1
|
Jost M, Wanke S. A comparative analysis of plastome evolution in autotrophic Piperales. AMERICAN JOURNAL OF BOTANY 2024; 111:e16300. [PMID: 38469876 DOI: 10.1002/ajb2.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
PREMISE Many plastomes of autotrophic Piperales have been reported to date, describing a variety of differences. Most studies focused only on a few species or a single genus, and extensive, comparative analyses have not been done. Here, we reviewed publicly available plastome reconstructions for autotrophic Piperales, reanalyzed publicly available raw data, and provided new sequence data for all previously missing genera. Comparative plastome genomics of >100 autotrophic Piperales were performed. METHODS We performed de novo assemblies to reconstruct the plastomes of newly generated sequence data. We used Sanger sequencing and read mapping to verify the assemblies and to bridge assembly gaps. Furthermore, we reconstructed the phylogenetic relationships as a foundation for comparative plastome genomics. RESULTS We identified a plethora of assembly and annotation issues in published plastome data, which, if unattended, will lead to an artificial increase of diversity. We were able to detect patterns of missing and incorrect feature annotation and determined that the inverted repeat (IR) boundaries were the major source for erroneous assembly. Accounting for the aforementioned issues, we discovered relatively stable junctions of the IRs and the small single-copy region (SSC), whereas the majority of plastome variations among Piperales stems from fluctuations of the boundaries of the IR and the large single-copy (LSC) region. CONCLUSIONS This study of all available plastomes of autotrophic Piperales, expanded by new data for previously missing genera, highlights the IR-LSC junctions as a potential marker for discrimination of various taxonomic levels. Our data indicates a pseudogene-like status for cemA and ycf15 in various Piperales. Based on a review of published data, we conclude that incorrect IR-SSC boundary identification is the major source for erroneous plastome assembly. We propose a gold standard for assembly and annotation of high-quality plastomes based on de novo assembly methods and appropriate references for gene annotation.
Collapse
Affiliation(s)
- Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Departamento de Botánica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
- Departamento de Botánica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Botanik und Molekulare Evolutionsforschung, Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Biodiversität, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Cao Q, Gao Q, Ma X, Zhang F, Xing R, Chi X, Chen S. Plastome structure, phylogenomics and evolution of plastid genes in Swertia (Gentianaceae) in the Qing-Tibetan Plateau. BMC PLANT BIOLOGY 2022; 22:195. [PMID: 35413790 PMCID: PMC9004202 DOI: 10.1186/s12870-022-03577-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/28/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The genus Swertia is of great medicinal importance and one of the most taxonomically challenging taxa within Gentianaceae, largely due to the morphological similarities of species within this genus and with its closely related genera. Previous molecular studies confirmed its polyphyly but suffered from low phylogenetic resolutions because only limited sequence loci were used. Thus, we conducted the structural, gene evolutionary, and phylogenetic analyses of 11 newly obtained plastomes of Swertia. Our result greatly improved the phylogenetic resolutions in Swertia, shed new light on the plastome evolution and phylogenetic relationships of this genus. RESULTS The 11 Swertia plastomes together with the published seven species proved highly similar in overall size, structure, gene order, and content, but revealed some structural variations caused by the expansion and contraction of the IRb region into the LSC region, due to the heterogeneous length of the ψycf1. The gene rps16 was found to be in a state flux with pseudogenes or completely lost. Similar situation was also documented in other genera of Gentianaceae. This might imply loss of the gene in the common ancestor of Gentianaceae. The distribution plot of ENC vs. GC3 showed all these plastomes arranging very close in the Wright line with an expected ENC value (49-52%), suggesting the codon usage of Swertia was mainly constrained by a GC mutation bias. Most of the genes remained under the purifying selection, however, the cemA was identified under positive selection, possibly reflecting an adaptive response to low CO2 atmospheric conditions during the Late Miocene. Our phylogenomic analyses, based on 74 protein-coding genes (CDS), supported the polyphyly of Swertia with its close allies in the subtribe Swertiinae, presumably due to recent rapid radiation. The topology inferred from our phylogenetic analyses partly supported the current taxonomic treatment. Finally, several highly variable loci were identified, which can be used in future phylogenetic studies and accurate identification of medicinal genuineness of Swertia. CONCLUSIONS Our study confirmed the polyphyly of Swertia and demonstrated the power of plastome phylogenomics in improvement of phylogenetic resolution, thus contributing to a better understanding of the evolutionary history of Swertia.
Collapse
Affiliation(s)
- Qian Cao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingbo Gao
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaolei Ma
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Faqi Zhang
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Rui Xing
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xiaofeng Chi
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shilong Chen
- Key Laboratory of Crop Molecular Breeding of Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
3
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
4
|
Trinh MDL, Hashimoto A, Kono M, Takaichi S, Nakahira Y, Masuda S. Lack of plastid-encoded Ycf10, a homolog of the nuclear-encoded DLDG1 and the cyanobacterial PxcA, enhances the induction of non-photochemical quenching in tobacco. PLANT DIRECT 2021; 5:e368. [PMID: 34938941 PMCID: PMC8671777 DOI: 10.1002/pld3.368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 05/05/2023]
Abstract
pH homeostasis in the chloroplast is crucial for the control of photosynthesis and other metabolic processes in plants. Recently, nuclear-encoded Day-Length-dependent Delayed Greening1 (DLDG1) and Fluctuating-Light Acclimation Protein1 (FLAP1) that are required for the light-inducible optimization of plastidial pH in Arabidopsis thaliana were identified. DLDG1 and FLAP1 homologs are specifically conserved in oxygenic phototrophs, and a DLDG1 homolog, Ycf10, is encoded in the chloroplast genome in plant cells. However, the function of Ycf10 and its physiological significance are unknown. To address this, we constructed ycf10 tobacco Nicotiana tabacum mutants and characterized their phenotypes. The ycf10 tobacco mutants grown under continuous-light conditions showed a pale-green phenotype only in developing leaves, and it was suppressed in short-day conditions. The ycf10 mutants also induced excessive non-photochemical quenching (NPQ) compared with those in the wild-type at the induction stage of photosynthesis. These phenotypes resemble those of Arabidopsis dldg1 mutants, suggesting that they have similar functions. However, there are distinct differences between the two mutant phenotypes: The highly induced NPQ in tobacco ycf10 and the Arabidopsis dldg1 mutants are diminished and enhanced, respectively, with increasing duration of the fluctuating actinic-light illumination. Ycf10 and DLDG1 were previously shown to localize in chloroplast envelope-membranes, suggesting that Ycf10 and DLDG1 differentially control H+ exchange across these membranes in a light-dependent manner to control photosynthesis.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Akira Hashimoto
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Masaru Kono
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Shinichi Takaichi
- Department of Molecular MicrobiologyTokyo University of AgricultureTokyoJapan
| | | | - Shinji Masuda
- Department of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
5
|
Barcytė D, Eikrem W, Engesmo A, Seoane S, Wohlmann J, Horák A, Yurchenko T, Eliáš M. Olisthodiscus represents a new class of Ochrophyta. JOURNAL OF PHYCOLOGY 2021; 57:1094-1118. [PMID: 33655496 DOI: 10.1111/jpy.13155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The phylogenetic diversity of Ochrophyta, a diverse and ecologically important radiation of algae, is still incompletely understood even at the level of the principal lineages. One taxon that has eluded simple classification is the marine flagellate genus Olisthodiscus. We investigated Olisthodiscus luteus K-0444 and documented its morphological and genetic differences from the NIES-15 strain, which we described as Olisthodiscus tomasii sp. nov. Phylogenetic analyses of combined 18S and 28S rRNA sequences confirmed that Olisthodiscus constitutes a separate, deep, ochrophyte lineage, but its position could not be resolved. To overcome this problem, we sequenced the plastid genome of O. luteus K-0444 and used the new data in multigene phylogenetic analyses, which suggested that Olisthodiscus is a sister lineage of the class Pinguiophyceae within a broader clade additionally including Chrysophyceae, Synchromophyceae, and Eustigmatophyceae. Surprisingly, the Olisthodiscus plastid genome contained three genes, ycf80, cysT, and cysW, inherited from the rhodophyte ancestor of the ochrophyte plastid yet lost from all other ochrophyte groups studied so far. Combined with nuclear genes for CysA and Sbp proteins, Olisthodiscus is the only known ochrophyte possessing a plastidial sulfate transporter SulT. In addition, the finding of a cemA gene in the Olisthodiscus plastid genome and an updated phylogenetic analysis ruled out the previously proposed hypothesis invoking horizontal cemA transfer from a green algal plastid into Synurales. Altogether, Olisthodiscus clearly represents a novel phylogenetically distinct ochrophyte lineage, which we have proposed as a new class, Olisthodiscophyceae.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Wenche Eikrem
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Natural history Museum, University of Oslo, P.O. Box 1172 Blindern, 0318, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Anette Engesmo
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Sergio Seoane
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Aleš Horák
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| |
Collapse
|
6
|
Ping J, Feng P, Li J, Zhang R, Su Y, Wang T. Molecular evolution and SSRs analysis based on the chloroplast genome of Callitropsis funebris. Ecol Evol 2021; 11:4786-4802. [PMID: 33976848 PMCID: PMC8093713 DOI: 10.1002/ece3.7381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroplast genome sequences have been used to understand evolutionary events and to infer efficiently phylogenetic relationships. Callitropsis funebris (Cupressaceae) is an endemic species in China. Its phylogenetic position is controversial due to morphological characters similar to those of Cupressus, Callitropsis, and Chamaecyparis. This study used next-generation sequencing technology to sequence the complete chloroplast genome of Ca. funebris and then constructed the phylogenetic relationship between Ca. funebris and its related species based on a variety of data sets and methods. Simple sequence repeats (SSRs) and adaptive evolution analysis were also conducted. Our results showed that the monophyletic branch consisting of Ca. funebris and Cupressus tonkinensis is a sister to Cupressus, while Callitropsis is not monophyletic; Ca. nootkatensis and Ca. vietnamensis are nested in turn at the base of the monophyletic group Hesperocyparis. The statistical results of SSRs supported the closest relationship between Ca. funebris and Cupressus. By performing adaptive evolution analysis under the phylogenetic background of Cupressales, the Branch model detected three genes and the Site model detected 10 genes under positive selection; and the Branch-Site model uncovered that rpoA has experienced positive selection in the Ca. funebries branch. Molecular analysis from the chloroplast genome highly supported that Ca. funebris is at the base of Cupressus. Of note, SSR features were found to be able to shed some light on phylogenetic relationships. In short, this chloroplast genomic study has provided new insights into the phylogeny of Ca. funebris and revealed multiple chloroplast genes possibly undergoing adaptive evolution.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Peipei Feng
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Rongjing Zhang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
7
|
Qian S, Zhang Y, Lee SY. Comparative Analysis of Complete Chloroplast Genome Sequences in Edgeworthia (Thymelaeaceae) and New Insights Into Phylogenetic Relationships. Front Genet 2021; 12:643552. [PMID: 33790948 PMCID: PMC8006312 DOI: 10.3389/fgene.2021.643552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
The complete chloroplast genomes of three species of Edgeworthia namely, Edgeworthia albiflora, Edgeworthia chrysantha, and Edgeworthia gardneri (Thymelaeaceae), are reported and characterized. The chloroplast genomes displayed a typical quadripartite structure with conserved genome arrangement and specific divergence. The genomes ranged in length from 172,708 to 173,621 bp and displayed similar GC content of 36.5–36.7%. A total of 138–139 genes were predicted, including 92–93 protein-coding, 38 tRNAs and eight rRNAs genes. Variation in the number of short simple repeats and inverted region boundaries of the three cp genomes were observed. A mutational hotspot was detected along the nucleotide sequence from the ndhF to the trnL-UAG genes. The chloroplast genome-based and internal transcribed spacer (ITS)-based phylogenetic analyses using maximum-likelihood (ML) and Bayesian inference (BI) revealed that E. albiflora diverged before E. chrysantha and E. gardneri and placed the Edgeworthia clade at the base of the Eurasian Daphne group with strong bootstrap support. With an effective taxonomic treatment of the species of Edgeworthia, further molecular analyses of their intra- and interspecific genetic variation are inclined to support the treatment of E. albiflora and E. gardneri as two natural groups. The genetic information obtained from this study will provide valuable genomic resources for the identification of additional species and for deducing the phylogenetic evolution of Edgeworthia.
Collapse
Affiliation(s)
- Shaojuan Qian
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yonghong Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Shiou Yih Lee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Abstract
The plastid genome (plastome ) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy, and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations is allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter, we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and the tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Robert K Jansen
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Chen Y, Zhong H, Zhu Y, Huang Y, Wu S, Liu Z, Lan S, Zhai J. Plastome structure and adaptive evolution of Calanthe s.l. species. PeerJ 2020; 8:e10051. [PMID: 33083127 PMCID: PMC7566753 DOI: 10.7717/peerj.10051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Calanthe s.l. is the most diverse group in the tribe Collabieae (Orchidaceae), which are pantropical in distribution. Illumina sequencing followed by de novo assembly was used in this study, and the plastid genetic information of Calanthe s.l. was used to investigate the adaptive evolution of this taxon. Herein, the complete plastome of five Calanthe s.l. species (Calanthe davidii, Styloglossum lyroglossa, Preptanthe rubens, Cephalantheropsis obcordata, and Phaius tankervilliae) were determined, and the two other published plastome sequences of Calanthe s.l. were added for comparative analyses to examine the evolutionary pattern of the plastome in the alliance. The seven plastomes ranged from 150,181 bp (C. delavayi) to 159,014 bp (C. davidii) in length and were all mapped as circular structures. Except for the three ndh genes (ndhC, ndhF, and ndhK) lost in C. delavayi, the remaining six species contain identical gene orders and numbers (115 gene). Nucleotide diversity was detected across the plastomes, and we screened 14 mutational hotspot regions, including 12 non-coding regions and two gene regions. For the adaptive evolution investigation, three species showed positive selected genes compared with others, C. obcordata (cemA), S. lyroglossa (infA, ycf1 and ycf2) and C. delavayi (nad6 and ndhB). Six genes were under site-specific positive selection in Calanthe s.l., namely, accD, ndhB, ndhD, rpoC2, ycf1, and ycf2, most of which are involved in photosynthesis. These results, including the new plastomes, provide resources for the comparative plastome, breeding, and plastid genetic engineering of orchids and flowering plants.
Collapse
Affiliation(s)
- Yanqiong Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Zhong
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yating Zhu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhen Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junwen Zhai
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.,Fujian Ornamental Plant Germplasm Resources Innovation & Engineering Application Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Implications of plastome evolution in the true lilies (monocot order Liliales). Mol Phylogenet Evol 2020; 148:106818. [PMID: 32294543 DOI: 10.1016/j.ympev.2020.106818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 01/30/2023]
Abstract
The families of the monocot order Liliales exhibit highly contrasting characteristic of photosynthetic and mycoheterotrophic life histories. Although previous phylogenetic and morphological studies of Liliales have been conducted, they have not examined molecular evolution associated with this contrasting phenomenon. Here, we conduct the first comparative plastome study of all ten families of Liliales using 29 newly sequenced plastid genomes analyzed together with previously published data. We also present a phylogenetic analysis for Liliales of 78 plastid genes combined with 22 genes from all three genomes (nuclear 18S rDNA and phyC; 17 plastid genes; and mitochondrial matR, atpA, and cob). Within the newly generated phylogenetic tree of Liliales, we evaluate the ancestral state changes of selected morphological traits in the order. There are no significant differences in plastid genome features among species that show divergent characteristics correlated with family circumscriptions. However, the results clearly differentiate between photosynthetic and mycoheterotrophic taxa of Liliales in terms of genome structure, and gene content and order. The newly sequenced plastid genomes and combined three-genome data revealed Smilacaceae as sister to Liliaceae instead of Philesiaceae and Ripogonaceae. Additionally, we propose a revised familial classification system of Liliales that consists of nine families, considering Ripogonaceae a synonym of Philesiaceae. The ancestral state reconstruction indicated synapomorphies for each family of Liliales, except Liliaceae, Melanthiaceae and Colchicaceae. A taxonomic key for all nine families of Liliales is also provided.
Collapse
|
11
|
Harada K, Arizono T, Sato R, Trinh MDL, Hashimoto A, Kono M, Tsujii M, Uozumi N, Takaichi S, Masuda S. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. PLANT & CELL PHYSIOLOGY 2019; 60:2660-2671. [PMID: 31665522 DOI: 10.1101/731653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 05/24/2023]
Abstract
Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.
Collapse
Affiliation(s)
- Kyohei Harada
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takatoshi Arizono
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Ryoichi Sato
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Mai Duy Luu Trinh
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akira Hashimoto
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Shinji Masuda
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
12
|
Harada K, Arizono T, Sato R, Trinh MDL, Hashimoto A, Kono M, Tsujii M, Uozumi N, Takaichi S, Masuda S. DAY-LENGTH-DEPENDENT DELAYED-GREENING1, the Arabidopsis Homolog of the Cyanobacterial H+-Extrusion Protein, Is Essential for Chloroplast pH Regulation and Optimization of Non-Photochemical Quenching. PLANT & CELL PHYSIOLOGY 2019; 60:2660-2671. [PMID: 31665522 DOI: 10.1093/pcp/pcz203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/22/2019] [Indexed: 05/21/2023]
Abstract
Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.
Collapse
Affiliation(s)
- Kyohei Harada
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Takatoshi Arizono
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Ryoichi Sato
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Mai Duy Luu Trinh
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Akira Hashimoto
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Masaru Kono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579 Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Science, Tokyo University of Agriculture, Tokyo, 156-8502 Japan
| | - Shinji Masuda
- School of Life Science & Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
- Center for Biological Resources & Informatics, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| |
Collapse
|
13
|
Kim JI, Shin H, Škaloud P, Jung J, Yoon HS, Archibald JM, Shin W. Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evol Biol 2019; 19:20. [PMID: 30634905 PMCID: PMC6330437 DOI: 10.1186/s12862-018-1316-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyunmoon Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800, Prague 2, Czech Republic
| | - Jaehee Jung
- Department of General Education, Hongik University, Seoul, 04066, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
14
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
15
|
Rae BD, Long BM, Förster B, Nguyen ND, Velanis CN, Atkinson N, Hee WY, Mukherjee B, Price GD, McCormick AJ. Progress and challenges of engineering a biophysical CO2-concentrating mechanism into higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3717-3737. [PMID: 28444330 DOI: 10.1093/jxb/erx133] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.
Collapse
Affiliation(s)
- Benjamin D Rae
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Benedict M Long
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Britta Förster
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Nghiem D Nguyen
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Christos N Velanis
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nicky Atkinson
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Wei Yih Hee
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Bratati Mukherjee
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - G Dean Price
- Australian Research Council Centre of Excellence for Translational Photosynthesis
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton ACT 2601, Australia
| | - Alistair J McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
16
|
Uehara S, Adachi F, Ito-Inaba Y, Inaba T. Specific and Efficient Targeting of Cyanobacterial Bicarbonate Transporters to the Inner Envelope Membrane of Chloroplasts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:16. [PMID: 26870048 PMCID: PMC4735556 DOI: 10.3389/fpls.2016.00016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM) of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.
Collapse
Affiliation(s)
- Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| | - Fumi Adachi
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
- Organization for Promotion of Tenure Track, University of MiyazakiMiyazaki, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of MiyazakiMiyazaki, Japan
| |
Collapse
|
17
|
Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. Proc Natl Acad Sci U S A 2015; 112:E1678-87. [PMID: 25775549 DOI: 10.1073/pnas.1424655112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chloroplast genomes encode ∼ 37 proteins that integrate into the thylakoid membrane. The mechanisms that target these proteins to the membrane are largely unexplored. We used ribosome profiling to provide a comprehensive, high-resolution map of ribosome positions on chloroplast mRNAs in separated membrane and soluble fractions in maize seedlings. The results show that translation invariably initiates off the thylakoid membrane and that ribosomes synthesizing a subset of membrane proteins subsequently become attached to the membrane in a nuclease-resistant fashion. The transition from soluble to membrane-attached ribosomes occurs shortly after the first transmembrane segment in the nascent peptide has emerged from the ribosome. Membrane proteins whose translation terminates before emergence of a transmembrane segment are translated in the stroma and targeted to the membrane posttranslationally. These results indicate that the first transmembrane segment generally comprises the signal that links ribosomes to thylakoid membranes for cotranslational integration. The sole exception is cytochrome f, whose cleavable N-terminal cpSecA-dependent signal sequence engages the thylakoid membrane cotranslationally. The distinct behavior of ribosomes synthesizing the inner envelope protein CemA indicates that sorting signals for the thylakoid and envelope membranes are distinguished cotranslationally. In addition, the fractionation behavior of ribosomes in polycistronic transcription units encoding both membrane and soluble proteins adds to the evidence that the removal of upstream ORFs by RNA processing is not typically required for the translation of internal genes in polycistronic chloroplast mRNAs.
Collapse
|
18
|
Ions channels/transporters and chloroplast regulation. Cell Calcium 2014; 58:86-97. [PMID: 25454594 DOI: 10.1016/j.ceca.2014.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/01/2014] [Accepted: 10/04/2014] [Indexed: 12/28/2022]
Abstract
Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehensive view of the different machineries involved in ion trafficking and homeostasis in the chloroplast, and then discuss peculiar functions exerted by ions in the frame of photochemical conversion of absorbed light energy.
Collapse
|
19
|
Pengelly JJL, Förster B, von Caemmerer S, Badger MR, Price GD, Whitney SM. Transplastomic integration of a cyanobacterial bicarbonate transporter into tobacco chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3071-80. [PMID: 24965541 PMCID: PMC4071830 DOI: 10.1093/jxb/eru156] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Improving global yields of agricultural crops is a complex challenge with evidence indicating benefits in productivity are achieved by enhancing photosynthetic carbon assimilation. Towards improving rates of CO2 capture within leaf chloroplasts, this study shows the versatility of plastome transformation for expressing the Synechococcus PCC7002 BicA bicarbonate transporter within tobacco plastids. Fractionation of chloroplast membranes from transplastomic tob(BicA) lines showed that ~75% of the BicA localized to the thylakoid membranes and ~25% to the chloroplast envelope. BicA levels were highest in young emerging tob(BicA) leaves (0.12 μmol m(-2), ≈7mg m(-2)) accounting for ~0.1% (w/w) of the leaf protein. In these leaves, the molar amount of BicA was 16-fold lower than the abundant thylakoid photosystem II D1 protein (~1.9 μmol m(-2)) which was comparable to the 9:1 molar ratio of D1:BicA measured in air-grown Synechococcus PCC7002 cells. The BicA produced had no discernible effect on chloroplast ultrastructure, photosynthetic CO2-assimilation rates, carbon isotope discrimination, or growth of the tob(BicA) plants, implying that the bicarbonate transporter had little or no activity. These findings demonstrate the utility of plastome transformation for targeting bicarbonate transporter proteins into the chloroplast membranes without impeding growth or plastid ultrastructure. This study establishes the span of experimental measurements required to verify heterologous bicarbonate transporter function and location in chloroplasts and underscores the need for more detailed understanding of BicA structure and function to identify solutions for enabling its activation and operation in leaf chloroplasts.
Collapse
Affiliation(s)
- J J L Pengelly
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - B Förster
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - S von Caemmerer
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - M R Badger
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - G D Price
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - S M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
20
|
Abstract
The plastid genome (plastome) has proved a valuable source of data for evaluating evolutionary relationships among angiosperms. Through basic and applied approaches, plastid transformation technology offers the potential to understand and improve plant productivity, providing food, fiber, energy and medicines to meet the needs of a burgeoning global population. The growing genomic resources available to both phylogenetic and biotechnological investigations are allowing novel insights and expanding the scope of plastome research to encompass new species. In this chapter we present an overview of some of the seminal and contemporary research that has contributed to our current understanding of plastome evolution and attempt to highlight the relationship between evolutionary mechanisms and tools of plastid genetic engineering.
Collapse
Affiliation(s)
- Tracey A Ruhlman
- Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
21
|
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. PLANT MOLECULAR BIOLOGY 2011; 76:273-97. [PMID: 21424877 PMCID: PMC3104136 DOI: 10.1007/s11103-011-9762-4] [Citation(s) in RCA: 903] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 02/19/2011] [Indexed: 05/18/2023]
Abstract
This review bridges functional and evolutionary aspects of plastid chromosome architecture in land plants and their putative ancestors. We provide an overview on the structure and composition of the plastid genome of land plants as well as the functions of its genes in an explicit phylogenetic and evolutionary context. We will discuss the architecture of land plant plastid chromosomes, including gene content and synteny across land plants. Moreover, we will explore the functions and roles of plastid encoded genes in metabolism and their evolutionary importance regarding gene retention and conservation. We suggest that the slow mode at which the plastome typically evolves is likely to be influenced by a combination of different molecular mechanisms. These include the organization of plastid genes in operons, the usually uniparental mode of plastid inheritance, the activity of highly effective repair mechanisms as well as the rarity of plastid fusion. Nevertheless, structurally rearranged plastomes can be found in several unrelated lineages (e.g. ferns, Pinaceae, multiple angiosperm families). Rearrangements and gene losses seem to correlate with an unusual mode of plastid transmission, abundance of repeats, or a heterotrophic lifestyle (parasites or myco-heterotrophs). While only a few functional gene gains and more frequent gene losses have been inferred for land plants, the plastid Ndh complex is one example of multiple independent gene losses and will be discussed in detail. Patterns of ndh-gene loss and functional analyses indicate that these losses are usually found in plant groups with a certain degree of heterotrophy, might rendering plastid encoded Ndh1 subunits dispensable.
Collapse
Affiliation(s)
- Susann Wicke
- Department of Biogeography and Botanical Garden, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
22
|
Yang M, Zhang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, Al-Mssallem IS, Yu J. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 2010; 5:e12762. [PMID: 20856810 PMCID: PMC2939885 DOI: 10.1371/journal.pone.0012762] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 08/23/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Date palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms--the two other palms being oil palm and coconut tree--and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS After extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes--atpF, trnA-UGC, and rrn23. CONCLUSIONS Unlike most monocots, date palm has a typical cp genome similar to that of tobacco--with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts.
Collapse
Affiliation(s)
- Meng Yang
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Xiaowei Zhang
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Guiming Liu
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yuxin Yin
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Kaifu Chen
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Quanzheng Yun
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Duojun Zhao
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Ibrahim S. Al-Mssallem
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Department of Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Hssa, Hofuf, Kingdom of Saudi Arabia
| | - Jun Yu
- The Date Palm Genome Project (DPGP), King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
23
|
Moroney JV, Ynalvez RA. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2007; 6:1251-9. [PMID: 17557885 PMCID: PMC1951128 DOI: 10.1128/ec.00064-07] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- James V Moroney
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
24
|
Bock R. Structure, function, and inheritance of plastid genomes. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0223] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes. J Mol Evol 2006. [PMID: 16830097 DOI: 10.1007/s00239‐005‐0254‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
26
|
Kahlau S, Aspinall S, Gray JC, Bock R. Sequence of the Tomato Chloroplast DNA and Evolutionary Comparison of Solanaceous Plastid Genomes. J Mol Evol 2006; 63:194-207. [PMID: 16830097 DOI: 10.1007/s00239-005-0254-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Chromosome Mapping
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Evolution, Molecular
- Genes, Plant/genetics
- Genome, Plant/genetics
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Phylogeny
- Plastids/genetics
- RNA Editing/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Ribosomal Proteins/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Solanaceae/genetics
Collapse
Affiliation(s)
- Sabine Kahlau
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | | | | | | |
Collapse
|
27
|
Swiatek M, Greiner S, Kemp S, Drescher A, Koop HU, Herrmann RG, Maier RM. PCR analysis of pulsed-field gel electrophoresis-purified plastid DNA, a sensitive tool to judge the hetero-/homoplastomic status of plastid transformants. Curr Genet 2003; 43:45-53. [PMID: 12684844 DOI: 10.1007/s00294-003-0369-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Revised: 12/06/2002] [Accepted: 12/18/2002] [Indexed: 10/25/2022]
Abstract
The genetic transformation of plastids of higher plants has developed into a powerful approach for both basic research and biotechnology. Due to the high copy number of the plastid genome per plastid and per cell, repeated cycles of shoot regeneration under conditions selective for the modified plastid chromosome are required to obtain transformants entirely lacking wild-type plastid genomes. The presence of promiscuous plastid DNA in nuclear and/or mitochondrial genomes that generally contaminate even gradient-purified plastid fractions reduces the applicability of the highly sensitive PCR approach to monitor the absence of residual wild-type plastid chromosomes in transformed lines. It is therefore difficult, or even impossible, to assess reliably the hetero- or homoplastomic state of plastid transformants in this manner. By analysing wild-type and transplastomic mutants of tobacco, we demonstrate that separation of plastid chromosomes isolated from gradient-purified plastid fractions by pulsed-field gel electrophoresis can overcome the problem of (co)amplification of interfering promiscuous plastid DNA. PCR analyses with primers specific for plastid, mitochondrial and nuclear genes reveal an impressive purity of such plastid DNA fractions at a detection limit of less than one wild-type plastid chromosome copy per ten transplastomic cells.
Collapse
Affiliation(s)
- Magdalena Swiatek
- Department für Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität München, Menzinger Strasse 67, 80638 München, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Sonoda M, Katoh H, Vermaas W, Schmetterer G, Ogawa T. Photosynthetic electron transport involved in PxcA-dependent proton extrusion in Synechocystis sp. Strain PCC6803: effect of pxcA inactivation on CO2, HCO3-, and NO3- uptake. J Bacteriol 1998; 180:3799-803. [PMID: 9683474 PMCID: PMC107361 DOI: 10.1128/jb.180.15.3799-3803.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2, 5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3- uptake activity was very low in the pxcA mutant at low [Na+] (approximately 100 microM). At pH 6.5, the pxcA strain did not take up CO2 or NO3- at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3-, and NO3- is discussed.
Collapse
Affiliation(s)
- M Sonoda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-01, Japan
| | | | | | | | | |
Collapse
|
30
|
Ohkawa H, Sonoda M, Katoh H, Ogawa T. The use of mutants in the analysis of the CO2-concentrating mechanism in cyanobacteria. ACTA ACUST UNITED AC 1998. [DOI: 10.1139/b98-076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutants of cyanobacteria defective in parts of the CO2-concentrating mechanism are classified into three types. (i) Mutants defective in inorganic carbon transporters. One of these mutants was constructed by inactivating cmpA encoding 42 kDa protein in the cytoplasmic membrane. (ii) Mutants defective in NAD(P)H dehydrogenase(s). There are five ndhD genes in Synechocystis PCC6803, two of them expressed constitutively and three inducible by low CO2. Two kinds of NAD(P)H dehydrogenase appear to be involved in energizing and inducing the high affinity inorganic carbon transport system. (iii) Mutants defective in carboxysome with impaired ccm or icfA genes. New type of mutants with impaired cotA (renamed as pxcA) have also been isolated. These mutants did not show light-induced proton extrusion and were unable to grow at acidic pHs. A mutant constructed by inactivating cotA (pxcA) in the wild-type Synechocystis was unable to transport CO2 at pH 6.5. We concluded that cotA (pxcA) has a role in light-induced proton extrusion that is essential at acidic pHs to extrude protons produced during CO2 transport.Key words: CO2-concentrating mechanism (CCM), CO2 transport, NAD(P)H dehydrogenase, proton extrusion, carboxysome, mutant.
Collapse
|
31
|
Drapier D, Suzuki H, Levy H, Rimbault B, Kindle KL, Stern DB, Wollman FA. The chloroplast atpA gene cluster in Chlamydomonas reinhardtii. Functional analysis of a polycistronic transcription unit. PLANT PHYSIOLOGY 1998; 117:629-41. [PMID: 9625716 PMCID: PMC34983 DOI: 10.1104/pp.117.2.629] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 03/19/1998] [Indexed: 05/19/2023]
Abstract
Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the alpha-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-alpha can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter.
Collapse
Affiliation(s)
- D Drapier
- Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Rolland N, Dorne AJ, Amoroso G, Sültemeyer DF, Joyard J, Rochaix JD. Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 1997; 16:6713-26. [PMID: 9362486 PMCID: PMC1170276 DOI: 10.1093/emboj/16.22.6713] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The product of the chloroplast ycf10 gene has been localized in the inner chloroplast envelope membrane (Sasaki et al., 1993) and found to display sequence homology with the cyanobacterial CotA product which is altered in mutants defective in CO2 transport and proton extrusion (Katoh et al., 1996a,b). In Chlamydomonas reinhardtii, ycf10, located between the psbI and atpH genes, encodes a putative hydrophobic protein of 500 residues, which is considerably larger than its higher plant homologue because of a long insertion that separates the conserved N and C termini. Using biolistic transformation, we have disrupted ycf10 with the chloroplast aadA expression cassette and examined the phenotype of the homoplasmic transformants. These were found to grow both photoheterotrophically and photoautotrophically under low light, thereby revealing that the Ycf10 product is not essential for the photosynthetic reactions. However, under high light these transformants did not grow photoautotrophically and barely photoheterotrophically. The increased light sensitivity of the transformants appears to result from a limitation in photochemical energy utilization and/or dissipation which correlates with a greatly diminished photosynthetic response to exogenous (CO2 + HCO3-), especially under conditions where the chloroplast inorganic carbon transport system is not induced. Mass spectrometric measurements with either whole cells or isolated chloroplasts from the transformants revealed that the CO2 and HCO3- uptake systems have a reduced affinity for their substrates. The results suggest the existence of a ycf10-dependent system within the plastid envelope which promotes efficient inorganic carbon (Ci) uptake into chloroplasts.
Collapse
Affiliation(s)
- N Rolland
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Lübeck J, Heins L, Soll J. A nuclear-coded chloroplastic inner envelope membrane protein uses a soluble sorting intermediate upon import into the organelle. J Cell Biol 1997; 137:1279-86. [PMID: 9182662 PMCID: PMC2132540 DOI: 10.1083/jcb.137.6.1279] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The chloroplastic inner envelope protein of 110 kD (IEP110) is part of the protein import machinery in the pea. Different hybrid proteins were constructed to assess the import and sorting pathway of IEP110. The IEP110 precursor (pIEP110) uses the general import pathway into chloroplasts, as shown by the mutual exchange of presequences with the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase (pSSU). Sorting information to the chloroplastic inner envelope is contained in an NH2-proximal part of mature IEP110 (110N). The NH2-terminus serves to anchor the protein into the membrane. Large COOH-terminal portions of this protein (80-90 kD) are exposed to the intermembrane space in situ. Successful sorting and integration of IEP110 and the derived constructs into the inner envelope are demonstrated by the inaccessability of processed mature protein to the protease thermolysin but accessibility to trypsin, i.e., the imported protein is exposed to the intermembrane space. A hybrid protein consisting of the transit sequence of SSU, the NH2-proximal part of mature IEP110, and mature SSU (tpSSU-110N-mSSU) is completely imported into the chloroplast stroma, from which it can be recovered as soluble, terminally processed 110NmSSU. The soluble 110N-mSSU then enters a reexport pathway, which results not only in the insertion of 110N-mSSU into the inner envelope membrane, but also in the extrusion of large portions of the protein into the intermembrane space. We conclude that chloroplasts possess a protein reexport machinery for IEPs in which soluble stromal components interact with a membrane-localized translocation machinery.
Collapse
Affiliation(s)
- J Lübeck
- Botanisches Institut, Universität Kiel, 24118 Kiel, Germany
| | | | | |
Collapse
|
34
|
Sonoda M, Kitano K, Katoh A, Katoh H, Ohkawa H, Ogawa T. Size of cotA and identification of the gene product in Synechocystis sp. strain PCC6803. J Bacteriol 1997; 179:3845-50. [PMID: 9190798 PMCID: PMC179191 DOI: 10.1128/jb.179.12.3845-3850.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
cotA of Synechocystis sp. strain PCC6803 is a gene involved in light-induced proton extrusion (A. Katoh, M. Sonoda, H. Katoh, and T. Ogawa, J. Bacteriol. 178:5452-5455, 1996). There are two possible initiation codons in cotA, and either long (L-) or short (S-) cotA encoding a protein of 440 or 247 amino acids could be postulated. To determine the gene size, we inserted L-cotA and S-cotA into the genome of a cotA-less mutant (M29) to construct M29(L-cotA) and M29(S-cotA), respectively. M29(L-cotA) showed essentially the same net proton movement profile as the wild type, whereas no light-induced proton extrusion was observed with M29(S-cotA). Two kinds of antibodies were raised against partial gene products of the N- and C-terminal regions of L-cotA, respectively, fused to glutathione S-transferase expressed in Escherichia coli. Both antibodies cross-reacted with a band at 52 kDa in both cytoplasmic and thylakoid membrane fractions of the wild-type cells. The same cross-reacting band was present in the membranes of M29(L-cotA) but not in M29 or M29(S-cotA). These antibodies cross-reacted more strongly with the cytoplasmic membrane fraction than with the thylakoid membrane fraction. The antibody against NrtA, a nitrate transporter protein present only in the cytoplasmic membrane, also cross-reacted with the thylakoid membrane fraction strongly. Based on these results we concluded that CotA of 440 amino acids (51 kDa) is located in the cytoplasmic membrane. Whether CotA is absent in the thylakoid membrane remains to be solved.
Collapse
Affiliation(s)
- M Sonoda
- Biochemical Regulation, School of Agriculture, Nagoya University, Chikusa-ku, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Jäger-Vottero P, Dorne AJ, Jordanov J, Douce R, Joyard J. Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci U S A 1997; 94:1597-602. [PMID: 11038604 PMCID: PMC19837 DOI: 10.1073/pnas.94.4.1597] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown that envelope membranes from spinach chloroplasts contain (i) semiquinone and flavosemiquinone radicals, (ii) a series of iron-containing electron-transfer centers, and (iii) flavins (mostly FAD) loosely associated with proteins. In contrast, we were unable to detect any cytochrome in spinach chloroplast envelope membranes. In addition to a high spin [1Fe]3+ type protein associated with an EPR signal at g = 4.3, we observed two iron-sulfur centers, a [4Fe-4S]1+ and a [2Fe-2S]1+, associated with features, respectively, at g = 1.921 and g = 1.935, which were detected after reduction by NADPH and NADH, respectively. The [4Fe-4S] center, but not the [2Fe-2S] center, was also reduced by dithionite or 5-deazaflavin/oxalate. An unusual Fe-S center, named X, associated with a signal at g = 2.057, was also detected, which was reduced by dithionite but not by NADH or NADPH. Extremely fast spin-relaxation rates of flavin- and quinone-free radicals suggest their close proximity to the [4Fe-4S] cluster or the high-spin [1Fe]3+ center. Envelope membranes probably contain enzymatic activities involved in the formation and reduction of semiquinone radicals (quinol oxidase, NADPH-quinone, and NADPH-semiquinone reductases). The physiological significance of our results is discussed with respect to (i) the presence of desaturase activities in envelope membranes and (ii) the mechanisms involved in the export of protons to the cytosol, which partially regulate the stromal pH during photosynthesis. The characterization of such a wide variety of electron carriers in envelope membranes opens new fields of research on the functions of this membrane system within the plant cell.
Collapse
Affiliation(s)
- P Jäger-Vottero
- Département de Biologie Moléculaire et Structurale, Unité de Recherche Associée Centre National de la Recherche Scientifique n degrees 576, Université Joseph Fourier et Commissariat à l'Energie Atomique-Grenoble, F-38054, Grenoble cédex 9, France
| | | | | | | | | |
Collapse
|
36
|
Katoh A, Sonoda M, Katoh H, Ogawa T. Absence of light-induced proton extrusion in a cotA-less mutant of Synechocystis sp. strain PCC6803. J Bacteriol 1996; 178:5452-5. [PMID: 8808935 PMCID: PMC178366 DOI: 10.1128/jb.178.18.5452-5455.1996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
cotA of Synechocystis sp. strain PCC6803 was isolated as a gene that complemented a mutant defective in CO2 transport and is homologous to cemA that encodes a chloroplast envelope membrane protein (A. Katoh, K.S. Lee, H. Fukuzawa, K. Ohyama, and T. Ogawa, Proc. Natl. Acad. Sci. USA 93:4006-4010, 1996). A mutant (M29) constructed by replacing cotA in the wild-type (WT) Synechocystis strain with the omega fragment was unable to grow in BG11 medium (approximately 17 mM Na+) at pH 6.4 or at any pH in a low-sodium medium (100 microM Na+) under aeration with 3% (vol/vol) CO2 in air. The WT cells grew well in the pH range between 6.4 and 8.5 in BG11 medium but only at alkaline pH in the low-sodium medium. Illumination of the WT cells resulted in an extrusion followed by an uptake of protons. In contrast, only proton uptake was observed for the M29 mutant in the light without proton extrusion. There was no difference in sodium uptake activity between the WT and mutant. The mutant still possessed 51% of the WT CO2 transport activity in the presence of 15 mM NaCl. On the basis of these results we concluded that cotA has a role in light-induced proton extrusion and that the inhibition of CO2 transport in the M29 mutant is a secondary effect of the inhibition of proton extrusion.
Collapse
Affiliation(s)
- A Katoh
- School of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
37
|
Katoh A, Lee KS, Fukuzawa H, Ohyama K, Ogawa T. cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803. Proc Natl Acad Sci U S A 1996; 93:4006-10. [PMID: 8633006 PMCID: PMC39476 DOI: 10.1073/pnas.93.9.4006] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated mutants of Synechocystis PCC6803 that grew very slowly in a low-sodium medium, which is unfavorable for HCO3(-) transport, and examined two of these mutants (SC1 and SC2) for their ability to take up CO2 and HCO3(-) in the light. The CO2 transport activity of SC1 and SC2 was much lower than that of the wild type (WT), whereas there was no difference between the mutants and the WT in their activity of HCO3(-) transport. A clone containing a 3.9-kilobase-pair insert DNA that transforms both mutants to the WT phenotype was isolated from a genomic library of WT Synechocystis. Sequencing of the insert DNA in the region of mutations in SC1 and SC2 revealed an open reading frame (designated cotA), which showed significant amino-acid sequence homology to cemA encoding a protein found in the inner envelope membrane of chloroplasts. The cotA gene is present in a single copy and was not cotranscribed with any other gene(s). cotA encodes a protein of 247 amino acids containing four transmembrane domains. There was substitution of a single base in SC1 and two bases in SC2 in their cotA genes. A possible role of the cotA gene product in CO2 transport is discussed.
Collapse
Affiliation(s)
- A Katoh
- Graduate Division of Biochemical Regulation, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
38
|
Sasaki Y, Hakamada K, Suama Y, Nagano Y, Furusawa I, Matsuno R. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74577-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Franklin A, Hoffman N. Characterization of a chloroplast homologue of the 54-kDa subunit of the signal recognition particle. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80664-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|