI: 10.1126/science.1178722] [Citation(s) in RCA: 284] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- C. Díaz
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands
| | - E. Pijper
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands
| | - R. A. Olsen
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands
| | - H. F. Busnengo
- Instituto de Física Rosario (CONICET–Universidad Nacional de Rosario), Av. Pellegrini 250, (2000) Rosario, Argentina
| | - D. J. Auerbach
- GRT, 861 Ward Drive, Santa Barbara, CA 93111, USA
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - G. J. Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Post Office Box 9502, 2300 RA Leiden, Netherlands
| |
Collapse
|
32
|
Abstract
Abstract
The interaction of hydrogen with bimetallic surfaces is assessed and discussed using structurally well defined PdAu and PtRu single crystal surfaces as model systems. The description is based on a correlation between the hydrogen adsorption behavior and the presence and abundance of specific bimetallic nanostructures. The latter are determined quantitatively by high resolution scanning tunneling microscopy. Following the changes in the hydrogen adsorption behavior on surfaces with systematically varied composition and thus varying concentrations of specific structural elements and adsorption ensembles allows a direct correlation between structural and chemical properties and thus to identify the adsorption characteristics of individual adsorption ensembles. This provides a structural basis for parallel theoretical studies, which are essential for a systematic understanding of the complex changes in the adsorption properties.Based on results from experimental studies and calculations, the role of electronic strain and ligand effects, including lateral and vertical ligands, as well the influence of geometric ensemble effects on the hydrogen adsorption characteristics are discussed. The distinct differences between surfaces modified by a monolayer or monolayer islands of a second metal and mixed surfaces such as surface alloys or alloy surfaces are discussed in these terms.
Collapse
|
33
|
Díaz C, Olsen RA. A note on the vibrational efficacy in molecule-surface reactions. J Chem Phys 2009; 130:094706. [DOI: 10.1063/1.3080613] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
34
|
Zanchet A, Dorta-Urra A, Roncero O, Flores F, Tablero C, Paniagua M, Aguado A. Mechanism of molecular hydrogen dissociation on gold chains and clusters as model prototypes of nanostructures. Phys Chem Chem Phys 2009; 11:10122-31. [DOI: 10.1039/b910200k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Kroes GJ, Pijper E, Salin A. Dissociative chemisorption of H2 on the Cu(110) surface: a quantum and quasiclassical dynamical study. J Chem Phys 2008; 127:164722. [PMID: 17979386 DOI: 10.1063/1.2798112] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Six-dimensional quantum dynamical and quasiclassical trajectory (QCT) calculations are reported for the reaction and vibrationally inelastic scattering of (v = 0,1,j = 0) H(2) scattering from Cu(110), and for the reaction and rovibrationally elastic and inelastic scattering of (v = 1,j = 1) H(2) scattering from Cu(110). The dynamics results were obtained using a potential energy surface obtained with density functional theory using the PW91 functional. The reaction probabilities computed with quantum dynamics for (v = 0,1,j = 0) were in excellent agreement with the QCT results obtained earlier for these states, thereby validating the QCT approach to sticking of hydrogen on Cu(110). The vibrational de-excitation probability P(v=1,j = 0 --> v = 0) computed with the QCT method is in remarkably good agreement with the quantum dynamical results for normal incidence energies E(n) between 0.2 and 0.6 eV. The QCT result for the vibrational excitation probability P(v = 0,j = 0 --> v = 1) is likewise accurate for E(n) between 0.8 and 1 eV, but the QCT method overestimates vibrational excitation for lower E(n). The QCT method gives probabilities for rovibrationally (in)elastic scattering, P(v = 1,j = 1 --> v('),j(')), which are in remarkably good agreement with quantum dynamical results. The rotationally averaged, initial vibrational state-selective reaction probability obtained with QCT agrees well with the initial vibrational state-selective reaction probability extracted from molecular beam experiments for v = 1, for the range of collision energies for which the v=1 contribution to the measured total sticking probability dominates. The quantum dynamical probabilities for rovibrationally elastic scattering of (v = 1,j = 1) H(2) from Cu(110) are in good agreement with experiment for E(n) between 0.08 and 0.25 eV.
Collapse
Affiliation(s)
- G J Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
36
|
Abbott HL, Harrison I. Microcanonical Transition State Theory for Activated Gas−Surface Reaction Dynamics: Application to H2/Cu(111) with Rotation as a Spectator. J Phys Chem A 2007; 111:9871-83. [PMID: 17845015 DOI: 10.1021/jp074038a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator degrees of freedom. MURT analysis of diverse experiments indicates that one surface oscillator participates in the dissociative transition state and that the threshold energy for H2 dissociation on Cu(111) is E0 = 62 kJ/mol. The spectator approximation for rotation holds well at thermally accessible rotational energies (i.e., for Er less than approximately 40 kJ/mol). Over the temperature range from 300 to 1000 K, the calculated thermal dissociative sticking coefficient is ST = S0 exp(-Ea/kBT) where S0 = 1.57 and Ea = 62.9 kJ/mol. The sigmoid shape of rovibrational eigenstate-resolved dissociative sticking coefficients as a function of normal translational energy is shown to derive from an averaging of the microcanonical sticking coefficient, with threshold energy E0, over the thermal surface oscillator distribution of the gas-surface collision complexes. Given that H2/Cu(111) is one of the most dynamically biased of gas-surface reactive systems, the simple statistical MURT model simulates and broadly rationalizes the H2/Cu(111) reactive behavior with remarkable fidelity.
Collapse
Affiliation(s)
- Heather L Abbott
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | |
Collapse
|
37
|
Abbott HL, Harrison I. Seven-dimensional microcanonical treatment of hydrogen dissociation dynamics on Cu(111): Clarifying the essential role of surface phonons. J Chem Phys 2006; 125:24704. [PMID: 16848601 DOI: 10.1063/1.2208362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A simple picture of the hydrogen dissociation/associative desorption dynamics on Cu(111) emerges from a two-parameter, full dimensionality microcanonical unimolecular rate theory (MURT) model of the gas-surface reactivity. Vibrational frequencies for the reactive transition state were taken from density functional theory calculations of a six-dimensional potential energy surface [Hammer et al., Phys. Rev. Lett. 73, 1400 (1994)]. The two remaining parameters required by the MURT were fixed by simulation of experiments. These parameters are the dissociation threshold energy, E(0)=79 kJmol, and the number of surface oscillators involved in the localized H(2)Cu(111) collision complex, s=1. The two-parameter MURT quantitatively predicts much of the varied behavior observed for the H(2) and D(2)Cu(111) reactive systems, including the temperature-dependent associative desorption angular distributions, mean translational energies of the associatively desorbing hydrogen as a function of rovibrational eigenstate, etc. The divergence of the statistical theory's predictions from experimental results at low rotational quantum numbers, J < or approximately 5, suggests that either (i) rotational steering is important to the dissociation dynamics at low J, an effect that washes out at high J, or (ii) molecular rotation is approximately a spectator degree of freedom to the dissociation dynamics for these low J states, the states that dominate the thermal reactivity. Surface vibrations are predicted to provide approximately 30% of the energy required to surmount the activation barrier to H(2) dissociation under thermal equilibrium conditions. The MURT with s=1 is used to analytically confirm the experimental finding that partial differential "E(a)(T(s))" partial differential E(t)= -1 for eigenstate-resolved dissociative sticking at translational energies E(t)<E(0)-E(v)-E(r). Explicit treatment of the surface motion (i.e., surface not frozen at T(s)=0 K) is a relatively novel aspect of the MURT theoretical approach.
Collapse
Affiliation(s)
- H L Abbott
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA
| | | |
Collapse
|
38
|
Salin A. Theoretical study of hydrogen dissociative adsorption on the Cu(110) surface. J Chem Phys 2006; 124:104704. [PMID: 16542094 DOI: 10.1063/1.2178357] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have calculated the six-dimensional (6D) potential energy surface for H2 in front of a frozen Cu(110) surface using density functional theory for 22 H2-surface configurations and the corrugation reducing procedure to interpolate between them. We carry out classical trajectory calculations on the dissociative adsorption process and find excellent agreement with measurements. We find that it is of prominent importance to account for the rovibrational state distribution in the incident H2 beam. A straightforward analysis leads to the conclusion that the motion along the surface does not play an appreciable role in the dynamics whereas the dynamical role of molecular rotation is crucial. The latter fact precludes any interpretation of dissociation in terms of a static concept such as "barrier distributions."
Collapse
Affiliation(s)
- A Salin
- Laboratoire de Physico-Chimie Moléculaire, UMR 5803 CNRS-Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France.
| |
Collapse
|
39
|
Vincent JK, Olsen RA, Kroes GJ, Luppi M, Luppi M, Baerends EJ. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Ru(0001). J Chem Phys 2005; 122:44701. [PMID: 15740277 DOI: 10.1063/1.1834914] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Six-dimensional quantum dynamics calculations on dissociative chemisorption of H(2) on Ru(0001) are performed. The six-dimensional potential energy surface is generated using density functional theory. Two different generalized gradient approximations are used, i.e., RPBE and PW91, to allow the results to be compared. The dissociation probability for normally incident H(2) on a clean Ru(0001) surface is calculated. Large differences between the reaction probabilities calculated using the RPBE and PW91 are seen, with the PW91 results showing a much narrower reaction probability curve and a much higher reactivity. Using the reaction probabilities and assuming normal energy scaling reaction rates are generated for temperatures between 300 and 800 K. The rate generated using the PW91 results is higher by about a factor 5 than the rate based on the RPBE results in the range of temperatures relevant to ammonia production.
Collapse
Affiliation(s)
- Jonathan K Vincent
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- V. Ledentu
- Contribution from the Institut de Recherches sur la Catalyse, Centre National de la Recherche Scientifique, 2 Av. Albert Einstein, 69626 Villeurbanne, France, and Laboratoire de Chimie Théorique, École Normale Supérieure de Lyon, 46, Allée d'Italie, 69364 Lyon Cedex 07, France
| | - W. Dong
- Contribution from the Institut de Recherches sur la Catalyse, Centre National de la Recherche Scientifique, 2 Av. Albert Einstein, 69626 Villeurbanne, France, and Laboratoire de Chimie Théorique, École Normale Supérieure de Lyon, 46, Allée d'Italie, 69364 Lyon Cedex 07, France
| | - P. Sautet
- Contribution from the Institut de Recherches sur la Catalyse, Centre National de la Recherche Scientifique, 2 Av. Albert Einstein, 69626 Villeurbanne, France, and Laboratoire de Chimie Théorique, École Normale Supérieure de Lyon, 46, Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
41
|
Hammer B, Nørskov J. Theoretical surface science and catalysis—calculations and concepts. ADVANCES IN CATALYSIS 2000. [DOI: 10.1016/s0360-0564(02)45013-4] [Citation(s) in RCA: 1242] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Kroes GJ. Quantum Dynamics of H2−Surface Scattering: H2 + LiF(001) and H2 + Cu(100). J Phys Chem B 1999. [DOI: 10.1021/jp991489p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. J. Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
43
|
López N, Illas F, Pacchioni G. Electronic Effects in the Activation of Supported Metal Clusters: Density Functional Theory Study of H2 Dissociation on Cu/SiO2. J Phys Chem B 1999. [DOI: 10.1021/jp991655t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Núria López
- Departament de Química Física i Centre de Recerca en Química Teòrica,Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament de Química Física i Centre de Recerca en Química Teòrica,Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Gianfranco Pacchioni
- Istituto Nazionale di Fisica della Materia, Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy
| |
Collapse
|
44
|
Mowrey RC, Kroes GJ, Baerends EJ. Dissociative adsorption of H2 on Cu(100): Fixed-site calculations for impact at hollow and top sites. J Chem Phys 1998. [DOI: 10.1063/1.476105] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
45
|
Kroes GJ, Baerends EJ, Mowrey RC. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Cu(100). J Chem Phys 1997. [DOI: 10.1063/1.474682] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Cottrell C, Carter RN, Nesbitt A, Samson P, Hodgson A. Vibrational state dependence of D2 dissociation on Ag(111). J Chem Phys 1997. [DOI: 10.1063/1.473508] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Mowrey RC, Kroes GJ, Wiesenekker G, Baerends EJ. Dissociative adsorption of H2 on Cu(100): A four-dimensional study of the effect of rotational motion on the reaction dynamics. J Chem Phys 1997. [DOI: 10.1063/1.473515] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
|
49
|
Kroes GJ, Wiesenekker G, Baerends EJ, Mowrey RC, Neuhauser D. Dissociative chemisorption of H2 on Cu(100): A four‐dimensional study of the effect of parallel translational motion on the reaction dynamics. J Chem Phys 1996. [DOI: 10.1063/1.472450] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
50
|
Rettner CT, Auerbach DJ, Tully JC, Kleyn AW. Chemical Dynamics at the Gas−Surface Interface. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9536007] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- C. T. Rettner
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
| | - D. J. Auerbach
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
| | - J. C. Tully
- AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974
| | - A. W. Kleyn
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, Amsterdam 1098 SJ, The Netherlands
| |
Collapse
|