Sligar SG, Kennedy KA, Pearson DC. Chemical mechanisms for cytochrome P-450 hydroxylation: evidence for acylation of heme-bound dioxygen.
Proc Natl Acad Sci U S A 1980;
77:1240-4. [PMID:
6929480 PMCID:
PMC348467 DOI:
10.1073/pnas.77.3.1240]
[Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Using isotopic tracer methods, we have shown that dihydrolipoic acid (2,3-thioctic acid) acylates the distal oxygen of ferrous oxygenated Pseudomonas cytochrome P-450, forming a transient acyl peroxide intermediate that facilitates oxygen-oxygen bond cleavage. Single-turnover studies with 18O2 indicate one oxygen-18 atom incorporated into the carboxylate group of lipoic acid for each oxygen-18 inserted into the substrate, camphor, forming the product, exo-5-hydroxycamphor. Such a branching ratio for label indicates that water is initially released from an unlageled position and illustrates that the general P-450 mixed-function oxidase stoichiometry generates H218O from 18O2 only after multiple-turnover equilibration with the acylating carboxylate oxygen. Formation of an acyl peroxide state is a natural intermediate in peracid, "oxene", or radical mechanisms for methylene carbone oxygenation.
Collapse