1
|
Spectroelectrochemistry of cytochromeb559 in the D1-D2-Cytb559 complex from spinach. FEBS Lett 2008; 582:1490-4. [PMID: 18396158 DOI: 10.1016/j.febslet.2008.03.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/05/2008] [Accepted: 03/21/2008] [Indexed: 11/23/2022]
|
2
|
Yruela I, García-Rubio I, Roncel M, Martínez JI, Ramiro MV, Ortega JM, Alonso PJ, Picorel R. Detergent effect on cytochrome b559 electron paramagnetic resonance signals in the photosystem II reaction centre. Photochem Photobiol Sci 2003; 2:437-42. [PMID: 12760544 DOI: 10.1039/b300187c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detergent effect on Cytochrome b559 from spinach photosystem II was studied by electron paramagnetic resonance (EPR) spectroscopy in D1-D2-Cyt b559 complex preparations. Various n-dodecyl-beta-D-maltoside concentrations from 0 to 0.2% (w/v) were used to stabilise the D1-D2-Cyt b559 complexes. Low spin heme EPR spectra were obtained but the g(z) feature positions changed depending on the detergent conditions Redox potentiometric titrations showed a unique redox potential cytochrome b559 form (E'm = + 123-150 mV) in all the D1-D2-Cyt b559 complex preparations indicating that detergent does not affect this property of the protein in those conditions. A similar effect on Cytochrome b559 EPR spectrum was observed in more intact photosystem II preparations independently of their aggregation state. This finding indicates that changes due to detergent could be a common phenomenon in photosystem II complexes. Results are discussed in terms of the environment each detergent provides to the protein.
Collapse
Affiliation(s)
- I Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apdo. 202, E-50080 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R. Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:41-49. [PMID: 12685044 DOI: 10.1078/0176-1617-00845] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The presence of 1.0 mol/L glycinebetaine during isolation of D1/D2/Cytb559 reaction centre (RC) complexes from photosystem II (PSII) membrane fragments preserved the photochemical activity, monitored as the light-induced reduction of pheophytin and electron transport from diphenylcarbazide to 2.6-dichlorophenol-indophenol.-Glycinebetaine also protected the D1/D2/Cytb559 complexes against strong light-induced damage to the photochemical reactions and the irreversible bleaching of beta-carotene and chlorophyll. The presence of glycinebetaine also enhanced thermotolerance of the D1/D2/Cytb559 complexes isolated in the presence of 1.0 mol/L betaine with an increase in the temperature for 50% inactivation from 29 degrees C to 35 degrees C. The results indicate an increased supramolecular structural stability in the presence of glycinebetaine.
Collapse
|
4
|
Herranen M, Aro EM, Tyystjärvi T. Two distinct mechanisms regulate the transcription of photosystem II genes in Synechocystis sp. PCC 6803. PHYSIOLOGIA PLANTARUM 2001; 112:531-539. [PMID: 11473713 DOI: 10.1034/j.1399-3054.2001.1120410.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expression and regulation of psb genes, encoding various subunits of photosystem II (PSII), were studied in the cyanobacterium Synechocystis sp. PCC 6803. Transcription of the psbA and psbD genes, encoding the PSII reaction centre proteins D1 and D2, was rapidly activated upon onset of illumination and the transcription rates were enhanced at high irradiance. Gel retardation analysis demonstrated dark-enhanced binding of proteins to the upstream region of the psbA2 gene, pointing to a repressor-protein-based transcriptional regulation mechanism. Transcription of all the other psb genes also required light, but unlike the psbA and psbD genes, these psb genes did not respond specifically to high-light. Moreover, the transcription of these psb genes was activated slowly at onset of illumination, and was strictly dependent on de novo protein synthesis. We suggest that these psb genes are up-regulated in the light via transcriptional activator proteins, and the slow activation may be related to production of new PSII centres during growth. Apart from the two distinct mechanisms for transcriptional regulation, all psb genes shared a common regulation mechanism at the level of transcript stability, mediated by the redox poise of intersystem electron carrier(s).
Collapse
Affiliation(s)
- Mirkka Herranen
- Plant Physiology and Molecular Biology, Department of Biology, FIN-20014 Turku, Finland
| | | | | |
Collapse
|
5
|
Hofbauer W, Zouni A, Bittl R, Kern J, Orth P, Lendzian F, Fromme P, Witt HT, Lubitz W. Photosystem II single crystals studied by EPR spectroscopy at 94 GHz: the tyrosine radical Y(D)(*). Proc Natl Acad Sci U S A 2001; 98:6623-8. [PMID: 11381107 PMCID: PMC34403 DOI: 10.1073/pnas.101127598] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy at 94 GHz is used to study the dark-stable tyrosine radical Y(D)(*) in single crystals of photosystem II core complexes (cc) isolated from the thermophilic cyanobacterium Synechococcus elongatus. These complexes contain at least 17 subunits, including the water-oxidizing complex (WOC), and 32 chlorophyll a molecules/PS II; they are active in light-induced electron transfer and water oxidation. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with four PS II dimers per unit cell. High-frequency EPR is used for enhancing the sensitivity of experiments performed on small single crystals as well as for increasing the spectral resolution of the g tensor components and of the different crystal sites. Magnitude and orientation of the g tensor of Y(D)(*) and related information on several proton hyperfine tensors are deduced from analysis of angular-dependent EPR spectra. The precise orientation of tyrosine Y(D)(*) in PS II is obtained as a first step in the EPR characterization of paramagnetic species in these single crystals.
Collapse
Affiliation(s)
- W Hofbauer
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsiotis G, Psylinakis M, Woplensinger B, Lustig A, Engel A, Ghanotakis D. Investigation of the structure of spinach photosystem II reaction center complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:320-4. [PMID: 9914509 DOI: 10.1046/j.1432-1327.1999.00042.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The photosystem II (PSII) reaction center (RC) complex was isolated from spinach and characterized by gel electrophoresis, gel filtration and analytical ultracentrifugation. The purified complex contained the PsbA, PsbD, PsbE, PsbF and PsbI subunits. Gel filtration and analytical ultracentrifugation indicated the presence of a homogeneous complex. The mass of the RC complexes was found to be 107 kDa by analytical ultracentrifugation and 132 kDa by scanning transmission electron microscopy (STEM). The mass obtained showed the isolated complex to exist as a monomer and only one cytochrome b559 (cyt b559) to be associated with the RC complex. Digital images of negatively stained RC complexes were recorded by STEM and analyzed by single-particle averaging. The complex was 9 nm long and 5 nm wide, and exhibited a pronounced quasi-twofold symmetry. This supports the symmetric organization of the PSII complex, with the PsbA and the PsbD proteins in the center and symmetrically arranged PsbB and PsbC proteins at the periphery of the monomeric complex.
Collapse
Affiliation(s)
- G Tsiotis
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel,Switzerland.
| | | | | | | | | | | |
Collapse
|
7
|
Hippler M, Redding K, Rochaix JD. Chlamydomonas genetics, a tool for the study of bioenergetic pathways. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1367:1-62. [PMID: 9784589 DOI: 10.1016/s0005-2728(98)00136-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- M Hippler
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva-4, Switzerland
| | | | | |
Collapse
|
8
|
Tomo T, Mimuro M, Iwaki M, Kobayashi M, Itoh S, Satoh K. Topology of pigments in the isolated Photosystem II reaction center studied by selective extraction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(97)00037-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Hankamer B, Barber J, Boekema EJ. STRUCTURE AND MEMBRANE ORGANIZATION OF PHOTOSYSTEM II IN GREEN PLANTS. ACTA ACUST UNITED AC 1997; 48:641-671. [PMID: 15012277 DOI: 10.1146/annurev.arplant.48.1.641] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photosystem II (PSII) is the pigment protein complex embedded in the thylakoid membrane of higher plants, algae, and cyanobacteria that uses solar energy to drive the photosynthetic water-splitting reaction. This chapter reviews the primary, secondary, tertiary, and quaternary structures of PSII as well as the function of its constituent subunits. The understanding of in vivo organization of PSII is based in part on freeze-etched and freeze-fracture images of thylakoid membranes. These images show a resolution of about 40-50 A and so provide information mainly on the localization, heterogeneity, dimensions, and shapes of membrane-embedded PSII complexes. Higher resolution of about 15-40 A has been obtained from single particle images of isolated PSII complexes of defined and differing subunit composition and from electron crystallography of 2-D crystals. Observations are discussed in terms of the oligomeric state and subunit organization of PSII and its antenna components.
Collapse
Affiliation(s)
- Ben Hankamer
- Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom, Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen, NL-9747 AG The Netherlands
| | | | | |
Collapse
|
10
|
Chiesa MD, Deák Z, Vass I, Barber J, Nixon PJ. The lumenal loop connecting transmembrane helices I and II of the D1 polypeptide is important for assembly of the photosystem two complex. PHOTOSYNTHESIS RESEARCH 1996; 50:79-91. [PMID: 24271824 DOI: 10.1007/bf00018223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/1996] [Accepted: 09/23/1996] [Indexed: 06/02/2023]
Abstract
Current structural models indicate that the D1 and D2 polypeptides of the Photosystem two reaction center complex (PS II RC) each span the thylakoid membrane five times. In order to assess the importance of the lumenal extrinsic loop that connects transmembrane helices I and II of D1 we have constructed five deletion mutants and two double mutants in the cyanobaterium Synechocystic sp. PCC 6803. Four of the deletion mutants (Δ59-65, Δ69-74, Δ79-86 and Δ109-110) are obligate photoheterotrophs unable to accumulate D1 in the membrane as assayed by immunoblotting experiments or pulse-labelling experiments using [(35)S]-methionine. In contrast deletion mutant Δ100 which lacks A100 behaved very similarly to the WT control strain in terms of photoautotrophic growth rate, saturated rates of oxygen evolution, flash-induced oxygen evolution, fluorescence induction and decay, and thermoluminescence. Δ100 is the first example of an internal deletion on the lumenal side of the D1 polypeptide that is benign to photosystem two function. Double mutant D103G/E104A also behaves similarly to the WT control strain leading to the conclusion that residues D103 and E104 are unlikely to be involved in ligating the metal ions Mn or Ca(2+), which are needed for photosynthetic oxygen evolution. Double mutant, G109A/G110A, was constructed to assess the significance of this GlyGly motif which is also conserved in the L subunit of purple bacterial reaction centres. The G109A/G110A mutant is able to evolve oxygen at approximately 50-70% of WT rates but is unable to grow phatoautotrophically apparently because of an enhanced sensitivity to photoinactivation than the WT control strain. A photoautotropic revertant was isolated from this strain and shown to result from a mutation that restored the WT codon at position 109. Pulse-chase experiments in cells using [(35)S]-methionine showed that resistance to photoinhibition in the revertant correlated with an enhanced rate of incorporation of D1 into the membrane compared to mutant G109A/G110A. The sensitivity to photoinhibition shown by the G109A/G110A mutant is therefore consistent with a perturbation to the D1 repair cycle possibly at the level of D1 synthesis or incorporation of D1 into the PS II complex.
Collapse
Affiliation(s)
- M D Chiesa
- Photosynthesis Research Group, Wolfson Laboratories, Biochemistry Department, Imperial College of Science, Technology and Medicine, SW7 2AY, London, UK
| | | | | | | | | |
Collapse
|
11
|
Abstract
This review covers the recent progress in the elucidation of the structure of photosystem II (PSII). Because much of the structural information for this membrane protein complex has been revealed by electron microscopy (EM), the review will also consider the specific technical and interpretation problems that arise with EM where they are of particular relevance to the structural data. Most recent reviews of photosystem II structure have concentrated on molecular studies of the PSII genes and on the likely roles of the subunits that they encode or they were mainly concerned with the biophysical data and fast absorption spectroscopy largely relating to electron transfer in various purified PSII preparations. In this review, we will focus on the approaches to the three-dimensional architecture of the complex and the lipid bilayer in which it is located (the thylakoid membrane) with special emphasis placed upon electron microscopical studies of PSII-containing thylakoid membranes. There are a few reports of 3D crystals of PSII and of associated X-ray diffraction measurements and although little structural information has so far been obtained from such studies (because of the lack of 3D crystals of sufficient quality), the prospects for such studies are also assessed.
Collapse
Affiliation(s)
- W V Nicholson
- Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, UK
| | | | | |
Collapse
|
12
|
Irrgang KD, Shi LX, Funk C, Schröder WP. A nuclear-encoded subunit of the photosystem II reaction center. J Biol Chem 1995; 270:17588-93. [PMID: 7615565 DOI: 10.1074/jbc.270.29.17588] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A nuclear-encoded polypeptide of 6.1 kDa was identified in isolated photosystem II (PSII) reaction center from Spinacia oleracea. The hydrophobic membrane protein easily escapes staining procedures such as Coomassie R-250 or silver staining, but it is clearly detected by immunodecoration with peptide-directed IgG. This additional subunit was found to be present in PSII reaction centers previously known to contain only the D1/D2/cytb559 proteins and the psbI gene product. Furthermore, cross-linking experiments using 1-(3-dimethylaminopropyl-) 3-ethylcarbodiimide showed that the nearest neighbors were the D1 and D2 proteins and the cytb559. The 6.1-kDa protein was purified by immune affinity chromatography. N-terminal sequence analysis of the isolated protein confirmed the identity of the 6.1-kDa protein and enabled finding of strong similarities with a randomly obtained cDNA from Arabidopsis thaliana. Using enzyme-linked immunosorbent assay in combination with thylakoid membrane preparations of different orientation, the N terminus of the protein, predicted to span the membrane once, is suggested to be exposed at the lumen side of the membrane. Consequently the 6.1-kDa protein seems to be the only subunit in the PSII reaction center that is nuclear encoded and has its N terminus on the lumen side of the membrane. These findings open for new interesting suggestions concerning the properties of photosystem II reaction center with respect to the photosynthetic activity, regulation and assembly in higher plants.
Collapse
Affiliation(s)
- K D Irrgang
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | | | |
Collapse
|
13
|
Nixon PJ, Komenda J, Barber J, Deak Z, Vass I, Diner BA. Deletion of the PEST-like region of photosystem two modifies the QB-binding pocket but does not prevent rapid turnover of D1. J Biol Chem 1995; 270:14919-27. [PMID: 7797471 DOI: 10.1074/jbc.270.25.14919] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rapid turn-over of the D1 polypeptide of the photosystem two complex has been suggested to be due to the presence of a "PEST"-like sequence located between putative transmembrane helices IV and V of D1 (Greenberg, B. M., Gaba, V., Mattoo, A. K. and Edelman, M. (1987) EMBO J. 6, 2865-2869). We have tested this hypothesis by constructing a deletion mutant (delta 226-233) of the cyanobacterium Synechocystis sp. PCC 6803 in which residues 226-233 of the D1 polypeptide, containing the PEST-like sequence, have been removed. The resulting mutant, delta PEST, is able to grow photoautotrophically and give light-saturated rates of oxygen at wild type levels. However electron transfer on the acceptor side of the complex is perturbed. Analysis of cells by thermoluminescence and by monitoring the decay in quantum yield of variable fluorescence following saturating flash excitation indicates that Q-B, but not Q-A, is destabilized in this mutant. Electron transfer on the donor side of photosystem two remains largely unchanged in the mutant. Turnover of the D1 polypeptide as examined by pulse-chase experiments using [35S]methionine was enhanced in the delta PEST mutant compared to strain TC31 which is the wild type control. We conclude that the PEST sequence is not absolutely required for turnover of the D1 polypeptide in vivo although deletion of residues 226-233 does have an effect on the redox equilibrium between QA and QB.
Collapse
Affiliation(s)
- P J Nixon
- Wolfson Laboratories, Biochemistry Department, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Setlíková E, Ritter S, Hienerwadel R, Kopecký J, Komenda J, Welte W, Setlík I. Purification of a Photosystem II reaction center from a thermophilic cyanobacterium using immobilized metal affinity chromatography. PHOTOSYNTHESIS RESEARCH 1995; 43:201-211. [PMID: 24306843 DOI: 10.1007/bf00029933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/1994] [Accepted: 02/06/1995] [Indexed: 06/02/2023]
Abstract
Oxygen-evolving PS II particles from the thermophilic cyanobacterium Synechococcus elongatus are partially purified by centrifugation on a sucrose gradient and are bound to a Chelating Sepharose column loaded with Cu(2+) ions. Bound particles are then transformed into PS II RC complexes by two washing steps. First, washing with a phosphate buffer (pH=6.5) containing 0.02% of SB 12 removes the rest of phycobilins and leaves pure PS II core particles on the column. Second, washing with a phosphate buffer (pH=6.2) containing 0.2 M LiClO4 and 0.05% of DM removes CP 47 and CP 43 and leaves bare PS II RC complexes on the column. These are then eluted with a phosphate buffer containing 1% of dodecylmaltoside (DM). The molar ratio of pigments in the eluate changes with the progress of elution but around the middle of the elution period a nearly stable ratio is maintained of Chl a: Pheo a: Car: Cyt b 559 equal to 2.9: 1: 0.9: 0.8. In these fractions the photochemical separation of charges could be demonstrated by accumulation of reduced pheophytin (ΔA of 430-440 nm) and by the flash induced formation of P680(+) (ΔA at 820 nm). The relatively slow relaxation kinetics of the latter signal (t1/2 ≈ 1 ms) may suggest that in a substantial fraction of the RCs QA remains bound to the complex.
Collapse
Affiliation(s)
- E Setlíková
- Institute of Microbiology, Academy of Science of the Czech Republic, CS 37901, Trebon, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Whitelegge JP, Koo D, Diner BA, Domian I, Erickson JM. Assembly of the Photosystem II oxygen-evolving complex is inhibited in psbA site-directed mutants of Chlamydomonas reinhardtii. Aspartate 170 of the D1 polypeptide. J Biol Chem 1995; 270:225-35. [PMID: 7814379 DOI: 10.1074/jbc.270.1.225] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Photosystem II catalyzes the photooxidation of water to molecular oxygen, providing electrons to the photosynthetic electron transfer chain. The D1 and D2 chloroplast-encoded reaction center polypeptides bind cofactors essential for Photosystem II function. Transformation of the chloroplast genome of the eukaryotic green alga Chlamydomonas reinhardtii has allowed us to engineer site-directed mutants in which aspartate residue 170 of D1 is replaced by histidine (D170H), asparagine (D170N), threonine (D170T), or proline (D170P). Mutants D170T and D170P are completely deficient in oxygen evolution, but retain normal (D170T) or 50% (D170P) levels of Photosystem II reaction centers. D170H and D170N accumulate wild-type levels of PSII centers, yet evolve oxygen at rates approximately 45% and 15% those of control cells, respectively. Kinetic analysis of chlorophyll fluorescence in the mutants reveals a specific defect in electron donation to the reaction center. Measurements of oxygen flash yields in D170H show, however, that those reaction centers capable of evolving oxygen function normally. We conclude that aspartate residue 170 of the D1 polypeptide plays a critical role in the initial binding of manganese as the functional chloroplast oxygen-evolving complex is assembled.
Collapse
Affiliation(s)
- J P Whitelegge
- Department of Biology, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
16
|
Angerhofer A, Friso G, Giacometti G, Carbonera D, Giacometti G. Optically detected magnetic resonance study on the origin of the pheophytin triplet state in D1D2-cytochrome b-559 complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Tomo T, Satoh K. Nearest neighbor analysis of D1 and D2 subunits in the photosystem II reaction center using a bifunctional cross-linker, hexamethylene diisocyanate. FEBS Lett 1994; 351:27-30. [PMID: 8076687 DOI: 10.1016/0014-5793(94)00803-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cross-linked product between the D1 and D2 subunits was generated by treating isolated spinach PS II reaction center with a bifunctional cross-linker, 1,6-hexamethylene diisocyanate. To obtain information on the contact site(s) between D1 and D2 proteins, the cross-linked product was cleaved by CNBr, the resultant fragments were separated using a reverse-phase HPLC, and then the partial sequence of the cross-linked polypeptide fragments were determined. By comparing the results with the deduced amino acid sequence of the D1 and D2 proteins from spinach, it is concluded that the C-terminal domains of the D1 subunit (D308-A334) and that of the D2 subunit (Y297-L353) are in close proximity.
Collapse
Affiliation(s)
- T Tomo
- Department of Biology, Okayama University, Japan
| | | |
Collapse
|
18
|
Pigment stoichiometry of the Photosystem II reaction center from higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90108-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
|
20
|
|
21
|
Bernarding J, Eckert HJ, Eichler HJ, Napiwotzki A, Renger G. KINETIC STUDIES ON THE STABILIZATION OF THE PRIMARY RADICAL PAIR P680+Pheo-IN DIFFERENT PHOTOSYSTEM II PREPARATIONS FROM HIGHER PLANTS*. Photochem Photobiol 1994. [DOI: 10.1111/j.1751-1097.1994.tb02985.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
MacDonald GM, Boerner RJ, Everly RM, Cramer WA, Debus RJ, Barry BA. Comparison of cytochrome b-559 content in photosystem II complexes from spinach and Synechocystis species PCC 6803. Biochemistry 1994; 33:4393-400. [PMID: 8155657 DOI: 10.1021/bi00180a037] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytochrome b-559 is an integral component of photosystem II complexes from both plants and cyanobacteria. However, the number of cytochrome b-559 associated with the photosystem II reaction center has been the subject of controversy. Some studies have concluded that there is one heme equivalent of cytochrome b-559 per reaction center, some studies have found two, and some studies have reported intermediate values. Most of the previous experiments have used only one method to quantitate the antenna size of the preparation. In this study, we compare the cytochrome b-559 content in a cyanobacterial and a plant photosystem II preparation. The plant preparation is derived from spinach, and previous work has shown that it has an antenna size of approximately 100 chlorophylls [MacDonald, G. M., & Barry, B. A. (1992) Biochemistry 31, 9848-9856]. The cyanobacterial preparation is from Synechocystis sp. PCC 6803, and previous work has shown that it has an antenna size of approximately 60 chlorophylls [Noren, G. H., Boerner, R. J., & Barry, B. A. (1991) Biochemistry 30, 3943-3950]. Both preparations are isolated through the use of ion-exchange chromatography, and both preparations are monodisperse in the same nonionic detergent. In our comparative study, we quantitate antenna size by three different methods. Our work shows that, depending on the method used to estimate antenna size, the oxygen-evolving spinach photosystem II preparation contains 0.82-1.0 cytochrome b-559 per reaction center, while the oxygen-evolving cyanobacterial preparation contains 1.5-2.1 cytochrome b-559 per reaction center.
Collapse
Affiliation(s)
- G M MacDonald
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | | | | | | | | | |
Collapse
|
23
|
The state of iron in the oxygen-evolving core complex of the cyanobacterium Phormidium laminosum: Mössbauer spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90221-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
|
25
|
Tang XS, Chisholm DA, Dismukes GC, Brudvig GW, Diner BA. Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center. Biochemistry 1993; 32:13742-8. [PMID: 8257709 DOI: 10.1021/bi00212a045] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reaction center of photosystem II of oxygenic photosynthesis contains two redox-active tyrosines called Z and D, each of which can act as an electron donor to the oxidized primary electron donor, P680+. These tyrosines are located in homologous positions on the third transmembrane alpha-helix of each of the two homologous polypeptides, D1 and D2, that comprise the reaction center. Tyrosine D of polypeptide D2 has been proposed, upon oxidation, to give up its phenolic proton to a nearby basic amino acid residue, forming a neutral radical. Modeling studies have pointed to His190 (spinach numbering) as a likely candidate for this basic residue. As a test of this hypothesis, we have constructed three site-directed mutations in the D2 polypeptide of the cyanobacterium Synechocystis sp. PCC6803. His189 (the Synechocystis homologue of His190 of spinach) has been replaced by glutamine, aspartate, or leucine. Instead of the normal D. EPR signal (g = 2.0046; line width 16-19 G), PSII core complexes isolated from these three mutants show an altered dark-stable EPR signal with a narrowed line width (11-13 G), and g values of 2.0046, 2.0043, and 2.0042 for the His189Gln, His189Asp, and His189Leu mutants, respectively. Despite the reduced line width, these EPR signals show g values and microwave-power saturation properties similar to the normal D. signal. Furthermore, specific deuteration in one of those mutants at the 3 and 5 positions of the phenol ring of the photosystem II reaction center tyrosines results in a loss of hyperfine structure of the EPR signal, proving that the signal indeed arises from tyrosine.2+ This observation provides support for a model in which an imidazole nitrogen of His189 accepts the phenolic proton of Tyr160 upon oxidation of D, forming a back hydrogen bond to the phenolic oxygen of the neutral tyrosyl radical.
Collapse
Affiliation(s)
- X S Tang
- Central Research and Development Department, E. I. du Pont de Nemours & Co., Wilmington, Delaware 19880-0173
| | | | | | | | | |
Collapse
|
26
|
Barber J, De Las Rivas J. A functional model for the role of cytochrome b559 in the protection against donor and acceptor side photoinhibition. Proc Natl Acad Sci U S A 1993; 90:10942-6. [PMID: 8248195 PMCID: PMC47897 DOI: 10.1073/pnas.90.23.10942] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A quinone-independent photoreduction of the low potential form of cytochrome b559 has been studied using isolated reaction centers of photosystem II. Under anaerobic conditions, the cytochrome can be fully reduced by exposure to strong illumination without the addition of any redox mediators. Under high light conditions, the extent and rate of the reduction is unaffected by addition of the exogenous electron donor Mn2+ and, during this process, no irreversible damage occurs to the reaction center. However, prolonged illumination in strong light brings about irreversible bleaching of chlorophyll, indicative of photoinhibitory damage. When the cytochrome is fully reduced and excess Mn2+ is present, the effect of moderate light is to facilitate the photoaccumulation of reduced pheophytin. The dark reoxidation of the reduced cytochrome is very slow under anaerobic conditions but significantly speeded up on addition of oxidized 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. From these results it is suggested that the low potential form of cytochrome b559 can accept electrons directly from reduced pheophytin and in so doing help to protect the reaction center against acceptor side photoinhibition as suggested by Nedbal et al. [Nedbal, J., Samson, G. & Whitmarsh, J. (1992) Proc. Natl. Acad. Sci. USA 89, 7929-7933]. This conclusion has been incorporated into a model that further suggests that in its high potential form the cytochrome primarily acts to protect against donor side photoinhibition due to increased lifetime of highly oxidized species as previously proposed by Thompson and Brudvig [Thompson, L. & Brudvig, G. W. (1988) Biochemistry 27, 6653-6658]. The particular feature of our scheme is that it incorporates reversible interconversion between the two redox forms so as to protect against either type of photoinhibition.
Collapse
Affiliation(s)
- J Barber
- Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | |
Collapse
|
27
|
Krishtalik LI, Tae GS, Cherepanov DA, Cramer WA. The redox properties of cytochromes b imposed by the membrane electrostatic environment. Biophys J 1993; 65:184-95. [PMID: 8396453 PMCID: PMC1225714 DOI: 10.1016/s0006-3495(93)81050-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effect of the dipole potential field of extended membrane spanning alpha-helices on the redox potentials of b cytochromes in energy transducing membranes has been calculated in the context of a three phase model for the membrane. In this model, the membrane contains three dielectric layers; (i) a 40-A hydrophobic membrane bilayer, with dielectric constant em = 3-4, (ii) 10-20-A interfacial layers of intermediate polarity, ein = 12-20, that consist of lipid polar head groups and peripheral protein segments, and (iii) an external infinite water medium, ew = 80. The unusually positive midpoint potential, Em = +0.4 V, of the "high potential" cytochrome b-559 of oxygenic photosynthetic membranes, a previously enigmatic property of this cytochrome, can be explained by (i) the position of the heme in the positive dipole potential region near the NH2 termini of the two parallel helices that provide its histidine ligands, and (ii) the loss of solvation energy of the heme ion due to the low dielectric constant of its surroundings, leading to an estimate of +0.31 to +0.37 V for the cytochrome Em. The known tendency of this cytochrome to undergo a large -delta Em shift upon exposure of thylakoid membranes to proteases or damaging treatments is explained by disruption of the intermediate polarity (ein) surface dielectric layer and the resulting contact of the heme with the external water medium. Application of this model to the two hemes (bn and bp) of cytochrome b of the cytochrome bc1 complex, with the two hemes placed symmetrically in the low dielectric (em) membrane bilayer, results in Em values of hemes bn and bp that are, respectively, somewhat too negative (approximately -0.1 V), and much too positive (approximately +0.3 V), leading to a potential difference, Em(bp) - Em(bn), with the wrong sign and magnitude, +0.25 V instead of -0.10 to -0.15 V. The heme potentials can only be approximately reconciled with experiment, if it is assumed that the two hemes are in different dielectric environments, with that of heme bp being more polar.
Collapse
Affiliation(s)
- L I Krishtalik
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | | | | |
Collapse
|
28
|
Ghirardi M, Mahajan S, Sopory S, Edelman M, Mattoo A. Photosystem II reaction center particle from Spirodela stroma lamellae. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53328-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Taniguchi M, Kuroda H, Satoh K. ATP-dependent protein synthesis in isolated pea chloroplasts. Evidence for accumulation of a translation intermediate of the D1 protein. FEBS Lett 1993; 317:57-61. [PMID: 8428635 DOI: 10.1016/0014-5793(93)81491-h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the presence of externally added ATP, in the dark, isolated pea chloroplasts accumulate two proteins of molecular masses of about 22 and 24 kDa which precipitate with specific antibodies raised against the D1 protein. By chasing in the light, these proteins disappeared on the fluorogram concomitant with the appearance of the precursor- and mature-sized D1 proteins. Polysome analysis indicated that the 22-kDa component is associated with membrane-bound ribosomes and is thus ascribed to a translation intermediate of the D1 protein. On the other hand, the 24-kDa component could not be found in the polysome fraction under the experimental condition used, suggesting the possibility that this component is a degradation product of the D1 protein. The conclusion from this analysis is that the synthesis and/or stable accumulation of the D1 protein requires factor(s) caused by illumination, in addition to ATP, in isolated pea chloroplasts.
Collapse
Affiliation(s)
- M Taniguchi
- Department of Biology, Faculty of Science, Okayama University, Japan
| | | | | |
Collapse
|
30
|
Whitmarsh J, Eckert HJ, Schöneich C, Renger G. Functional size of Photosystem II determined by radiation inactivation. PHOTOSYNTHESIS RESEARCH 1993; 38:363-368. [PMID: 24317991 DOI: 10.1007/bf00046762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/1993] [Accepted: 07/29/1993] [Indexed: 06/02/2023]
Abstract
The functional size of Photosystem II (PS II) was investigated by radiation inactivation. The technique provides an estimate of the functional mass required for a specific reaction and depends on irradiating samples with high energy γ-rays and assaying the remaining activity. The analysis is based on target theory that has been modified to take into account the temperature dependence of radiation inactivation of proteins. Using PS II enriched membranes isolated from spinach we determined the functional size of primary charge separation coupled to water oxidation and quinone reduction at the QB site: H2O → (Mn)4 → Yz → P680 → Pheophytin → Q → phenyl-p-benzoquinone. Radiation inactivation analysis indicates a functional mass of 88 ± 12 kDa for electron transfer from water to phenyl-p-benzoquinone. It is likely that the reaction center heterodimer polypeptides, D1 and D2, contribute approximately 70 kDa to the functional mass, in which case polypeptides adding up to approximately 20 kDa remain to be identified. Likely candidates are the α and β subunits of cytochrome b 559and the 4.5 kDa psbI gene product.
Collapse
Affiliation(s)
- J Whitmarsh
- Max-Volmer-Institut für Biophysikalische and Physikalische Chemie der Technischen Universität, Berlin, Germany
| | | | | | | |
Collapse
|
31
|
Gleiter HM, Haag E, Inoue Y, Renger G. Functional characterisation of a purified homogeneous Photosystem II core complex with high oxygen evolution capacity from spinach. PHOTOSYNTHESIS RESEARCH 1993; 35:41-53. [PMID: 24318619 DOI: 10.1007/bf02185410] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/1992] [Accepted: 07/23/1992] [Indexed: 06/02/2023]
Abstract
The functional properties of a purified homogeneous spinach PS II-core complex with high oxygen evolution capacity (Haag et al. 1990a) were investigated in detail by measuring thermoluminescence and oscillation patterns of flash induced oxygen evolution and fluorescence quantum yield changes. The following results were obtained: a) Depending on the illumination conditions the PS II-core complexes exhibit several thermoluminescence bands corresponding to the A band, Q band and Zv band in PS II membrane fragments. The lifetime of the Q band (Tmax=10°C) was determined to be 8s at T=10°C. No B band corresponding to S2QB (-) or S3QB (-) recombination could be detected. b) The flash induced transient fluorescence quantum yield changes exhibit a multiphasi relaxation kinetics shich reflect the reoxidation of Q A (-) . In control samples without exogenous acceptors this process is markedly slower than in PS II membrane fragments. The reaction becomes significantly retarded by addition of 10 μM DCMU. After dark incubation in the presence of K3[Fe(CN)6 c) Excitation of dark-adapted samples with a train of short saturating flashes gives rise to a typical pattern dominated by a high O2 yield due to the third flash and a highly damped period four oscillation. The decay of redox states S2 and S3 are dominated by short life times of 4.3 s and 1.5 s, respectively, at 20°C. The results of the present study reveal that in purified homogeneous PS II-core complexes with high oxygen evolution isolated from higher plants by β-dodecylmaltoside solubilization the thermodynamic properties and the kinetic parameters of the redox groups leading to electron transfer from water to QA are well preserved. The most obvious phenomenon is a severe modification of the QB binding site. The implications of this finding are discussed.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer-Institute for Biophysical Chemistry, Technical University Berlin, 1000, Berlin 12, Germany
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- P Horton
- Robert Hill Institute, Department of Molecular Biology & Biotechnology, University of Sheffield, Firth Court, PO Box 594, S10 2UH, Sheffield, UK
| | | |
Collapse
|
33
|
Debus RJ. The manganese and calcium ions of photosynthetic oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:269-352. [PMID: 1390827 DOI: 10.1016/0005-2728(92)90133-m] [Citation(s) in RCA: 970] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California Riverside 92521-0129
| |
Collapse
|
34
|
Maciy K, Renger G, Haag E, Voigt J. Light-induced degradation of PS II reaction centres analyzed by measurements of steady-state fluorescence spectra in D1/D2/cytochrome b-559 preparations from spinach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90067-c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Whitelegge JP, Jewess P, Pickering MG, Gerrish C, Camilleri P, Bowyer JR. Sequence analysis of photoaffinity-labelled peptides derived by proteolysis of photosystem-2 reaction centres from thylakoid membranes treated with [14C]azidoatrazine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:1077-84. [PMID: 1499553 DOI: 10.1111/j.1432-1033.1992.tb17144.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photosystem-2 reaction centres were prepared from pea thylakoid membranes that had been photoaffinity labelled with [14C]-azidoatrazine (2-azido-4-ethylamino-6-isopropylamino-s-triazine), a derivative of the herbicide atrazine which binds to the secondary plastoquinone electron-acceptor site of photosystem 2. SDS/PAGE of the 14C-labelled reaction centres followed by fluorography revealed photoaffinity-labelled proteins of apparent molecular masses 30 kDa and 55 kDa, which corresponded to the D1 polypeptide and to an SDS-stable heterodimer of the D1 and D2 polypeptides, respectively. To obtain sequence information on the site of photoaffinity labelling, an 8-kDa photoaffinity-labelled peptide, generated by proteolysis of the reaction-centre material with trypsin, was isolated and purified to apparent homogeneity using reverse-phase and size-exclusion HPLC techniques. The amino terminus of the photoaffinity-labelled peptide was determined to be Leu-Gly-Met-Arg-Pro-Xaa-Ile-Ala-Val-Ala-Tyr by Edman sequencing. This corresponds to the amino terminus of a predicted tryptic peptide of D1 and confirms that azidoatrazine photolabels the D1 polypeptide of photosystem 2 in the region Leu137-Arg225. Chymotrypsin/trypsin digestion of photoaffinity-labelled reaction centres followed by reverse-phase HPLC was used to isolate a smaller photoaffinity-labelled peptide. On Edman sequencing, Ser-Ala were identified as the first two residues and 14C was released on the third cycle, after which further degradation was blocked. The two potential peptide fragments with Ser-Ala at the amino terminus in the region Leu137-Arg225 are Ser148-Ala-Pro and Ser212-Ala-Met. Proline is an unlikely target for reaction with the nitrene of the photoactivated azidoatrazine, and the data are thus consistent with Met214 as the site of photoaffinity labelling on D1 when thylakoid membranes are illuminated with ultraviolet irradiation in the presence of [14C]azidoatrazine.
Collapse
Affiliation(s)
- J P Whitelegge
- Department of Biochemistry, Royal Holloway and Bedford New College, University of London, Surrey, England
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Rigoni F, Barbato R, Friso G, Giacometti GM. Evidence for direct interaction between the chlorophyll-proteins CP29 and CP47 in photosystem II. Biochem Biophys Res Commun 1992; 184:1094-100. [PMID: 1575729 DOI: 10.1016/0006-291x(92)90704-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fractionation by anionic-exchange chromatography of an oxygen-evolving photosystem II complex solubilized with 10 mM dodecyl maltoside shows the existence of a sovra-molecular complex between the internal chlorophyll a antenna CP47 and the chlorophyll a/b minor antenna CP29. The chromatographic result is confirmed by a cross-linking experiment which brings about a binary conjugate formed by CP47 and CP29. The sovra-molecular complex between the two chlorophyll protein-complexes has a low temperature fluorescence emission red shifted with respect to the two isolated antenna components. A possible two arms antenna topology for photosystem II is suggested.
Collapse
Affiliation(s)
- F Rigoni
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | |
Collapse
|
38
|
Shukla VK, Stanbekova GE, Shestakov SV, Pakrasi HB. The D1 protein of the photosystem II reaction-centre complex accumulates in the absence of D2: analysis of a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking cytochrome b559. Mol Microbiol 1992; 6:947-56. [PMID: 1602969 DOI: 10.1111/j.1365-2958.1992.tb01544.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reaction center core of photosystem II, a multiprotein membrane bound complex, is composed of a heterodimer of two proteins, D1 and D2. A random mutagenesis technique was used to isolate a photosystem II deficient mutant, CP6t16, of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Nucleotide sequence analysis showed that the primary lesion in CP6t16 is an ochre mutation introducing a translational stop codon in the psbE gene, encoding the alpha-subunit of cytochrome b559, an integral component of the PSII complex. Analysis of the protein composition of CP6t16 thylakoid membranes isolated in the presence of serine protease inhibitors revealed that, in the absence of cytochrome b559, the D2 protein is also absent. However, the D1 protein is stably incorporated in these membranes, suggesting that the synthesis and integration of D1 are independent of those of D2 and cytochrome b559.
Collapse
Affiliation(s)
- V K Shukla
- Department of Biology, Washington University, St Louis, Missouri 63130-4899
| | | | | | | |
Collapse
|
39
|
Preparation and characterisation of Photosystem II core particles with and without bound bicarbonate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80123-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|