1
|
Pang Y, Wang X, Zhao Z, Han C, Gao N. Multi-view collaborative ensemble classification for EEG signals based on 3D second-order difference plot and CSP. Phys Med Biol 2025; 70:085018. [PMID: 40203859 DOI: 10.1088/1361-6560/adcafa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/09/2025] [Indexed: 04/11/2025]
Abstract
Objective.EEG signal analysis methods based on electrical source imaging (ESI) technique have significantly improved classification accuracy and response time. However, for the refined and informative source signals, the current studies have not fully considered their dynamic variability in feature extraction and lacked an effective integration of their dynamic variability and spatial characteristics. Additionally, the adaptability and complementarity of classifiers have not been considered comprehensively. These two aspects lead to the issue of insufficient decoding of source signals, which still limits the application of brain-computer interface (BCI). To address these challenges, this paper proposes a multi-view collaborative ensemble classification method for EEG signals based on three-dimensional second-order difference plot (3D SODP) and common spatial pattern.Approach.First, EEG signals are mapped to the source domain using the ESI technique, and then the source signals in the region of interest are obtained. Next, features from three viewpoints of the source signals are extracted, including 3D SODP features, spatial features, and the weighted fusion of both. Finally, the extracted multi-view features are integrated with subject-specific sub-classifier combination, and a voting mechanism is used to determine the final classification.Main results.The results show that the proposed method achieves classification accuracy of 81.3% and 82.6% respectively in two sessions of the OpenBMI dataset, which is nearly 5% higher than the state-of-the-art method, and maintains the analysis response time required for online BCI.Significance.This paper employs multi-view feature extraction to fully capture the characteristics of the source signals and enhances feature utilization through collaborative ensemble classification. The results demonstrate high accuracy and robust performance, providing a novel approach for online BCI.
Collapse
Affiliation(s)
- Yu Pang
- Department of Information & Electrical Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Xiaoling Wang
- Department of Information & Electrical Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Ze Zhao
- Department of Information & Electrical Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Changqing Han
- Department of Information & Electrical Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| | - Nuo Gao
- Department of Information & Electrical Engineering, Shandong Jianzhu University, Jinan, People's Republic of China
| |
Collapse
|
2
|
Wagh N, Duque-Lopez A, Joseph B, Berry B, Jehi L, Crepeau D, Barnard L, Gogineni V, Brinkmann BH, Jones DT, Worrell G, Varatharajah Y. The Value of Normal Interictal EEGs in Epilepsy Diagnosis and Treatment Planning: A Retrospective Cohort Study using Population-level Spectral Power and Connectivity Patterns. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.03.25319963. [PMID: 39973994 PMCID: PMC11838644 DOI: 10.1101/2025.01.03.25319963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Scalp electroencephalography (EEG) is a cornerstone in the diagnosis and treatment of epilepsy, but routine EEG is often interpreted as normal without identification of epileptiform activity during expert visual review. The absence of interictal epileptiform activity on routine scalp EEGs can cause delays in receiving clinical treatment. These delays can be particularly problematic in the diagnosis and treatment of people with drug-resistant epilepsy (DRE) and those without structural abnormalities on MRI (i.e., MRI negative). Thus, there is a clinical need for alternative quantitative approaches that can inform diagnostic and treatment decisions when visual EEG review is inconclusive. In this study, we leverage a large population-level routine EEG database of people with and without focal epilepsy to investigate whether normal interictal EEG segments contain subtle deviations that could support the diagnosis of focal epilepsy. Data & Methods We identified multiple epochs representing eyes-closed wakefulness from 19-channel routine EEGs of a large and diverse neurological patient population (N=13,652 recordings, 12,134 unique patients). We then extracted the average spectral power and phase-lag-index-based connectivity within 1-45Hz of each EEG recording using these identified epochs. We decomposed the power spectral density and phase-based connectivity information of all the visually reviewed normal EEGs (N=6,242) using unsupervised tensor decompositions to extract dominant patterns of spectral power and scalp connectivity. We also identified an independent set of routine EEGs of a cohort of patients with focal epilepsy (N= 121) with various diagnostic classifications, including focal epilepsy origin (temporal, frontal), MRI (lesional, non-lesional), and response to anti-seizure medications (responsive vs. drug-resistant epilepsy). We analyzed visually normal interictal epochs from the EEGs using the power-spectral and phase-based connectivity patterns identified above and evaluated their potential in clinically relevant binary classifications. Results We obtained six patterns with distinct interpretable spatio-spectral signatures corresponding to putative aperiodic, oscillatory, and artifactual activity recorded on the EEG. The loadings for these patterns showed associations with patient age and expert-assigned grades of EEG abnormality. Further analysis using a physiologically relevant subset of these loadings differentiated patients with focal epilepsy from controls without history of focal epilepsy (mean AUC 0.78) but were unable to differentiate between frontal or temporal lobe epilepsy. In temporal lobe epilepsy, loadings of the power spectral patterns best differentiated drug-resistant epilepsy from drug-responsive epilepsy (mean AUC 0.73), as well as lesional epilepsy from non-lesional epilepsy (mean AUC 0.67), albeit with high variability across patients. Significance Our findings from a large population sample of EEGs suggest that normal interictal EEGs of patients with epilepsy contain subtle differences of predictive value that may improve the overall diagnostic yield of routine and prolonged EEGs. The presented approach for analyzing normal EEGs has the capacity to differentiate several diagnostic classifications of epilepsy, and can quantitatively characterize EEG activity in a scalable, expert-interpretable, and patient-specific fashion. Further technical development and clinical validation may yield normal EEG-derived computational biomarkers that could augment epilepsy diagnosis and assist clinical decision-making in the future.
Collapse
Affiliation(s)
- Neeraj Wagh
- Department of Bioengineering, University of Illinois, Urbana, IL 61801
| | | | - Boney Joseph
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Brent Berry
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Lara Jehi
- Department of Neurology, Cleveland Clinic, Cleveland, OH 44195
| | - Daniel Crepeau
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | - Leland Barnard
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | | | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | | | - Yogatheesan Varatharajah
- Department of Bioengineering, University of Illinois, Urbana, IL 61801
- Department of Computer Science, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
3
|
Sarkis M, Rizkallah M, Moussaoui S. Functional Graph Image Representation applied to EEG-based Mental Workload Classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40038936 DOI: 10.1109/embc53108.2024.10781733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
A lot of research has been lately dedicated to develop machine learning and statistical signal processing methods exploiting graph representations to solve inference and estimation problems. This is particularly relevant in the case of functional connectivity analysis from Electroencephalography (EEG) signals. However, the widely adopted functional connectivity metrics are hand-crafted, and thus suffer from the redundant and sometimes irrelevant information due to the volume conduction problem. Besides, the actual locations of the nodes (i.e. the electrodes) in the functional graph are often overlooked. In this work, we introduce an innovative approach leveraging the image representation of functional graphs learned from EEG signals under sparsity and structural constraints, where both the locations of the electrodes and a sparse functional connectivity learned from data are explicitly encoded. The resulting images are then fed to a convolutional neural network to extract meaningful latent features prior to inference. The proposed method is applied to Mental Workload (MW) classification. Experimental results on a public dataset demonstrate promising performance compared to state-of-the-art spatial filtering techniques and those based on hand-crafted functional connectivities.
Collapse
|
4
|
Delavari F, Santaniello S. Role of Scalp EEG Brain Connectivity in Motor Imagery Decoding for BCI Applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039573 DOI: 10.1109/embc53108.2024.10781532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Brain Connectivity (BC) features of multichannel EEG have been proposed for Motor Imagery (MI) decoding in Brain-Computer Interface applications, but the advantages of BC features vs. single-channel features are unclear. Here, we consider three BC features, i.e., Phase Locking Value (PLV), Granger Causality, and weighted Phase Lag Index, and investigate the relationship between the most central nodes in BC-based networks and the most influential EEG channels in single-channel classification based on common spatial pattern filtering. Then, we compare the accuracy of MI decoders that use BC features in source vs. sensor space. Applied to the BCI Competition VI Dataset 2a (left- vs. right-hand MI decoding), our study found that PLV in sensor space achieves the highest classification accuracy among BC features and has similar performance compared to single-channel features, while the transition from sensor to source space reduces the average accuracy of BC features. Across all BC measures, the network topology is similar in left- vs. right-hand MI tasks, and the most central nodes in BC-based networks partially overlap with the most influential channels in single-channel classification.
Collapse
|
5
|
Araújo J, Simons BD, Peter V, Mandke K, Kalashnikova M, Macfarlane A, Gabrielczyk F, Wilson A, Di Liberto GM, Burnham D, Goswami U. Atypical low-frequency cortical encoding of speech identifies children with developmental dyslexia. Front Hum Neurosci 2024; 18:1403677. [PMID: 38911229 PMCID: PMC11190370 DOI: 10.3389/fnhum.2024.1403677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Slow cortical oscillations play a crucial role in processing the speech amplitude envelope, which is perceived atypically by children with developmental dyslexia. Here we use electroencephalography (EEG) recorded during natural speech listening to identify neural processing patterns involving slow oscillations that may characterize children with dyslexia. In a story listening paradigm, we find that atypical power dynamics and phase-amplitude coupling between delta and theta oscillations characterize dyslexic versus other child control groups (typically-developing controls, other language disorder controls). We further isolate EEG common spatial patterns (CSP) during speech listening across delta and theta oscillations that identify dyslexic children. A linear classifier using four delta-band CSP variables predicted dyslexia status (0.77 AUC). Crucially, these spatial patterns also identified children with dyslexia when applied to EEG measured during a rhythmic syllable processing task. This transfer effect (i.e., the ability to use neural features derived from a story listening task as input features to a classifier based on a rhythmic syllable task) is consistent with a core developmental deficit in neural processing of speech rhythm. The findings are suggestive of distinct atypical neurocognitive speech encoding mechanisms underlying dyslexia, which could be targeted by novel interventions.
Collapse
Affiliation(s)
- João Araújo
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin D. Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge, United Kingdom
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Varghese Peter
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Marina Kalashnikova
- Basque Center on Cognition, Brain, and Language, San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Annabel Macfarlane
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Fiona Gabrielczyk
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Angela Wilson
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Giovanni M. Di Liberto
- ADAPT Centre, School of Computer Science and Statistics, Trinity College, The University of Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, The University of Dublin, Dublin, Ireland
| | - Denis Burnham
- MARCS Institute for Brain, Behaviour, and Development, Western Sydney University, Sydney, NSW, Australia
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Papadopoulos S, Szul MJ, Congedo M, Bonaiuto JJ, Mattout J. Beta bursts question the ruling power for brain-computer interfaces. J Neural Eng 2024; 21:016010. [PMID: 38167234 DOI: 10.1088/1741-2552/ad19ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Objective: Current efforts to build reliable brain-computer interfaces (BCI) span multiple axes from hardware, to software, to more sophisticated experimental protocols, and personalized approaches. However, despite these abundant efforts, there is still room for significant improvement. We argue that a rather overlooked direction lies in linking BCI protocols with recent advances in fundamental neuroscience.Approach: In light of these advances, and particularly the characterization of the burst-like nature of beta frequency band activity and the diversity of beta bursts, we revisit the role of beta activity in 'left vs. right hand' motor imagery (MI) tasks. Current decoding approaches for such tasks take advantage of the fact that MI generates time-locked changes in induced power in the sensorimotor cortex and rely on band-passed power changes in single or multiple channels. Although little is known about the dynamics of beta burst activity during MI, we hypothesized that beta bursts should be modulated in a way analogous to their activity during performance of real upper limb movements.Main results and Significance: We show that classification features based on patterns of beta burst modulations yield decoding results that are equivalent to or better than typically used beta power across multiple open electroencephalography datasets, thus providing insights into the specificity of these bio-markers.
Collapse
Affiliation(s)
- Sotirios Papadopoulos
- University Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS, UMR5292, Lyon, France
- Institut de Sciences Cognitives Marc Jeannerod, CNRS, UMR5229, Lyon, France
| | - Maciej J Szul
- University Lyon 1, Lyon, France
- Institut de Sciences Cognitives Marc Jeannerod, CNRS, UMR5229, Lyon, France
| | - Marco Congedo
- GIPSA-lab, University Grenoble Alpes, CNRS, Grenoble-INP, Grenoble, France
| | - James J Bonaiuto
- University Lyon 1, Lyon, France
- Institut de Sciences Cognitives Marc Jeannerod, CNRS, UMR5229, Lyon, France
| | - Jérémie Mattout
- University Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS, UMR5292, Lyon, France
| |
Collapse
|
7
|
Manabe T, Rahul F, Fu Y, Intes X, Schwaitzberg SD, De S, Cavuoto L, Dutta A. Distinguishing Laparoscopic Surgery Experts from Novices Using EEG Topographic Features. Brain Sci 2023; 13:1706. [PMID: 38137154 PMCID: PMC10742221 DOI: 10.3390/brainsci13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The study aimed to differentiate experts from novices in laparoscopic surgery tasks using electroencephalogram (EEG) topographic features. A microstate-based common spatial pattern (CSP) analysis with linear discriminant analysis (LDA) was compared to a topography-preserving convolutional neural network (CNN) approach. Expert surgeons (N = 10) and novice medical residents (N = 13) performed laparoscopic suturing tasks, and EEG data from 8 experts and 13 novices were analysed. Microstate-based CSP with LDA revealed distinct spatial patterns in the frontal and parietal cortices for experts, while novices showed frontal cortex involvement. The 3D CNN model (ESNet) demonstrated a superior classification performance (accuracy > 98%, sensitivity 99.30%, specificity 99.70%, F1 score 98.51%, MCC 97.56%) compared to the microstate based CSP analysis with LDA (accuracy ~90%). Combining spatial and temporal information in the 3D CNN model enhanced classifier accuracy and highlighted the importance of the parietal-temporal-occipital association region in differentiating experts and novices.
Collapse
Affiliation(s)
- Takahiro Manabe
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK;
| | - F.N.U. Rahul
- Centre for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, MI 12180, USA; (F.R.); (X.I.)
| | - Yaoyu Fu
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA; (Y.F.); (L.C.)
| | - Xavier Intes
- Centre for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, MI 12180, USA; (F.R.); (X.I.)
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, MI 12180, USA
| | - Steven D. Schwaitzberg
- School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Suvranu De
- College of Engineering, Florida A&M University-Florida State University, Tallahassee, FL 32310, USA;
| | - Lora Cavuoto
- Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA; (Y.F.); (L.C.)
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN6 7TS, UK;
| |
Collapse
|
8
|
Gemborn Nilsson M, Tufvesson P, Heskebeck F, Johansson M. An open-source human-in-the-loop BCI research framework: method and design. Front Hum Neurosci 2023; 17:1129362. [PMID: 37441434 PMCID: PMC10335802 DOI: 10.3389/fnhum.2023.1129362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Brain-computer interfaces (BCIs) translate brain activity into digital commands for interaction with the physical world. The technology has great potential in several applied areas, ranging from medical applications to entertainment industry, and creates new conditions for basic research in cognitive neuroscience. The BCIs of today, however, offer only crude online classification of the user's current state of mind, and more sophisticated decoding of mental states depends on time-consuming offline data analysis. The present paper addresses this limitation directly by leveraging a set of improvements to the analytical pipeline to pave the way for the next generation of online BCIs. Specifically, we introduce an open-source research framework that features a modular and customizable hardware-independent design. This framework facilitates human-in-the-loop (HIL) model training and retraining, real-time stimulus control, and enables transfer learning and cloud computing for the online classification of electroencephalography (EEG) data. Stimuli for the subject and diagnostics for the researcher are shown on separate displays using web browser technologies. Messages are sent using the Lab Streaming Layer standard and websockets. Real-time signal processing and classification, as well as training of machine learning models, is facilitated by the open-source Python package Timeflux. The framework runs on Linux, MacOS, and Windows. While online analysis is the main target of the BCI-HIL framework, offline analysis of the EEG data can be performed with Python, MATLAB, and Julia through packages like MNE, EEGLAB, or FieldTrip. The paper describes and discusses desirable properties of a human-in-the-loop BCI research platform. The BCI-HIL framework is released under MIT license with examples at: bci.lu.se/bci-hil (or at: github.com/bci-hil/bci-hil).
Collapse
Affiliation(s)
| | - Pex Tufvesson
- Department of Automatic Control, Lund University, Lund, Sweden
- Ericsson Research, Lund, Sweden
| | - Frida Heskebeck
- Department of Automatic Control, Lund University, Lund, Sweden
| | | |
Collapse
|
9
|
Anders C, Curio G, Arnrich B, Waterstraat G. Optimization of data pre-processing methods for time-series classification of electroencephalography data. NETWORK (BRISTOL, ENGLAND) 2023; 34:374-391. [PMID: 37916510 DOI: 10.1080/0954898x.2023.2263083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023]
Abstract
The performance of time-series classification of electroencephalographic data varies strongly across experimental paradigms and study participants. Reasons are task-dependent differences in neuronal processing and seemingly random variations between subjects, amongst others. The effect of data pre-processing techniques to ameliorate these challenges is relatively little studied. Here, the influence of spatial filter optimization methods and non-linear data transformation on time-series classification performance is analyzed by the example of high-frequency somatosensory evoked responses. This is a model paradigm for the analysis of high-frequency electroencephalography data at a very low signal-to-noise ratio, which emphasizes the differences of the explored methods. For the utilized data, it was found that the individual signal-to-noise ratio explained up to 74% of the performance differences between subjects. While data pre-processing was shown to increase average time-series classification performance, it could not fully compensate the signal-to-noise ratio differences between the subjects. This study proposes an algorithm to prototype and benchmark pre-processing pipelines for a paradigm and data set at hand. Extreme learning machines, Random Forest, and Logistic Regression can be used quickly to compare a set of potentially suitable pipelines. For subsequent classification, however, machine learning models were shown to provide better accuracy.
Collapse
Affiliation(s)
- Christoph Anders
- Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Gabriel Curio
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bert Arnrich
- Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
| | - Gunnar Waterstraat
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Brain computer interface system based on monocular vision and motor imagery for UAV indoor space target searching. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Identifying Patients with Epilepsy Having Depression/Anxiety Disorder Using Common Spatial Patterns of Functional EEG Networks. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Discriminability of single-trial EEG during decision-making of cooperation or aggression: a study based on machine learning. Med Biol Eng Comput 2022; 60:2217-2227. [DOI: 10.1007/s11517-022-02557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
|
13
|
Chen G, Helm HS, Lytvynets K, Yang W, Priebe CE. Mental State Classification Using Multi-Graph Features. Front Hum Neurosci 2022; 16:930291. [PMID: 35880106 PMCID: PMC9307990 DOI: 10.3389/fnhum.2022.930291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
We consider the problem of extracting features from passive, multi-channel electroencephalogram (EEG) devices for downstream inference tasks related to high-level mental states such as stress and cognitive load. Our proposed feature extraction method uses recently developed spectral-based multi-graph tools and applies them to the time series of graphs implied by the statistical dependence structure (e.g., correlation) amongst the multiple sensors. We study the features in the context of two datasets each consisting of at least 30 participants and recorded using multi-channel EEG systems. We compare the classification performance of a classifier trained on the proposed features to a classifier trained on the traditional band power-based features in three settings and find that the two feature sets offer complementary predictive information. We conclude by showing that the importance of particular channels and pairs of channels for classification when using the proposed features is neuroscientifically valid.
Collapse
Affiliation(s)
- Guodong Chen
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| | - Hayden S. Helm
- Microsoft Research, Microsoft, Redmond, WA, United States
| | - Kate Lytvynets
- Microsoft Research, Microsoft, Redmond, WA, United States
| | - Weiwei Yang
- Microsoft Research, Microsoft, Redmond, WA, United States
| | - Carey E. Priebe
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
Donoghue T, Schaworonkow N, Voytek B. Methodological considerations for studying neural oscillations. Eur J Neurosci 2022; 55:3502-3527. [PMID: 34268825 PMCID: PMC8761223 DOI: 10.1111/ejn.15361] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022]
Abstract
Neural oscillations are ubiquitous across recording methodologies and species, broadly associated with cognitive tasks, and amenable to computational modelling that investigates neural circuit generating mechanisms and neural population dynamics. Because of this, neural oscillations offer an exciting potential opportunity for linking theory, physiology and mechanisms of cognition. However, despite their prevalence, there are many concerns-new and old-about how our analysis assumptions are violated by known properties of field potential data. For investigations of neural oscillations to be properly interpreted, and ultimately developed into mechanistic theories, it is necessary to carefully consider the underlying assumptions of the methods we employ. Here, we discuss seven methodological considerations for analysing neural oscillations. The considerations are to (1) verify the presence of oscillations, as they may be absent; (2) validate oscillation band definitions, to address variable peak frequencies; (3) account for concurrent non-oscillatory aperiodic activity, which might otherwise confound measures; measure and account for (4) temporal variability and (5) waveform shape of neural oscillations, which are often bursty and/or nonsinusoidal, potentially leading to spurious results; (6) separate spatially overlapping rhythms, which may interfere with each other; and (7) consider the required signal-to-noise ratio for obtaining reliable estimates. For each topic, we provide relevant examples, demonstrate potential errors of interpretation, and offer suggestions to address these issues. We primarily focus on univariate measures, such as power and phase estimates, though we discuss how these issues can propagate to multivariate measures. These considerations and recommendations offer a helpful guide for measuring and interpreting neural oscillations.
Collapse
Affiliation(s)
- Thomas Donoghue
- Department of Cognitive Science, University of California, San Diego
| | | | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego
- Neurosciences Graduate Program, University of California, San Diego
- Halıcıoğlu Data Science Institute, University of California, San Diego
- Kavli Institute for Brain and Mind, University of California, San Diego
| |
Collapse
|
15
|
Robustly Effective Approaches on Motor Imagery-Based Brain Computer Interfaces. COMPUTERS 2022. [DOI: 10.3390/computers11050061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Motor Imagery Brain Computer Interfaces (MI-BCIs) are systems that receive the users’ brain activity as an input signal in order to communicate between the brain and the interface or an action to be performed through the detection of the imagination of a movement. Brainwaves’ features are crucial for the performance of the interface to be increased. The robustness of these features must be ensured in order for the effectiveness to remain high in various subjects. The present work consists of a review, which includes scientific publications related to the use of robust feature extraction methods in Motor Imagery from 2017 until today. The research showed that the majority of the works focus on spatial features through Common Spatial Patterns (CSP) methods (44.26%). Based on the combination of accuracy percentages and K-values, which show the effectiveness of each approach, Wavelet Transform (WT) has shown higher robustness than CSP and PSD methods in the majority of the datasets used for comparison and also in the majority of the works included in the present review, although they had a lower usage percentage in the literature (16.65%). The research showed that there was an increase in 2019 of the detection of spatial features to increase the robustness of an approach, but the time-frequency features, or a combination of those, achieve better results with their increase starting from 2019 onwards. Additionally, Wavelet Transforms and their variants, in combination with deep learning, manage to achieve high percentages thus making a method robustly accurate.
Collapse
|
16
|
Liu C, Jin J, Daly I, Sun H, Huang Y, Wang X, Cichocki A. Bispectrum-based Hybrid Neural Network for Motor Imagery Classification. J Neurosci Methods 2022; 375:109593. [DOI: 10.1016/j.jneumeth.2022.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
17
|
Miklody D, Blankertz B. Cognitive Workload of Tugboat Captains in Realistic Scenarios: Adaptive Spatial Filtering for Transfer Between Conditions. Front Hum Neurosci 2022; 16:818770. [PMID: 35153707 PMCID: PMC8828565 DOI: 10.3389/fnhum.2022.818770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Changing and often class-dependent non-stationarities of signals are a big challenge in the transfer of common findings in cognitive workload estimation using Electroencephalography (EEG) from laboratory experiments to realistic scenarios or other experiments. Additionally, it often remains an open question whether actual cognitive workload reflected by brain signals was the main contribution to the estimation or discriminative and class-dependent muscle and eye activity, which can be secondary effects of changing workload levels. Within this study, we investigated a novel approach to spatial filtering based on beamforming adapted to changing settings. We compare it to no spatial filtering and Common Spatial Patterns (CSP). We used a realistic maneuvering task, as well as an auditory n-back secondary task on a tugboat simulator as two different conditions to induce workload changes on professional tugboat captains. Apart from the typical within condition classification, we investigated the ability of the different classification methods to transfer between the n-back condition and the maneuvering task. The results show a clear advantage of the proposed approach over the others in the challenging transfer setting. While no filtering leads to lowest within-condition normalized classification loss on average in two scenarios (22 and 10%), our approach using adaptive beamforming (30 and 18%) performs comparably to CSP (33 and 15%). Importantly, in the transfer from one to another setting, no filtering and CSP lead to performance around chance level (45 to 53%), while our approach in contrast is the only one capable of classifying in all other scenarios (34 and 35%) with a significant difference from chance level. The changing signal composition over the scenarios leads to a need to adapt the spatial filtering in order to be transferable. With our approach, the transfer is successful due to filtering being optimized for the extraction of neural components and additional investigation of their scalp patterns revealed mainly neural origin. Interesting findings are that rather the patterns slightly change between conditions. We conclude that the approaches with low normalized loss depend on eye and muscle activity which is successful for classification within conditions, but fail in the classifier transfer since eye and muscle contributions are highly condition-specific.
Collapse
|
18
|
Simar C, Petit R, Bozga N, Leroy A, Cebolla AM, Petieau M, Bontempi G, Cheron G. Riemannian classification of single-trial surface EEG and sources during checkerboard and navigational images in humans. PLoS One 2022; 17:e0262417. [PMID: 35030232 PMCID: PMC8759639 DOI: 10.1371/journal.pone.0262417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Different visual stimuli are classically used for triggering visual evoked potentials comprising well-defined components linked to the content of the displayed image. These evoked components result from the average of ongoing EEG signals in which additive and oscillatory mechanisms contribute to the component morphology. The evoked related potentials often resulted from a mixed situation (power variation and phase-locking) making basic and clinical interpretations difficult. Besides, the grand average methodology produced artificial constructs that do not reflect individual peculiarities. This motivated new approaches based on single-trial analysis as recently used in the brain-computer interface field. APPROACH We hypothesize that EEG signals may include specific information about the visual features of the displayed image and that such distinctive traits can be identified by state-of-the-art classification algorithms based on Riemannian geometry. The same classification algorithms are also applied to the dipole sources estimated by sLORETA. MAIN RESULTS AND SIGNIFICANCE We show that our classification pipeline can effectively discriminate between the display of different visual items (Checkerboard versus 3D navigational image) in single EEG trials throughout multiple subjects. The present methodology reaches a single-trial classification accuracy of about 84% and 93% for inter-subject and intra-subject classification respectively using surface EEG. Interestingly, we note that the classification algorithms trained on sLORETA sources estimation fail to generalize among multiple subjects (63%), which may be due to either the average head model used by sLORETA or the subsequent spatial filtering failing to extract discriminative information, but reach an intra-subject classification accuracy of 82%.
Collapse
Affiliation(s)
- Cédric Simar
- Machine Learning Group, Computer Science Department, Faculty of Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robin Petit
- Machine Learning Group, Computer Science Department, Faculty of Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles- Vrije Universiteit Brussel, Brussels, Belgium
| | - Nichita Bozga
- Machine Learning Group, Computer Science Department, Faculty of Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gianluca Bontempi
- Machine Learning Group, Computer Science Department, Faculty of Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Laboratory of Electrophysiology, Université de Mons-Hainaut, Mons, Belgium
| |
Collapse
|
19
|
King JT, John AR, Wang YK, Shih CK, Zhang D, Huang KC, Lin CT. Brain Connectivity Changes During Bimanual and Rotated Motor Imagery. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:2100408. [PMID: 35492507 PMCID: PMC9041539 DOI: 10.1109/jtehm.2022.3167552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/24/2022] [Accepted: 04/03/2022] [Indexed: 11/10/2022]
Abstract
Motor imagery-based brain-computer interface (MI-BCI) currently represents a new trend in rehabilitation. However, individual differences in the responsive frequency bands and a poor understanding of the communication between the ipsilesional motor areas and other regions limit the use of MI-BCI therapy. Objective: Bimanual training has recently attracted attention as it achieves better outcomes as compared to repetitive one-handed training. This study compared the effects of three MI tasks with different visual feedback. Methods: Fourteen healthy subjects performed single hand motor imagery tasks while watching single static hand (traditional MI), single hand with rotation movement (rmMI), and bimanual coordination with a hand pedal exerciser (bcMI). Functional connectivity is estimated by Transfer Entropy (TE) analysis for brain information flow. Results: Brain connectivity of conducting three MI tasks showed that the bcMI demonstrated increased communications from the parietal to the bilateral prefrontal areas and increased contralateral connections between motor-related zones and spatial processing regions. Discussion/Conclusion: The results revealed bimanual coordination operation events increased spatial information and motor planning under the motor imagery task. And the proposed bimanual coordination MI-BCI (bcMI-BCI) can also achieve the effect of traditional motor imagery tasks and promotes more effective connections with different brain regions to better integrate motor-cortex functions for aiding the development of more effective MI-BCI therapy. Clinical and Translational Impact Statement The proposed bcMI-BCI provides more effective connections with different brain areas and integrates motor-cortex functions to promote motor imagery rehabilitation for patients’ impairment.
Collapse
Affiliation(s)
- Jung-Tai King
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Alka Rachel John
- CIBCI Laboratory, Australian AI Institute, FEIT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yu-Kai Wang
- CIBCI Laboratory, Australian AI Institute, FEIT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chun-Kai Shih
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, U.K
| | - Kuan-Chih Huang
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chin-Teng Lin
- Brain Research Center, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
20
|
Schaworonkow N, Voytek B. Enhancing oscillations in intracranial electrophysiological recordings with data-driven spatial filters. PLoS Comput Biol 2021; 17:e1009298. [PMID: 34411096 PMCID: PMC8407590 DOI: 10.1371/journal.pcbi.1009298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/31/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
In invasive electrophysiological recordings, a variety of neural oscillations can be detected across the cortex, with overlap in space and time. This overlap complicates measurement of neural oscillations using standard referencing schemes, like common average or bipolar referencing. Here, we illustrate the effects of spatial mixing on measuring neural oscillations in invasive electrophysiological recordings and demonstrate the benefits of using data-driven referencing schemes in order to improve measurement of neural oscillations. We discuss referencing as the application of a spatial filter. Spatio-spectral decomposition is used to estimate data-driven spatial filters, a computationally fast method which specifically enhances signal-to-noise ratio for oscillations in a frequency band of interest. We show that application of these data-driven spatial filters has benefits for data exploration, investigation of temporal dynamics and assessment of peak frequencies of neural oscillations. We demonstrate multiple use cases, exploring between-participant variability in presence of oscillations, spatial spread and waveform shape of different rhythms as well as narrowband noise removal with the aid of spatial filters. We find high between-participant variability in the presence of neural oscillations, a large variation in spatial spread of individual rhythms and many non-sinusoidal rhythms across the cortex. Improved measurement of cortical rhythms will yield better conditions for establishing links between cortical activity and behavior, as well as bridging scales between the invasive intracranial measurements and noninvasive macroscale scalp measurements.
Collapse
Affiliation(s)
- Natalie Schaworonkow
- Department of Cognitive Science, University of California, San Diego, California, United States of America
| | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego, California, United States of America
- Halıcıoğlu Data Science Institute, University of California, San Diego, California, United States of America
- Neurosciences Graduate Program, University of California, San Diego, California, United States of America
- Kavli Institute for Brain and Mind, University of California, San Diego, California, United States of America
| |
Collapse
|
21
|
Darvish ghanbar K, Yousefi Rezaii T, Farzamnia A, Saad I. Correlation-based common spatial pattern (CCSP): A novel extension of CSP for classification of motor imagery signal. PLoS One 2021; 16:e0248511. [PMID: 33788862 PMCID: PMC8011783 DOI: 10.1371/journal.pone.0248511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
Common spatial pattern (CSP) is shown to be an effective pre-processing algorithm in order to discriminate different classes of motor-based EEG signals by obtaining suitable spatial filters. The performance of these filters can be improved by regularized CSP, in which available prior information is added in terms of regularization terms into the objective function of conventional CSP. Variety of prior information can be used in this way. In this paper, we used time correlation between different classes of EEG signal as the prior information, which is clarified similarity between different classes of signal for regularizing CSP. Furthermore, the proposed objective function can be easily extended to more than two-class problems. We used three different standard datasets to evaluate the performance of the proposed method. Correlation-based CSP (CCSP) outperformed original CSP as well as the existing regularized CSP, Principle Component Cnalysis (PCA) and Fisher Discriminate Analysis (FDA) in both two-class and multi-class scenarios. The simulation results showed that the proposed method outperformed conventional CSP by 6.9% in 2-class and 2.23% in multi-class problem in term of mean classification accuracy.
Collapse
Affiliation(s)
| | - Tohid Yousefi Rezaii
- Department of Biomedical Engineering, University of Tabriz, Tabriz, East Azarbijan, Iran
| | - Ali Farzamnia
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ismail Saad
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
22
|
Simar C, Cebolla AM, Chartier G, Petieau M, Bontempi G, Berthoz A, Cheron G. Hyperscanning EEG and Classification Based on Riemannian Geometry for Festive and Violent Mental State Discrimination. Front Neurosci 2020; 14:588357. [PMID: 33424535 PMCID: PMC7793677 DOI: 10.3389/fnins.2020.588357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Interactions between two brains constitute the essence of social communication. Daily movements are commonly executed during social interactions and are determined by different mental states that may express different positive or negative behavioral intent. In this context, the effective recognition of festive or violent intent before the action execution remains crucial for survival. Here, we hypothesize that the EEG signals contain the distinctive features characterizing movement intent already expressed before movement execution and that such distinctive information can be identified by state-of-the-art classification algorithms based on Riemannian geometry. We demonstrated for the first time that a classifier based on covariance matrices and Riemannian geometry can effectively discriminate between neutral, festive, and violent mental states only on the basis of non-invasive EEG signals in both the actor and observer participants. These results pave the way for new electrophysiological discrimination of mental states based on non-invasive EEG recordings and cutting-edge machine learning techniques.
Collapse
Affiliation(s)
- Cédric Simar
- Machine Learning Group (MLG), Computer Science Department, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Gaëlle Chartier
- Centre Interdisciplinaire de Biologie, Collège de France-CNRS, Paris, France.,Department of Health, Medicine and Human Biology, Université Paris 13, Bobigny, France
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Gianluca Bontempi
- Machine Learning Group (MLG), Computer Science Department, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Alain Berthoz
- Centre Interdisciplinaire de Biologie, Collège de France-CNRS, Paris, France
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium.,Laboratory of Electrophysiology, Université de Mons-Hainaut, Mons, Belgium
| |
Collapse
|
23
|
Huang S, Zhu J, Chen Y, Wang T, Ma T. Analysis and Classification of Sleep Stages Based on Common Frequency Pattern From a Single-Channel EEG Signal. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3711-3714. [PMID: 33018807 DOI: 10.1109/embc44109.2020.9176024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One crucial key of developing an automatic sleep stage scoring method is to extract discriminative features. In this paper, we present a novel technique, termed common frequency pattern (CFP), to extract the variance features from a single-channel electroencephalogram (EEG) signal for sleep stage classification. The learning task is formulated by finding significant frequency patterns that maximize variance for one class and that at the same time, minimize variance for the other class. The proposed methodology for automated sleep scoring is tested on the benchmark Sleep-EDF database and finally achieves 97.9%, 94.22%, and 90.16% accuracy for two-state, three-state, and five-state classification of sleep stages. Experimental results demonstrate that the proposed method identifies discriminative characteristics of sleep stages robustly and achieves better performance as compared to the state-of-the-art sleep staging algorithms. Apart from the enhanced classification, the frequency patterns that are determined by the CFP algorithm is able to find the most significant bands of frequency for classification and could be helpful for a better understanding of the mechanisms of sleep stages.
Collapse
|
24
|
Liu T, Huang G, Jiang N, Yao L, Zhang Z. Reduce brain computer interface inefficiency by combining sensory motor rhythm and movement-related cortical potential features. J Neural Eng 2020; 17:035003. [PMID: 32380494 DOI: 10.1088/1741-2552/ab914d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Brain Computer Interface (BCI) inefficiency indicates that there would be 10% to 50% of users are unable to operate Motor-Imagery-based BCI systems. Importantly, the almost all previous studieds on BCI inefficiency were based on tests of Sensory Motor Rhythm (SMR) feature. In this work, we assessed the occurrence of BCI inefficiency with SMR and Movement-Related Cortical Potential (MRCP) features. APPROACH A pool of datasets of resting state and movements related EEG signals was recorded with 93 subjects during 2 sessions in separated days. Two methods, Common Spatial Pattern (CSP) and template matching, were used for SMR and MRCP feature extraction, and a winner-take-all strategy was applied to assess pattern recognition with posterior probabilities from Linear Discriminant Analysis to combine SMR and MRCP features. MAIN RESULTS The results showed that the two types of features showed high complementarity, in line with their weak intercorrelation. In the subject group with poor accuracies (< 70%) by SMR feature in the two-class problem (right foot vs. right hand), the combination of SMR and MRCP features improved the averaged accuracy from 62% to 79%. Importantly, accuracies obtained by feature combination exceeded the inefficiency threshold. SIGNIFICANCE The feature combination of SMR and MRCP is not new in BCI decoding, but the large scale and repeatable study on BCI inefficiency assessment by using SMR and MRCP features is novel. MRCP feature provides the similar classification accuracies on the two subject groups with poor (< 70%) and good (> 90%) accuracies by SMR feature. These results suggest that the combination of SMR and MRCP features may be a practical approach to reduce BCI inefficiency. While, 'BCI inefficiency' might be more aptly called 'SMR inefficiency' after this study.
Collapse
Affiliation(s)
- Tengjun Liu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, People's Republic of China. Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Huang S, Peng H, Chen Y, Sun K, Shen F, Wang T, Ma T. Tensor Discriminant Analysis for MI-EEG Signal Classification Using Convolutional Neural Network. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5971-5974. [PMID: 31947207 DOI: 10.1109/embc.2019.8857422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Motor Imagery (MI) is a typical paradigm for Brain-Computer Interface (BCI) system. In this paper, we propose a new framework by introducing a tensor-based feature representation of the data and also utilizing a convolutional neural network (CNN) architecture for performing classification of MI-EEG signal. The tensor-based representation that includes the structural information in multi-channel time-varying EEG spectrum is generated from tensor discriminant analysis (TDA), and CNN is designed and optimized accordingly for this representation. Compared with CSP+SVM (the conventional framework which is the most successful in MI-based BCI) in the applications to the BCI competition III-IVa dataset, the proposed framework has the following advantages: (1) the most discriminant patterns can be obtained by applying optimum selection of spatial-spectral-temporal subspace for each subject; (2) the corresponding CNN can take full advantage of tensor-based representation and identify discriminative characteristics robustly. The results demonstrate that our framework can further improve classification performance and has great potential for the practical application of BCI.
Collapse
|
26
|
Sabbagh D, Ablin P, Varoquaux G, Gramfort A, Engemann DA. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states. Neuroimage 2020; 222:116893. [PMID: 32439535 DOI: 10.1016/j.neuroimage.2020.116893] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 01/22/2023] Open
Abstract
Predicting biomedical outcomes from Magnetoencephalography and Electroencephalography (M/EEG) is central to applications like decoding, brain-computer-interfaces (BCI) or biomarker development and is facilitated by supervised machine learning. Yet, most of the literature is concerned with classification of outcomes defined at the event-level. Here, we focus on predicting continuous outcomes from M/EEG signal defined at the subject-level, and analyze about 600 MEG recordings from Cam-CAN dataset and about 1000 EEG recordings from TUH dataset. Considering different generative mechanisms for M/EEG signals and the biomedical outcome, we propose statistically-consistent predictive models that avoid source-reconstruction based on the covariance as representation. Our mathematical analysis and ground-truth simulations demonstrated that consistent function approximation can be obtained with supervised spatial filtering or by embedding with Riemannian geometry. Additional simulations revealed that Riemannian methods were more robust to model violations, in particular geometric distortions induced by individual anatomy. To estimate the relative contribution of brain dynamics and anatomy to prediction performance, we propose a novel model inspection procedure based on biophysical forward modeling. Applied to prediction of outcomes at the subject-level, the analysis revealed that the Riemannian model better exploited anatomical information while sensitivity to brain dynamics was similar across methods. We then probed the robustness of the models across different data cleaning options. Environmental denoising was globally important but Riemannian models were strikingly robust and continued performing well even without preprocessing. Our results suggest each method has its niche: supervised spatial filtering is practical for event-level prediction while the Riemannian model may enable simple end-to-end learning.
Collapse
Affiliation(s)
- David Sabbagh
- Université Paris-Saclay, Inria, CEA, Palaiseau, France; Inserm, UMRS-942, Paris Diderot University, Paris, France; Department of Anaesthesiology and Critical Care, Lariboisière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
| | - Pierre Ablin
- Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | | | | | - Denis A Engemann
- Université Paris-Saclay, Inria, CEA, Palaiseau, France; Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, D-04103, Leipzig, Germany.
| |
Collapse
|
27
|
Michel CM, Pascual-Leone A. Predicting antidepressant response by electroencephalography. Nat Biotechnol 2020; 38:417-419. [DOI: 10.1038/s41587-020-0476-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Wetzel D, Spahn N, Heilemann M, Loffler MM, Seidel M, Kolbig S, Winkler D. Evaluation of electroencephalography analysis methods. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:767-773. [PMID: 31946009 DOI: 10.1109/embc.2019.8857230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The extraction of expressive features from an electroencephalography (EEG) signal is necessary for classification of movement and movement imagination of the limbs. We introduce different preprocessing and feature extraction algorithms for this purpose and develop an algorithm that selects features by their feature importance. This selection is used as an evaluation measure for features, their preprocessing algorithms and the EEG electrodes. Our results show that most influential features for signal interpretation are: common spatial patterns, fractal dimensions, as well as, variance and standard deviation of the preprocessed data. We show that preprocessing with continuous wavelet transforms outperforms the other tested preprocessing algorithms. Furthermore, we show that high gamma frequencies (70-90 Hz) contain more information than the lower μ-rhythms (8-12 Hz) where event-related-desynchronization (ERD) is known to occur. The important EEG electrodes for this classification task are located in the left and right back of the motor-cortex. The proposed algorithm can be further used to create subject-specific and performance models for real-time classification.
Collapse
|
29
|
Trujillo LT. Mental Effort and Information-Processing Costs Are Inversely Related to Global Brain Free Energy During Visual Categorization. Front Neurosci 2019; 13:1292. [PMID: 31866809 PMCID: PMC6906157 DOI: 10.3389/fnins.2019.01292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022] Open
Abstract
Mental effort is a neurocognitive process that reflects the controlled expenditure of psychological information-processing resources during perception, cognition, and action. There is a practical need to operationalize and measure mental effort in order to minimize detrimental effects of mental fatigue on real-world human performance. Previous research has identified several neurocognitive indices of mental effort, but these indices are indirect measures that are also sensitive to experimental demands or general factors such as sympathetic arousal. The present study investigated a potential direct neurocognitive index of mental effort based in theories where bounded rational decision makers (realized as embodied brains) are modeled as generalized thermodynamic systems. This index is called free energy, an information-theoretic system property of the brain that reflects the difference between the brain's current and predicted states. Theory predicts that task-related differences in a decision makers' free energy are inversely related to information-processing costs related to task decisions. The present study tested this prediction by quantifying global brain free energy from electroencephalographic (EEG) measures of human brain function. EEG signals were recorded while participants engaged in two visual categorization tasks in which categorization decisions resulted from the allocation of different levels of mental information processing resources. A novel method was developed to quantify brain free energy from machine learning classification of EEG trials. Participant information-processing resource costs were estimated via computational analysis of behavior, whereas the subjective expression of mental effort was estimated via participant ratings of mental workload. Following theoretical predictions, task-related differences in brain free energy negatively correlated with increased allocation of information-processing resource costs. These brain free energy differences were smaller for the visual categorization task that required a greater versus lesser allocation of information-processing resources. Ratings of mental workload were positively correlated with information-processing resource costs, and negatively correlated with global brain free energy differences, only for the categorization task requiring the larger amount of information-processing resource costs. These findings support theoretical thermodynamic approaches to decision making and provide the first empirical evidence of a relationship between mental effort, brain free energy, and neurocognitive information-processing.
Collapse
Affiliation(s)
- Logan T Trujillo
- Department of Psychology, Texas State University, San Marcos, TX, United States
| |
Collapse
|
30
|
Mollakazemi MJ, Biswal D, Evans J, Patwardhan A. Eigen Decomposition of Cardiac Synchronous EEGs for Investigation of Neural Effects of Tempo and Cognition of Songs. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:2402-2405. [PMID: 30440891 DOI: 10.1109/embc.2018.8512806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is growing evidence of palliative effects of listening to songs on neural and cardiovascular function. It is also known that listening to songs can entrain cardiac variability. These results suggest that the neural changes in response to listening to songs in turn affect cardiac rhythm. How these effects come about is less clearly known. Therefore, investigation of the changes in neural rhythms that are synchronous with cardiac rhythm is likely to shed further light on the mechanisms via which songs produce these effects. Towards this aim, we conducted eigen decomposition of cardiac-synchronized EEGs to investigate the effects of tempo and cognition by auditory stimuli (listening to songs). For evaluating the effects of tempo, songs of slow and fast tempo were used, and for cognition, each subjects' favorite song was used. ECG and six EEGs (F3, F4, T3, T4, P3, P4) were recorded as subjects listened to songs. For cardiac synchronization, R waves from the ECG were localized and the EEGs during 300-millisecond segments ending at each R wave were extracted. Eigen decomposition of the covariance matrix of these EEG segments was performed. Results from 14 subject showed that, compared with other locations, P3 appears to have the ability to discriminate between songs. All songs lowered the second and the third largest eigenvalues compared to control, among these, the slow tempo song induced more significant decreases in T3, T4 and P3. During the slow song, 80% of the variance in all six EEGs could be represented with less eigenvalue/vectors while during the favorite song this number was larger. These results show that eigen decomposition of cardiac synchronized EEGs has the potential to investigate effects of music on neural and cardiovascular systems.
Collapse
|
31
|
Meinel A, Castaño-Candamil S, Blankertz B, Lotte F, Tangermann M. Characterizing Regularization Techniques for Spatial Filter Optimization in Oscillatory EEG Regression Problems : Guidelines Derived from Simulation and Real-World Data. Neuroinformatics 2019; 17:235-251. [PMID: 30128674 DOI: 10.1007/s12021-018-9396-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report on novel supervised algorithms for single-trial brain state decoding. Their reliability and robustness are essential to efficiently perform neurotechnological applications in closed-loop. When brain activity is assessed by multichannel recordings, spatial filters computed by the source power comodulation (SPoC) algorithm allow identifying oscillatory subspaces. They regress to a known continuous trial-wise variable reflecting, e.g. stimulus characteristics, cognitive processing or behavior. In small dataset scenarios, this supervised method tends to overfit to its training data as the involved recordings via electroencephalogram (EEG), magnetoencephalogram or local field potentials generally provide a low signal-to-noise ratio. To improve upon this, we propose and characterize three types of regularization techniques for SPoC: approaches using Tikhonov regularization (which requires model selection via cross-validation), combinations of Tikhonov regularization and covariance matrix normalization as well as strategies exploiting analytical covariance matrix shrinkage. All proposed techniques were evaluated both in a novel simulation framework and on real-world data. Based on the simulation findings, we saw our expectations fulfilled, that SPoC regularization generally reveals the largest benefit for small training sets and under severe label noise conditions. Relevant for practitioners, we derived operating ranges of regularization hyperparameters for cross-validation based approaches and offer open source code. Evaluating all methods additionally on real-world data, we observed an improved regression performance mainly for datasets from subjects with initially poor performance. With this proof-of-concept paper, we provided a generalizable regularization framework for SPoC which may serve as a starting point for implementing advanced techniques in the future.
Collapse
Affiliation(s)
- Andreas Meinel
- Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools, Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany.
| | - Sebastián Castaño-Candamil
- Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools, Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
| | | | - Fabien Lotte
- Potioc project team, Inria, Talence, France
- LaBRI (University of Bordeaux, CNRS, INP), Talence, France
| | - Michael Tangermann
- Brain State Decoding Lab, Cluster of Excellence BrainLinks-BrainTools, Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
32
|
Nikitakis A, Makantasis K, Tampouratzis N, Papaefstathiou I. A Unified Novel Neural Network Approach and a Prototype Hardware Implementation for Ultra-Low Power EEG Classification. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:670-681. [PMID: 31095497 DOI: 10.1109/tbcas.2019.2916981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper introduces a novel electroencephalogram (EEG) data classification scheme together with its implementation in hardware using an innovative approach. The proposed scheme integrates into a single, end-to-end trainable model a spatial filtering technique and a neural network based classifier. The spatial filters, as well as, the coefficients of the neural network classifier are simultaneously estimated during training. By using different time-locked spatial filters, we introduce for the first time the notion of "attention" in EEG processing, which allows for the efficient capturing of the temporal dependencies and/or variability of the EEG sequential data. One of the most important benefits of our approach is that the proposed classifier is able to construct highly discriminative features directly from raw EEG data and, at the same time, to exploit the function approximation properties of neural networks, in order to produce highly accurate classification results. The evaluation of the proposed methodology, using public available EEG datasets, indicates that it outperforms the standard EEG classification approach based on filtering and classification as two separated steps. Moreover, we present a prototype implementation of the proposed scheme in state-of-the-art reconfigurable hardware; our novel implementation outperforms by more than one order of magnitude, in terms of power efficiency, the conventional CPU-based approaches.
Collapse
|
33
|
Zhang S, Wang S, Zheng D, Zhu K, Dai M. A novel pattern with high-level commands for encoding motor imagery-based brain computer interface. Pattern Recognit Lett 2019. [DOI: 10.1016/j.patrec.2019.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Al-Faiz MZ, Al-hamadani AA. IMPLEMENTATION OF EEG SIGNAL PROCESSING AND DECODING FOR TWO-CLASS MOTOR IMAGERY DATA. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2019. [DOI: 10.4015/s1016237219500285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work decodes two-class motor imagery (MI) based on four main processing steps: (i) Raw electroencephalographic (EEG) signal is decomposed to single trials and spatial filters are estimated for each trial by common spatial filtering (CSP) method; (ii) features are extracted by taking the log transformation (normal distribution) of the spatially filtered EEG signal; (iii) optimal channel selection algorithm is proposed to reduce the number of EEG channels, such approach is regarded as key technological advantage in the implementation of brain–computer interface (BCI) to reduce the system processing time; (iv) finally, support vector machine (SVM) is employed to discriminate two classes of left and right hand MI. Two variations of SVM were proposed: polynomial function kernel and radial-based function RBF kernel. The results revealed that CSP succeeded in removing the strong correlation bound between the EEG samples by maximizing the variance of class 2 samples while minimizing the variance of class 1 samples. The channel selection algorithm achieved its goal to reduce the data dimension by selecting two channels out of three having the lowest variance entropies of 0.239 and 0.261 for channel 1 and channel 2, respectively. The features vector was divided into 80% train and 20% test with five-fold cross validation. The classification performance of SVM-polynomial kernel was 87.86% while it is 95.72% for SVM-RBF kernel as average accuracy of five-folds for both. Thus SVM-RBF is superior to SVM-Poly in the proposed framework.
Collapse
|
35
|
Kanoga S, Kanemura A, Asoh H. Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.02.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Majidov I, Whangbo T. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods. SENSORS 2019; 19:s19071736. [PMID: 30978978 PMCID: PMC6479542 DOI: 10.3390/s19071736] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/29/2019] [Accepted: 04/08/2019] [Indexed: 11/20/2022]
Abstract
Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain–computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain–computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.
Collapse
Affiliation(s)
- Ikhtiyor Majidov
- Department of Computer Science Gachon University, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13109, Korea.
| | - Taegkeun Whangbo
- Department of Computer Science Gachon University, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13109, Korea.
| |
Collapse
|
37
|
Lei B, Liu X, Liang S, Hang W, Wang Q, Choi KS, Qin J. Walking Imagery Evaluation in Brain Computer Interfaces via a Multi-View Multi-Level Deep Polynomial Network. IEEE Trans Neural Syst Rehabil Eng 2019; 27:497-506. [PMID: 30703032 DOI: 10.1109/tnsre.2019.2895064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Brain-computer interfaces based on motor imagery (MI) have been widely used to support the rehabilitation of motor functions of the upper limbs rather than lower limbs. This is probably because it is more difficult to detect the brain activities of lower limb MI. In order to reliably detect the brain activities of lower limbs to restore or improve the walking ability of the disabled, we propose a new paradigm of walking imagery (WI) in a virtual environment (VE), in order to elicit the reliable brain activities and achieve a significant training effect. First, we extract and fuse both the spatial and time-frequency features as a multi-view feature to represent the patterns in the brain activity. Second, we design a multi-view multi-level deep polynomial network (MMDPN) to explore the complementarity among the features so as to improve the detection of walking from an idle state. Our extensive experimental results show that the VE-based paradigm significantly performs better than the traditional text-based paradigm. In addition, the VE-based paradigm can effectively help users to modulate the brain activities and improve the quality of electroencephalography signals. We also observe that the MMDPN outperforms other deep learning methods in terms of classification performance.
Collapse
|
38
|
Bhattacharyya A, Ranta R, Le Cam S, Louis-Dorr V, Tyvaert L, Colnat-Coulbois S, Maillard L, Pachori RB. A multi-channel approach for cortical stimulation artefact suppression in depth EEG signals using time-frequency and spatial filtering. IEEE Trans Biomed Eng 2018; 66:1915-1926. [PMID: 30418880 DOI: 10.1109/tbme.2018.2881051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The stereo electroencephalogram (SEEG) recordings are the sate of the art tool used in pre-surgical evaluation of drug-unresponsive epileptic patients. Coupled with SEEG, electrical cortical stimulation (CS) offer a complementary tool to investigate the lesioned/healthy brain regions and to identify the epileptic zones with precision. However, the propagation of this stimulation inside the brain masks the cerebral activity recorded by nearby multi-contact SEEG electrodes. The objective of this paper is to propose a novel filtering approach for suppressing the CS artifact in SEEG signals using time, frequency as well as spatial information. METHODS The method combines spatial filtering with tunable-Q wavelet transform (TQWT). SEEG signals are spatially filtered to isolate the CS artifacts within a few number of sources/components. The artifacted components are then decomposed into oscillatory background and sharp varying transient signals using tunable-Q wavelet transform (TQWT). The CS artifact is assumed to lie in the transient part of the signal. Using prior known time-frequency information of the CS artifacts, we selectively mask the wavelet coefficients of the transient signal and extract out any remaining significant electrophysiological activity. RESULTS We have applied our proposed method of CS artifact suppression on simulated and real SEEG signals with convincing performance. The experimental results indicate the effectiveness of the proposed approach. CONCLUSION The proposed method suppresses CS artifacts without affecting the background SEEG signal. SIGNIFICANCE The proposed method can be applied for suppressing both low and high frequency CS artifacts and outperforms current methods from the literature.
Collapse
|
39
|
Suefusa K, Tanaka T. Asynchronous Brain–Computer Interfacing Based on Mixed-Coded Visual Stimuli. IEEE Trans Biomed Eng 2018; 65:2119-2129. [DOI: 10.1109/tbme.2017.2785412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Kumar S, Sharma A. A new parameter tuning approach for enhanced motor imagery EEG signal classification. Med Biol Eng Comput 2018; 56:1861-1874. [PMID: 29616456 DOI: 10.1007/s11517-018-1821-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/19/2018] [Indexed: 12/13/2022]
Abstract
A brain-computer interface (BCI) system allows direct communication between the brain and the external world. Common spatial pattern (CSP) has been used effectively for feature extraction of data used in BCI systems. However, many studies show that the performance of a BCI system using CSP largely depends on the filter parameters. The filter parameters that yield most discriminating information vary from subject to subject and manually tuning of the filter parameters is a difficult and time-consuming exercise. In this paper, we propose a new automated filter tuning approach for motor imagery electroencephalography (EEG) signal classification, which automatically and flexibly finds the filter parameters for optimal performance. We have evaluated the performance of our proposed method on two public benchmark datasets. Compared to the existing conventional CSP approach, our method reduces the average classification error rate by 2.89% and 3.61% for BCI Competition III dataset IVa and BCI Competition IV dataset I, respectively. Moreover, our proposed approach also achieved lowest average classification error rate compared to state-of-the-art methods studied in this paper. Thus, our proposed method can be potentially used for developing improved BCI systems, which can assist people with disabilities to recover their environmental control. It can also be used for enhanced disease recognition such as epileptic seizure detection using EEG signals. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Shiu Kumar
- Department of Electronics, Instrumentation & Control Engineering, School of Electrical & Electronics Engineering, Fiji National University, Samabula, Fiji
- School of Engineering and Physics, Faculty of Science, Technology & Environment, The University of the South Pacific, Suva, Fiji
| | - Alok Sharma
- School of Engineering and Physics, Faculty of Science, Technology & Environment, The University of the South Pacific, Suva, Fiji.
- Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Brisbane, Australia.
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
41
|
Feng J, Yin E, Jin J, Saab R, Daly I, Wang X, Hu D, Cichocki A. Towards correlation-based time window selection method for motor imagery BCIs. Neural Netw 2018; 102:87-95. [PMID: 29558654 DOI: 10.1016/j.neunet.2018.02.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/09/2018] [Accepted: 02/14/2018] [Indexed: 10/17/2022]
Abstract
The start of the cue is often used to initiate the feature window used to control motor imagery (MI)-based brain-computer interface (BCI) systems. However, the time latency during an MI period varies between trials for each participant. Fixing the starting time point of MI features can lead to decreased system performance in MI-based BCI systems. To address this issue, we propose a novel correlation-based time window selection (CTWS) algorithm for MI-based BCIs. Specifically, the optimized reference signals for each class were selected based on correlation analysis and performance evaluation. Furthermore, the starting points of time windows for both training and testing samples were adjusted using correlation analysis. Finally, the feature extraction and classification algorithms were used to calculate the classification accuracy. With two datasets, the results demonstrate that the CTWS algorithm significantly improved the system performance when compared to directly using feature extraction approaches. Importantly, the average improvement in accuracy of the CTWS algorithm on the datasets of healthy participants and stroke patients was 16.72% and 5.24%, respectively when compared to traditional common spatial pattern (CSP) algorithm. In addition, the average accuracy increased 7.36% and 9.29%, respectively when the CTWS was used in conjunction with Sub-Alpha-Beta Log-Det Divergences (Sub-ABLD) algorithm. These findings suggest that the proposed CTWS algorithm holds promise as a general feature extraction approach for MI-based BCIs.
Collapse
Affiliation(s)
- Jiankui Feng
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Erwei Yin
- National Institute of Defense Technology Innovation, Academy of Military Sciences China, Beijing, 100081, PR China
| | - Jing Jin
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China.
| | - Rami Saab
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Ian Daly
- Brain-Computer Interfaces and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Xingyu Wang
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, PR China
| | - Dewen Hu
- College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Andrzej Cichocki
- Laboratory for Advanced Brain Signal Processing, Brain Science Institute, RIKEN, Wako-shi, Japan; Systems Research Institute PAS, Warsaw, Poland; Nicolaus Copernicus University (UMK), Torun, Poland
| |
Collapse
|
42
|
Li X, Guan C, Zhang H, Ang KK. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:2727-2737. [PMID: 28113609 DOI: 10.1109/tnnls.2016.2601084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K
| | - Cuntai Guan
- Agency for Science, Technology and Research, Institute for Infocomm Research, Singapore
| | - Haihong Zhang
- Agency for Science, Technology and Research, Institute for Infocomm Research, Singapore
| | - Kai Keng Ang
- Agency for Science, Technology and Research, Institute for Infocomm Research, Singapore
| |
Collapse
|
43
|
Kumar S, Mamun K, Sharma A. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Comput Biol Med 2017; 91:231-242. [PMID: 29100117 DOI: 10.1016/j.compbiomed.2017.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/08/2017] [Accepted: 10/23/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Classification of electroencephalography (EEG) signals for motor imagery based brain computer interface (MI-BCI) is an exigent task and common spatial pattern (CSP) has been extensively explored for this purpose. In this work, we focused on developing a new framework for classification of EEG signals for MI-BCI. METHOD We propose a single band CSP framework for MI-BCI that utilizes the concept of tangent space mapping (TSM) in the manifold of covariance matrices. The proposed method is named CSP-TSM. Spatial filtering is performed on the bandpass filtered MI EEG signal. Riemannian tangent space is utilized for extracting features from the spatial filtered signal. The TSM features are then fused with the CSP variance based features and feature selection is performed using Lasso. Linear discriminant analysis (LDA) is then applied to the selected features and finally classification is done using support vector machine (SVM) classifier. RESULTS The proposed framework gives improved performance for MI EEG signal classification in comparison with several competing methods. Experiments conducted shows that the proposed framework reduces the overall classification error rate for MI-BCI by 3.16%, 5.10% and 1.70% (for BCI Competition III dataset IVa, BCI Competition IV Dataset I and BCI Competition IV Dataset IIb, respectively) compared to the conventional CSP method under the same experimental settings. CONCLUSION The proposed CSP-TSM method produces promising results when compared with several competing methods in this paper. In addition, the computational complexity is less compared to that of TSM method. Our proposed CSP-TSM framework can be potentially used for developing improved MI-BCI systems.
Collapse
Affiliation(s)
- Shiu Kumar
- Department of Electronics, Instrumentation and Control, School of Electrical & Electronics Engineering, College of Engineering, Science and Technology, Fiji National University, Suva, Fiji; School of Engineering and Physics, Faculty of Science, Technology and Environment, The University of the South Pacific, Suva, Fiji.
| | - Kabir Mamun
- School of Engineering and Physics, Faculty of Science, Technology and Environment, The University of the South Pacific, Suva, Fiji.
| | - Alok Sharma
- School of Engineering and Physics, Faculty of Science, Technology and Environment, The University of the South Pacific, Suva, Fiji; Institute for Integrated and Intelligent Systems (IIIS), Griffith University, Brisbane, Australia; RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
| |
Collapse
|
44
|
Nicolae IE, Acqualagna L, Blankertz B. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation. Front Neurosci 2017; 11:548. [PMID: 29046625 PMCID: PMC5632679 DOI: 10.3389/fnins.2017.00548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022] Open
Abstract
Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70-90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces.
Collapse
Affiliation(s)
- Irina-Emilia Nicolae
- Department of Applied Electronics and Information Engineering, Politehnica University of Bucharest, Bucharest, Romania
- Department of Neurotechnology, Technische Universität Berlin, Berlin, Germany
| | - Laura Acqualagna
- Department of Neurotechnology, Technische Universität Berlin, Berlin, Germany
| | - Benjamin Blankertz
- Department of Neurotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
45
|
Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. BRAIN-COMPUTER INTERFACES 2017. [DOI: 10.1080/2326263x.2017.1297192] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marco Congedo
- GIPSA-lab, CNRS, Grenoble Institute of Technology, Grenoble Alpes University, Grenoble, France
| | - Alexandre Barachant
- Early Brain Injury and Recovery Lab, Burke Medical Research Institute, White Plains, NY, USA
| | - Rajendra Bhatia
- Department of Theoretical Statistics and Mathematics, Indian Statistical Institute, New Delhi, India
| |
Collapse
|
46
|
Optimization of Alpha-Beta Log-Det Divergences and their Application in the Spatial Filtering of Two Class Motor Imagery Movements. ENTROPY 2017. [DOI: 10.3390/e19030089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Dong E, Li C, Li L, Du S, Belkacem AN, Chen C. Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain-computer interfaces. Med Biol Eng Comput 2017; 55:1809-1818. [PMID: 28238175 DOI: 10.1007/s11517-017-1611-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.
Collapse
Affiliation(s)
- Enzeng Dong
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, 300384, China
| | - Changhai Li
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, 300384, China
| | - Liting Li
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, 300384, China
| | - Shengzhi Du
- Department of Mechanical Engineering, Tshwane University of Technology, Pretoria, 0001, South Africa
| | - Abdelkader Nasreddine Belkacem
- Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan
| | - Chao Chen
- Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
48
|
Spatial and spatio-temporal filtering based on common spatial patterns and Max-SNR for detection of P300 component. Biocybern Biomed Eng 2017. [DOI: 10.1016/j.bbe.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Subbaraju V, Suresh MB, Sundaram S, Narasimhan S. Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging : A spatial filtering approach. Med Image Anal 2017; 35:375-389. [DOI: 10.1016/j.media.2016.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
|
50
|
Blankertz B, Acqualagna L, Dähne S, Haufe S, Schultze-Kraft M, Sturm I, Ušćumlic M, Wenzel MA, Curio G, Müller KR. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control. Front Neurosci 2016; 10:530. [PMID: 27917107 PMCID: PMC5116473 DOI: 10.3389/fnins.2016.00530] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.
Collapse
Affiliation(s)
- Benjamin Blankertz
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
- Bernstein Focus: NeurotechnologyBerlin, Germany
| | - Laura Acqualagna
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Sven Dähne
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
| | - Stefan Haufe
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
| | - Matthias Schultze-Kraft
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
- Bernstein Focus: NeurotechnologyBerlin, Germany
| | - Irene Sturm
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Marija Ušćumlic
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Markus A. Wenzel
- Neurotechnology Group, Technische Universität BerlinBerlin, Germany
| | - Gabriel Curio
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité - University Medicine BerlinBerlin, Germany
| | - Klaus-Robert Müller
- Bernstein Focus: NeurotechnologyBerlin, Germany
- Machine Learning Group, Technische Universität BerlinBerlin, Germany
- Department of Brain and Cognitive Engineering, Korea UniversitySeoul, South Korea
| |
Collapse
|