1
|
Vargas-Pérez M, González-Horta A, Mendoza-Hernández H, Elías-Santos M, Acuña-Askar K, Galán-Wong LJ, Luna-Olvera HA. Neochloris oleoabundans cell wall rupture through melittin peptide: a new approach to increase lipid recovery. Biotechnol Lett 2024; 46:97-106. [PMID: 38109017 DOI: 10.1007/s10529-023-03451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/28/2023] [Accepted: 11/04/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Microalgae cell wall affects the recovery of lipids, representing one of the main difficulties in the development of biofuel production. This work aimed to test a new method based on melittin peptide to induce a cellular disruption in N. oleoabundans. RESULTS Neochloris oleoabundans cells were grown at 32 °C in the presence of a high concentration of nitrate-phosphate, causing a cell disruption extent of 83.6%. Further, a two-fold increase in lipid recovery following melittin treatment and solvent extraction was observed. Additionally, it was possible to verify the effects of melittin, both before and after treatment on the morphology of the cells. Scanning electron microscopy (SEM) and confocal images of the melittin-treated microalgae revealed extensive cell damage with degradation of the cell wall and release of intracellular material. CONCLUSIONS Melittin produced a selective cell wall rupture effect in N. oleoabundans under some culture conditions. These results represent the first report on the effect of melittin on lipid recovery from microalgae.
Collapse
Affiliation(s)
- Magda Vargas-Pérez
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Azucena González-Horta
- Laboratorio de Ciencias Genómicas, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Hiram Mendoza-Hernández
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Myriam Elías-Santos
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Karim Acuña-Askar
- Laboratorio de Biorremediación Ambiental, Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Luis Jesús Galán-Wong
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Hugo Alberto Luna-Olvera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México.
| |
Collapse
|
2
|
Paz Ramos A, Gooris G, Bouwstra J, Molinari M, Lafleur M. Raman and AFM-IR chemical imaging of stratum corneum model membranes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stratum corneum (SC), the outermost layer of the epidermis, is the primary barrier to percutaneous absorption. The diffusion of substances through the skin occurs through the SC lipid fraction, which is essentially constituted of an equimolar mixture of ceramides, free fatty acids, and cholesterol. The lipid constituents of SC are mainly forming continuous multilamellar membranes in the solid/crystalline state. However, recent findings suggest the presence of a highly disordered (liquid) phase formed by the unsaturated C18 chain of ceramide EOS, surrounded by a highly ordered lipid environment. The aim of the present work was to study the lipid spatial distribution of model SC membranes composed of ceramide EOS, ceramide NS, a mixture of free fatty acids, and cholesterol, using Raman microspectroscopy and AFM-IR spectroscopy techniques. The enhanced spatial resolution at the tens of nanometers scale of the AFM-IR technique revealed that the lipid matrix is overall homogeneous, with the presence of small, slightly enriched, and depleted regions in a lipid component. No liquid domains of ceramide EOS were observed at this scale, a result that is consistent with the model proposing that the oleate nanodrops are concentrated in the central layer of the three-layer organization of the SC membranes forming the long periodicity phase. In addition, both Raman microspectroscopy and AFM-IR techniques confirmed the fluid nature of the unsaturated chain of ceramide EOS while the rest of the lipid matrix was found highly ordered.
Collapse
Affiliation(s)
- Adrian Paz Ramos
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gert Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Joke Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Michael Molinari
- Institut de chimie et biologie des membranes et des nano-objets, CNRS UMR 5248, Université de Bordeaux, IPB, 33600 Pessac, France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
3
|
Therrien A, Lafleur M. Melittin-Induced Lipid Extraction Modulated by the Methylation Level of Phosphatidylcholine Headgroups. Biophys J 2016; 110:400-410. [PMID: 26789763 DOI: 10.1016/j.bpj.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Protein- and peptide-induced lipid extraction from membranes is a critical process for many biological events, including reverse cholesterol transport and sperm capacitation. In this work, we examine whether such processes could display specificity for some lipid species. Melittin, the main component of dry bee venom, was used as a model amphipathic α-helical peptide. We specifically determined the modulation of melittin-induced lipid extraction from membranes by the change of the methylation level of phospholipid headgroups. Phosphatidylcholine (PC) bilayers were demethylated either by substitution with phosphatidylethanolamine (PE) or chemically by using mono- and dimethylated PE. It is shown that demethylation reduces the association of melittin with membranes, likely because of the resulting tighter chain packing of the phospholipids, which reduces the capacity of the membranes to accommodate inserted melittin. This reduced binding of the peptide is accompanied by an inhibition of the lipid extraction caused by melittin. We demonstrate that melittin selectively extracts PC from PC/PE membranes. This selectivity is proposed to be a consequence of a PE depletion in the surroundings of bound melittin to minimize disruption of the interphospholipid interactions. The resulting PC-enriched vicinity of melittin would be responsible for the observed formation of PC-enriched lipid/peptide particles resulting from the lipid efflux. These findings reveal that modulating the methylation level of phospholipid headgroups is a simple way to control the specificity of lipid extraction from membranes by peptides/proteins and thereby modulate the lipid composition of the membranes.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures, Université de Montréal, Montréal, Québec, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Therrien A, Fournier A, Lafleur M. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation. J Phys Chem B 2016; 120:3993-4002. [PMID: 27054924 DOI: 10.1021/acs.jpcb.5b11705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner than a specific lipid-peptide affinity. The present work on the lipid extraction by melittin and citrullinated melittin with model membranes emphasizes the complex relation between the affinity, the lipid extraction/membrane fragmentation, and the lipid specificity.
Collapse
Affiliation(s)
- Alexandre Therrien
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| | - Alain Fournier
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, 531 Boul. des Prairies, Ville de Laval (Québec) H7V 1B7, Canada
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succ. Centre Ville, Montréal (Québec) H3C 3J7, Canada
| |
Collapse
|
5
|
Energetics and partition of two cecropin-melittin hybrid peptides to model membranes of different composition. Biophys J 2007; 94:2128-41. [PMID: 18032555 DOI: 10.1529/biophysj.107.119032] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The energetics and partition of two hybrid peptides of cecropin A and melittin (CA(1-8)M(1-18) and CA(1-7)M(2-9)) with liposomes of different composition were studied by time-resolved fluorescence spectroscopy, isothermal titration calorimetry, and surface plasmon resonance. The study was carried out with large unilamellar vesicles of three different lipid compositions: 1,2-dimyristoil-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG), and a 3:1 binary mixture of DMPC/DMPG in a wide range of peptide/lipid ratios. The results are compatible with a model involving a strong electrostatic surface interaction between the peptides and the negatively charged liposomes, giving rise to aggregation and precipitation. A correlation is observed in the calorimetric experiments between the observed events and charge neutralization for negatively charged and mixed membranes. In the case of zwitterionic membranes, a very interesting case study was obtained with the smaller peptide, CA(1-7)M(2-9). The calorimetric results obtained for this peptide in a large range of peptide/lipid ratios can be interpreted on the basis of an initial and progressive surface coverage until a threshold concentration, where the orientation changes from parallel to perpendicular to the membrane, followed by pore formation and eventually membrane disruption. The importance of negatively charged lipids on the discrimination between bacterial and eukaryotic membranes is emphasized.
Collapse
|
6
|
Abrunhosa F, Faria S, Gomes P, Tomaz I, Pessoa JC, Andreu D, Bastos M. Interaction and lipid-induced conformation of two cecropin-melittin hybrid peptides depend on peptide and membrane composition. J Phys Chem B 2007; 109:17311-9. [PMID: 16853210 DOI: 10.1021/jp051572e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of two hybrid peptides of cecropin A and melittin [CA(1-8)M(1-18) and CA(1-7)M(2-9)] with liposomes was studied by differential scanning calorimetry (DSC), circular dichroism (CD), and quasi-elastic light scattering (QELS). The study was carried out with large unilamellar vesicles (LUVs) of three different lipid compositions: 1,2-dimyristoil-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG) and a binary mixture of DMPC/DMPG, in a wide range of peptide-to-lipid (P:L) molar ratios (0 to 1:7). DSC results indicate that, for both peptides, the interaction depends on membrane composition, with very different behavior for zwitterionic and anionic membranes. CD data show that, although the two peptides have different secondary structures in buffer (random coil for CA(1-7)M(2-9) and predominantly beta-sheet for CA(1-8)M(1-18)), they both adopt an alpha-helical structure in the presence of the membranes. Overall, results are compatible with a model involving a strong electrostatic surface interaction between the peptides and the negatively charged liposomes, which gives place to aggregation in the gel phase and precipitation after a threshold peptide concentration. In the case of zwitterionic membranes, a progressive surface coverage with peptide molecules destabilizes the membrane, eventually leading to membrane disruption. Moreover, delicate modulations in behavior were observed depending on the peptide.
Collapse
Affiliation(s)
- Filipa Abrunhosa
- CIQ (U.P.) Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
7
|
Zschörnig O, Opitz F, Müller M. Annexin A4 binding to anionic phospholipid vesicles modulated by pH and calcium. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:415-24. [PMID: 17440717 DOI: 10.1007/s00249-007-0147-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 02/13/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Annexin A4 belongs to a class of Ca(2+)-binding proteins for which different functions in the cell have proposed, e.g. involvement in exocytosis and in the coagulation process. All these functions are related to the ability of the annexins to bind to acidic phospholipids. In this study the interaction of annexin A4 with large unilamellar vesicles (LUV) prepared from phosphatidylserine (PS) or from phosphatidic acid (PA) is investigated at neutral and acidic pH. Annexin A4 strongly binds to either lipid at acidic pH, whereas at neutral pH only weak binding to PA and no binding to PS occurs. Addition of 40 microM Ca(2+) leads to a strong binding to the lipids also at neutral pH. This is caused by the different electric charge of the protein below and above its isoelectric point. Binding of annexin A4 induces dehydration of the vesicle surface. The strength of the effects is much greater at pH 4 than at pH 7.4. At pH 7.4 annexin A4 reduces the Ca(2+)-threshold concentration necessary to induce fusion of PA LUV. The Ca(2+) induced fusion of PS LUV is not affected by annexin A4 at pH 7.4. At pH 4 annexin A4 induces fusion of either vesicles without Ca(2+). Despite the low binding extents at neutral pH annexin A4 induces a Ca(2+) independent leakage of PS- or PA-LUV. The leakage extent is increased at acidic pH. From the data two suggestions are made: (1) At pH 4 annexin A4 (at least partially) penetrates into the bilayer in contrast to the preferred location at the vesicle surface at neutral pH. The conformation of annexin A4 seems to be different at the two conditions. (2) At neutral pH, Annexin A4 seems to be able to bind two PA vesicles simultaneously; however, only one PS vesicle at the same time. This behavior might be related to a recently described double Ca(2+) binding site, which appears to be uniquely suited for PS.
Collapse
Affiliation(s)
- Olaf Zschörnig
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
8
|
Melik-Nubarov N, Krylova O. The Control of Membrane Properties by Synthetic Polymers. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1554-4516(05)02005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
9
|
Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:105-85. [PMID: 10393271 DOI: 10.1016/s0304-4157(99)00004-0] [Citation(s) in RCA: 452] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- E Goormaghtigh
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces, P. O. Box 206/2, Université Libre de Bruxelles, Campus Plaine, B-1050, Brussels, Belgium.
| | | | | |
Collapse
|
10
|
Domingo JC, Africa de Madariaga M. Fourier transform infrared spectroscopic analysis of the ester and amide bands of the hydrated dispersions of N-acylethanolamine phospholipids. Chem Phys Lipids 1996. [DOI: 10.1016/s0009-3084(96)02632-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Domingo JC, de Madariaga M. Molecular organization of hydrated dispersions of N-acylethanolamine phospholipids and mixtures with phosphatidylcholine. Colloids Surf A Physicochem Eng Asp 1996. [DOI: 10.1016/0927-7757(96)03618-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Abstract
It is well known that melittin, an amphipathic helical peptide, causes the micellization of phosphatidylcholine vesicles. In the present work, we conclude that the extent of micellization is dependent on the level of unsaturation of the lipid acyl chains. We report the results obtained on two systems: dipalmitoylphosphatidylcholine (DPPC), containing 10(mol)% saturated or unsaturated fatty acid (palmitic, oleic, or linoleic), and DPPC, containing 10(mol)% positively charged diacyloxy-3-(trimethylammonio)propane bearing palmitic or oleic acyl chains. For both systems, the presence of unsaturation in the lipid acyl chains inhibits melittin-induced micellization. Conversely, the addition of saturated palmitic acid to the DPPC matrix enhances the micellization. This modulation is proposed to be associated with the cohesion of the hydrophobic core. When the lipid chain packing of the gel-phase bilayer is already perturbed by the presence of unsaturation, it seems easier for the membrane to accommodate melittin at the interface, and the distribution of the peptide in the bilayer could be the origin of the inhibition of the micellization. The cohesion of the apolar core is shown to play an unquestionable role in melittin-induced micellization; however, this contribution does not appear to be as important as the electrostatic interactions between melittin and positively or negatively charged lipids.
Collapse
Affiliation(s)
- M Monette
- Département de Chimie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
13
|
Subirade M, Salesse C, Marion D, Pézolet M. Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy. Biophys J 1995; 69:974-88. [PMID: 8519997 PMCID: PMC1236326 DOI: 10.1016/s0006-3495(95)79971-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The interaction of a nonspecific wheat lipid transfer protein (LTP) with phospholipids has been studied using the monolayer technique as a simplified model of biological membranes. The molecular organization of the LTP-phospholipid monolayer has been determined by using polarized attenuated total internal reflectance infrared spectroscopy, and detailed information on the microstructure of the mixed films has been investigated by using epifluorescence microscopy. The results show that the incorporation of wheat LTP within the lipid monolayers is surface-pressure dependent. When LTP is injected into the subphase under a dipalmytoylphosphatidylglycerol monolayer at low surface pressure (< 20 mN/m), insertion of the protein within the lipid monolayer leads to an expansion of dipalmytoylphosphatidylglycerol surface area. This incorporation leads to a decrease in the conformational order of the lipid acyl chains and results in an increase in the size of the solid lipid domains, suggesting that LTP penetrates both expanded and solid domains. By contrast, when the protein is injected under the lipid at high surface pressure (> or = 20 mN/m) the presence of LTP leads neither to an increase of molecular area nor to a change of the lipid order, even though some protein molecules are bound to the surface of the monolayer, which leads to an increase of the exposure of the lipid ester groups to the aqueous environment. On the other hand, the conformation of LTP, as well as the orientation of alpha-helices, is surface-pressure dependent. At low surface pressure, the alpha-helices inserted into the monolayers are rather parallel to the monolayer plane. In contrast, at high surface pressure, the alpha-helices bound to the surface of the monolayers are neither parallel nor perpendicular to the interface but in an oblique orientation.
Collapse
Affiliation(s)
- M Subirade
- Département de Chimie, Université Laval, Quebec, Canada
| | | | | | | |
Collapse
|
14
|
Abstract
Phosphorus NMR spectroscopy was used to characterize the importance of electrostatic interactions in the lytic activity of melittin, a cationic peptide. The micellization induced by melittin has been characterized for several lipid mixtures composed of saturated phosphatidylcholine (PC) and a limited amount of charged lipid. For these systems, the thermal polymorphism is similar to the one observed for pure PC: small comicelles are stable in the gel phase and extended bilayers are formed in the liquid crystalline phase. Vesicle surface charge density influences strongly the micellization. Our results show that the presence of negatively charged lipids (phospholipid or unprotonated fatty acid) reduces the proportion of lysed vesicles. Conversely, the presence of positively charged lipids leads to a promotion of the lytic activity of the peptide. The modulation of the lytic effect is proposed to originate from the electrostatic interactions between the peptide and the bilayer surface. Attractive interactions anchor the peptide at the surface and, as a consequence, inhibit its lytic activity. Conversely, repulsive interactions favor the redistribution of melittin into the bilayer, causing enhanced lysis. A quantitative analysis of the interaction between melittin and negatively charged bilayers suggests that electroneutrality is reached at the surface, before micellization. The surface charge density of the lipid layer appears to be a determining factor for the lipid/peptide stoichiometry of the comicelles; a decrease in the lipid/peptide stoichiometry in the presence of negatively charged lipids appears to be a general consequence of the higher affinity of melittin for these membranes.
Collapse
Affiliation(s)
- M Monette
- Département de Chimie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
15
|
Domingo JC, Mora M, Africa de Madariaga M. Role of headgroup structure in the phase behaviour of N-acylethanolamine phospholipids: hydrogen-bonding ability and headgroup size. Chem Phys Lipids 1994; 69:229-40. [PMID: 8194159 DOI: 10.1016/0009-3084(94)90004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The physical properties of aqueous dispersions of N-acylphosphatidylethanolamine from natural origin with long N-acyl chain (NAPE) and headgroup modified analogues have been studied. N-Acylation of PE causes a significant increase in the gel-to-liquid crystalline lamellar phase transition temperature in contrast with saturated N-acyl(dipalmitoyl) PEs, and in addition it does not restrict the headgroup rotational mobility in gel phase. The results agree with the increase of hydration of the phosphate group compared with that in PE and suggest the formation of hydrogen bonds between amide groups. The modifications introduced modulate the headgroup size and their hydrogen bonding capability. An increasing number of methylene groups between the phosphate and amide groups does not modify the phase behaviour observed. N-methylation of the amide group, which prevents the possibility of intermolecular hydrogen bond formation, decreases the melting temperature and the cooperativity of the phase transition and does not change the phase behaviour, while the hydration at the ester carbonyl groups level is decreased. On the other hand, the addition of N-ethyl substituent to the amide group or substitution of an ester group for this group increases its tendency to form structures with inverted geometries. The behaviour of these compounds suggests that hydration forces must be more important than considerations of the lipid dynamic shape in predicting the relative stabilities of lamellar vs. non-lamellar phases for NAPEs with long saturated N-acyl chain.
Collapse
Affiliation(s)
- J C Domingo
- Departamento de Bioquímica y Fisiología, Facultad de Química, Universidad de Barcelona, Spain
| | | | | |
Collapse
|
16
|
Permeabilization and morphological changes in phosphatidylglycerol bilayers induced by an antimicrobial peptide, tachyplesin I. Colloid Polym Sci 1993. [DOI: 10.1007/bf00652773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Cserhåti T, Szögyi M. Interaction of phospholipids with proteins and peptides. New advances III. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:123-46. [PMID: 8444311 DOI: 10.1016/0020-711x(93)90001-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. The review deals with the recent achievements in the study of the various interactions of phospholipids with proteins and peptides. 2. The interactions are classified according to the hydrophobic, hydrophilic or mixed character of the interactive forces. 3. The effect of the interaction on the structure and biological activity of the interacting molecules is also discussed.
Collapse
Affiliation(s)
- T Cserhåti
- Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
18
|
Désormeaux A, Blochet JE, Pézolet M, Marion D. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1121:137-52. [PMID: 1599935 DOI: 10.1016/0167-4838(92)90347-g] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A wheat non specific phospholipid transfer protein has been isolated from wheat seeds and its amino acid sequence reveals that it is composed of 90 residues for a molecular weight of 9607. From the comparison of its sequence with those of the eight known proteins of the same family, hypotheses on the role of some conserved residues in the transfer activity can be made. The conformation of this protein has been studied by Raman and Fourier transform infrared spectroscopy and this is the first report on the structure of non specific plant phospholipid transfer proteins. As opposed to previous studies on the structure prediction from the amino acid sequence, the results obtained show that plant non specific phospholipid transfer proteins are not almost entirely composed of beta-sheets. Instead, infrared results show that the wheat protein contains 41% alpha-helix and 19% beta-sheet structures, while 40% of the conformation is undefined or composed of turns. Raman spectroscopy shows that three disulfide bridges adopt a gauche-gauche-gauche conformation while the other exhibits a gauche-gauche-trans conformation, and that the two tyrosine residues are hydrogen bonded to water molecules. The cleavage of the disulfide bonds affects significantly the conformation of the protein, the extended confirmation being increased by 15% at the expense of the alpha-helix content. On the other hand, the binding of 1-palmitoyllysophosphatidylcholine to the protein leads to an increase of 8% of the alpha-helix content compared to the free protein. Secondary structure predictions from the amino acid sequence suggest that the binding of a phospholipid stabilizes helicity of the amphipathic helices while the reduction of disulfide bonds would affect the stability of the N-terminal helix. The extended structure located at the C-terminus is not affected. Finally, the wheat phospholipid transfer protein has no effect on the thermotropic behavior of large unilamellar vesicles of dimyristoylphosphatidylcholine while it increases the conformational order of the acyl chains of large unilamellar vesicles of dimyristoylphosphatidylglycerol in the liquid-crystalline state. No major conformational changes of the protein are observed when it is adsorbed to phospholipid vesicles. These results suggest that the helical structure is essential for the transfer activity without excluding a possible role of the C-terminal extended structure on the adsorption to phospholipid vesicles.
Collapse
Affiliation(s)
- A Désormeaux
- Département de Chimie, Université Laval, Cité Universitaire, Québec, Canada
| | | | | | | |
Collapse
|