1
|
Tüting C, Iacobucci C, Ihling CH, Kastritis PL, Sinz A. Structural analysis of 70S ribosomes by cross-linking/mass spectrometry reveals conformational plasticity. Sci Rep 2020; 10:12618. [PMID: 32724211 PMCID: PMC7387497 DOI: 10.1038/s41598-020-69313-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
The ribosome is not only a highly complex molecular machine that translates the genetic information into proteins, but also an exceptional specimen for testing and optimizing cross-linking/mass spectrometry (XL-MS) workflows. Due to its high abundance, ribosomal proteins are frequently identified in proteome-wide XL-MS studies of cells or cell extracts. Here, we performed in-depth cross-linking of the E. coli ribosome using the amine-reactive cross-linker disuccinimidyl diacetic urea (DSAU). We analyzed 143 E. coli ribosomal structures, mapping a total of 10,771 intramolecular distances for 126 cross-link-pairs and 3,405 intermolecular distances for 97 protein pairs. Remarkably, 44% of intermolecular cross-links covered regions that have not been resolved in any high-resolution E. coli ribosome structure and point to a plasticity of cross-linked regions. We systematically characterized all cross-links and discovered flexible regions, conformational changes, and stoichiometric variations in bound ribosomal proteins, and ultimately remodeled 2,057 residues (15,794 atoms) in total. Our working model explains more than 95% of all cross-links, resulting in an optimized E. coli ribosome structure based on the cross-linking data obtained. Our study might serve as benchmark for conducting biochemical experiments on newly modeled protein regions, guided by XL-MS. Data are available via ProteomeXchange with identifier PXD018935.
Collapse
Affiliation(s)
- Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
- Corporate Preclinical R&D, Analytics and Early Formulations Department, CHIESI FARMACEUTICI S.P.A., Via Palermo 26/A, 43122, Parma, Italy
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
- Center for Structural Mass Spectrometry, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany.
- Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120, Halle/Saale, Germany.
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
- Center for Structural Mass Spectrometry, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle/Saale, Germany.
| |
Collapse
|
2
|
Abstract
The large ribosomal subunit has a distinct feature, the stalk, extending outside the ribosome. In bacteria it is called the L12 stalk. The base of the stalk is protein uL10 to which two or three dimers of proteins bL12 bind. In archea and eukarya P1 and P2 proteins constitute the stalk. All these extending proteins, that have a high degree of flexibility due to a hinge between their N- and C-terminal parts, are essential for proper functionalization of some of the translation factors. The role of the stalk proteins has remained enigmatic for decades but is gradually approaching an understanding. In this review we summarise the knowhow about the structure and function of the ribosomal stalk till date starting from the early phase of ribosome research.
Collapse
|
3
|
Mitroshin IV, Garber MB, Gabdulkhakov AG. Investigation of Structure of the Ribosomal L12/P Stalk. BIOCHEMISTRY (MOSCOW) 2017; 81:1589-1601. [PMID: 28260486 DOI: 10.1134/s0006297916130022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review contains recent data on the structure of the functionally important ribosomal domain, L12/P stalk, of the large ribosomal subunit. It is the most mobile site of the ribosome; it has been found in ribosomes of all living cells, and it is involved in the interaction between ribosomes and translation factors. The difference between the structures of the ribosomal proteins forming this protuberance (despite their general resemblance) determines the specificity of interaction between eukaryotic and prokaryotic ribosomes and the respective protein factors of translation. In this review, works on the structures of ribosomal proteins forming the L12/P-stalk in bacteria, archaea, and eukaryotes and data on structural aspects of interactions between these proteins and rRNA are described in detail.
Collapse
Affiliation(s)
- I V Mitroshin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
4
|
Functional Importance of Mobile Ribosomal Proteins. BIOMED RESEARCH INTERNATIONAL 2015; 2015:539238. [PMID: 26457300 PMCID: PMC4592705 DOI: 10.1155/2015/539238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/12/2015] [Indexed: 01/07/2023]
Abstract
Although the dynamic motions and peptidyl transferase activity seem to be embedded in the rRNAs, the ribosome contains more than 50 ribosomal proteins (r-proteins), whose functions remain largely elusive. Also, the precise forms of some of these r-proteins, as being part of the ribosome, are not structurally solved due to their high flexibility, which hinders the efforts in their functional elucidation. Owing to recent advances in cryo-electron microscopy, single-molecule techniques, and theoretical modeling, much has been learned about the dynamics of these r-proteins. Surprisingly, allosteric regulations have been found in between spatially separated components as distant as those in the opposite sides of the ribosome. Here, we focus on the functional roles and intricate regulations of the mobile L1 and L12 stalks and L9 and S1 proteins. Conformational flexibility also enables versatile functions for r-proteins beyond translation. The arrangement of r-proteins may be under evolutionary pressure that fine-tunes mass distributions for optimal structural dynamics and catalytic activity of the ribosome.
Collapse
|
5
|
Fuzzy complexes: Specific binding without complete folding. FEBS Lett 2015; 589:2533-42. [PMID: 26226339 DOI: 10.1016/j.febslet.2015.07.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/17/2022]
Abstract
Specific molecular recognition is assumed to require a well-defined set of contacts and devoid of conformational and interaction ambiguities. Growing experimental evidence demonstrates however, that structural multiplicity or dynamic disorder can be retained in protein complexes, termed as fuzziness. Fuzzy regions establish alternative contacts between specific partners usually via transient interactions. Nature often tailors the dynamic properties of these segments via post-translational modifications or alternative splicing to fine-tune affinity. Most experimentally characterized fuzzy complexes are involved in regulation of gene-expression, signal transduction and cell-cycle regulation. Fuzziness is also characteristic to viral protein complexes, cytoskeleton structure, and surprisingly in a few metabolic enzymes. A plausible role of fuzzy complexes in increasing half-life of intrinsically disordered proteins is also discussed.
Collapse
|
6
|
Deroo S, Hyung SJ, Marcoux J, Gordiyenko Y, Koripella RK, Sanyal S, Robinson CV. Mechanism and rates of exchange of L7/L12 between ribosomes and the effects of binding EF-G. ACS Chem Biol 2012; 7:1120-7. [PMID: 22489843 PMCID: PMC4058753 DOI: 10.1021/cb300081s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ribosomal stalk complex binds and recruits translation factors to the ribosome during protein biosynthesis. In Escherichia coli the stalk is composed of protein L10 and four copies of L7/L12. Despite the crucial role of the stalk, mechanistic details of L7/L12 subunit exchange are not established. By incubating isotopically labeled intact ribosomes with their unlabeled counterparts we monitored the exchange of the labile stalk proteins by recording mass spectra as a function of time. On the basis of kinetic analysis, we proposed a mechanism whereby exchange proceeds via L7/L12 monomers and dimers. We also compared exchange of L7/L12 from free ribosomes with exchange from ribosomes in complex with elongation factor G (EF-G), trapped in the posttranslocational state by fusidic acid. Results showed that binding of EF-G reduces the L7/L12 exchange reaction of monomers by ~27% and of dimers by ~47% compared with exchange from free ribosomes. This is consistent with a model in which binding of EF-G does not modify interactions between the L7/L12 monomers but rather one of the four monomers, and as a result one of the two dimers, become anchored to the ribosome-EF-G complex preventing their free exchange. Overall therefore our results not only provide mechanistic insight into the exchange of L7/L12 monomers and dimers and the effects of EF-G binding but also have implications for modulating stability in response to environmental and functional stimuli within the cell.
Collapse
Affiliation(s)
- Stéphanie Deroo
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Suk-Joon Hyung
- University of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA
| | - Julien Marcoux
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Yuliya Gordiyenko
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Ravi Kiran Koripella
- Uppsala University, Department of Cell and Molecular Biology, BMC, Box-596, S-75 124 Uppsala, Sweden
| | - Suparna Sanyal
- Uppsala University, Department of Cell and Molecular Biology, BMC, Box-596, S-75 124 Uppsala, Sweden
| | - Carol V. Robinson
- University of Oxford, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
7
|
Fuxreiter M, Tompa P. Fuzzy Complexes: A More Stochastic View of Protein Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:1-14. [DOI: 10.1007/978-1-4614-0659-4_1] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Affiliation(s)
- Monika Fuxreiter
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
9
|
Soung GY, Miller JL, Koc H, Koc EC. Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes. J Proteome Res 2009; 8:3390-402. [PMID: 19469554 DOI: 10.1021/pr900042e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in 24 Escherichia coli ribosomal proteins by tandem mass spectrometry. Detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining, and antibodies for phospho-Ser, Thr, and Tyr; or by mass spectrometry equipped with a capability to detect addition and loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, and L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given phosphorylation sites in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins.
Collapse
Affiliation(s)
- George Y Soung
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
10
|
Mulder FAA, Bouakaz L, Lundell A, Venkataramana M, Liljas A, Akke M, Sanyal S. Conformation and Dynamics of Ribosomal Stalk Protein L12 in Solution and on the Ribosome. Biochemistry 2004; 43:5930-6. [PMID: 15147176 DOI: 10.1021/bi0495331] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During translation, the ribosome and several of its constituent proteins undergo structural transitions between different functional states. Protein L12, present in four copies in prokaryotic ribosomes, forms a flexible "stalk" with key functions in factor-dependent GTP hydrolysis during translocation. Here we have used heteronuclear NMR spectroscopy to characterize L12 conformation and dynamics in solution and on the ribosome. Isolated L12 forms a symmetric dimer mediated by the N-terminal domains (NTDs), to which each C-terminal domain (CTD) is connected via an unstructured hinge segment. The overall structure can be described as three ellipsoids joined by flexible linkers. No persistent contacts are seen between the two CTDs, or between the NTD and CTD in the L12 dimer in solution. In the (1)H-(15)N HSQC spectrum of the Escherichia coli 70S ribosome, a single set of cross-peaks are observed for residues 40-120 of L12, the intensities of which correspond to only two of four protein copies. The structure of the CTDs observed on the ribosome is indistinguishable from that of isolated L12. These results indicate that two CTDs with identical average structures are mobile and extend away from the ribosome, while the other two copies most likely interact tightly with the ribosome even in the absence of translational factors.
Collapse
Affiliation(s)
- Frans A A Mulder
- Department of Biophysical Chemistry, Lund University, Box 124, SE-22100 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
11
|
Bocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT, Arseniev AS. From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J Biol Chem 2004; 279:17697-706. [PMID: 14960595 DOI: 10.1074/jbc.m313384200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on the (1)H-(15)N NMR spectroscopy data, the three-dimensional structure and internal dynamic properties of ribosomal protein L7 from Escherichia coli were derived. The structure of L7 dimer in solution can be described as a set of three distinct domains, tumbling rather independently and linked via flexible hinge regions. The dimeric N-terminal domain (residues 1-32) consists of two antiparallel alpha-alpha-hairpins forming a symmetrical four-helical bundle, whereas the two identical C-terminal domains (residues 52-120) adopt a compact alpha/beta-fold. There is an indirect evidence of the existence of transitory helical structures at least in the first part (residues 33-43) of the hinge region. Combining structural data for the ribosomal protein L7/L12 from NMR spectroscopy and x-ray crystallography, it was suggested that its hinge region acts as a molecular switch, initiating "ratchet-like" motions of the L7/L12 stalk with respect to the ribosomal surface in response to elongation factor binding and GTP hydrolysis. This hypothesis allows an explanation of events observed during the translation cycle and provides useful insights into the role of protein L7/L12 in the functioning of the ribosome.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | | | | | | | | | | | | |
Collapse
|
12
|
Bocharov EV, Gudkov AT, Budovskaya EV, Arseniev AS. Conformational independence of N- and C-domains in ribosomal protein L7/L12 and in the complex with protein L10. FEBS Lett 1998; 423:347-50. [PMID: 9515737 DOI: 10.1016/s0014-5793(98)00121-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isolated N- (1-37) and C-terminal (47-120) fragments of L7 protein, and pentameric (L7)4L10 complex were studied by NMR spectroscopy in solution. The results indicate that the dimer state of the 1-37 fragment with a helical hairpin conformation is identical to the N-terminal structure of the intact L7 dimer. The C-terminal domain of the L7 protein does not participate in (L7)4L10 complex formation. The overall motions of the L7 C-domains are essentially independent both in the L7 dimer and in the (L7)4L10 complex. Conformational motions on a millisecond time scale are detected in the (L7)4L10 complex. The possible relevance of these motions to the biological function of L7/L12 is discussed.
Collapse
Affiliation(s)
- E V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | | | | | |
Collapse
|
13
|
Wiggers RJ, Hadian H, Traut RR, Oleinikov AV, Glitz DG. Localization of two domains of a mutant form of Escherichia coli protein L7/L12 that binds the large ribosomal subunit as a single dimer. Biochimie 1997; 79:365-72. [PMID: 9310186 DOI: 10.1016/s0300-9084(97)80031-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Escherichia coli ribosomal protein L7/L12 occurs on the large subunit as two dimers: one dimer is extended and comprises the stalk, while the second dimer is folded and occupies a site on the subunit body. A variant protein, in which all 18 amino acids of the flexible hinge region that links separate N-terminal and C-terminal domains of L7/L12 has been deleted, binds the subunit as a single dimer and does not generate stalks that are visible in electron micrographs. Monoclonal antibodies directed against each domain of the protein have been used to localize the variant in electron micrographs of 50S subunits. Both C-terminal domains are seen at a shoulder of the subunit, near its edge as viewed in the most common quasisymmetric projection. N-terminal domains are placed on the subunit body, about 50 A from the C-terminal domains. The antibody to the N-terminal domain also causes dissociation of the variant dimer from the particle and the formation of oligomeric antibody-protein dimer complexes. Similar complexes were seen previously (Olson HM et al (1986) J Biol Chem 261, 6924-6936) when this antibody induced dissociation of one dimer of the native protein. We conclude that the shortened variant most probably occupies the lower-affinity site on the subunit that is normally filled by the stalk dimer.
Collapse
Affiliation(s)
- R J Wiggers
- Department of Biological Chemistry, UCLA School of Medicine, University of California, Los Angeles 90095-1737, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The L7/L12 protein forms a functionally important domain in the ribosome. This domain is involved in interaction with translation factors during protein biosynthesis. The tertiary and quaternary structure of the L7/L12 protein was established as a result of intensive studies in solution and in the ribosome. The conformational changes of L7/L12, the elongation factors Tu and G and other ribosomal proteins were traced by different experimental techniques. These changes occur upon interaction of the ribosome with the elongation factors and depend on GTP hydrolysis in accordance with the functional states of the ribosome.
Collapse
Affiliation(s)
- A T Gudkov
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region.
| |
Collapse
|
15
|
Gudkov AT, Budovskaya EV, Sherstobaeva NM. The first 37 residues are sufficient for dimerization of ribosomal L7/L12 protein. FEBS Lett 1995; 367:280-2. [PMID: 7607323 DOI: 10.1016/0014-5793(95)00564-p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ribosomal protein L7/L12 with the substitution of Cys38 for the Val38 residue was obtained and studied to test the orientation of polypeptide chains in the N-terminal region of the dimer. The results show that the L7/L12 dimer has a parallel (head-to-head) orientation of subunits and that its first 37 N-terminal residues are sufficient for dimerization.
Collapse
Affiliation(s)
- A T Gudkov
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region
| | | | | |
Collapse
|