1
|
Hrmova M. Quaternary arrangements of membrane proteins: an aquaporin case. Biochem Soc Trans 2024; 52:2557-2568. [PMID: 39670669 PMCID: PMC11668299 DOI: 10.1042/bst20241630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Integral polytopic α-helical membrane transporters and aquaporins move and distribute various molecules and dispose of or compartmentalize harmful elements that gather in living cells. The view shaped nearly 25 years ago states that integrating these proteins into cellular membranes can be considered a two-stage process, with hydrophobic core folding into α-helices across membranes to form functional entities (Popot and Engelman, 1990; Biochemistry29, 4031-4037). Since then, a large body of evidence cemented the roles of structural properties of membrane proteins and bilayer solvent components in forming functional assemblies. This mini-review updates our understanding of multifaced factors, which underlie transporters integration and oligomerization, focusing on water-permeating aquaporins. This work also elaborates on how individual monomers of bacterial and mammalian aquaporin tetramers, interact with each other, and how tetramers form contacts with lipids after being embedded in lipid bilayers of known composition, which mimics bacterial and mammalian membranes. Although this mini-review describes findings acquired using current methods, the view is open to how to extend this knowledge through, e.g. single-molecule-based and in situ cryogenic-electron tomography techniques. These and other methods could unravel the sources of entropy for membrane protein assemblies and pathways underlying integration, folding, oligomerization and quaternary structure formation with binding partners. We could expect that these exceedingly interdisciplinary approaches will form the basis for creating optimized transport systems, which could inspire bioengineering to develop a sustainable and healthy society.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, and Waite Research Institute, Faculty of Sciences, Engineering and Technology, University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
2
|
Drew DL, Butcher B, Sahu ID, Ahammad T, Dixit G, Lorigan GA. Active S 2168 and inactive S 21IRS pinholin interact differently with the lipid bilayer: A 31P and 2H solid state NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183257. [PMID: 32147355 DOI: 10.1016/j.bbamem.2020.183257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
Pinholins are a family of lytic membrane proteins responsible for the lysis of the cytosolic membrane in host cells of double stranded DNA bacteriophages. Protein-lipid interactions have been shown to influence membrane protein topology as well as its function. This work investigated the interactions of pinholin with the phospholipid bilayer while in active and inactive confirmations to elucidate the different interactions the two forms have with the bilayer. Pinholin incorporated into deuterated DMPC-d54 lipid bilayers, along with 31P and 2H solid state NMR (SS-NMR) spectroscopy were used to probe the protein-lipid interactions with the phosphorus head group at the surface of the bilayer while interactions with the 2H nuclei were used to study the hydrophobic core. A comparison of the 31P chemical shift anisotropy (CSA) values of the active S2168 pinholin and inactive S21IRS pinholin indicated stronger head group interactions for the pinholin in its active form when compared to that of the inactive form supporting the model of a partially externalized peripheral transmembrane domain (TMD) of the active S2168 instead of complete externalized TMD1 as suggested by Ahammad et al. JPC B 2019. The 2H quadrupolar splitting analysis showed a decrease in spectral width for both forms of the pinholin when compared to the empty bilayers at all temperatures. In this case the decrease in the spectral width of the inactive S21IRS form of the pinholin showed stronger interactions with the acyl chains of the bilayer. The presence of the inactive form's additional TMD within the membrane was supported by the loss of peak resolution observed in the 2H NMR spectra.
Collapse
Affiliation(s)
- Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Brandon Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; Natural Science Division, Campbellsville University, Campbellsville, KY 42718, USA.
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Gunjan Dixit
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
3
|
Abendroth JM, Stemer DM, Bloom BP, Roy P, Naaman R, Waldeck DH, Weiss PS, Mondal PC. Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules. ACS NANO 2019; 13:4928-4946. [PMID: 31016968 DOI: 10.1021/acsnano.9b01876] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Optical control and readout of electron spin and spin currents in thin films and nanostructures have remained attractive yet challenging goals for emerging technologies designed for applications in information processing and storage. Recent advances in room-temperature spin polarization using nanometric chiral molecular assemblies suggest that chemically modified surfaces or interfaces can be used for optical spin conversion by exploiting photoinduced charge separation and injection from well-coupled organic chromophores or quantum dots. Using light to drive photoexcited charge-transfer processes mediated by molecules with central or helical chirality enables indirect measurements of spin polarization attributed to the chiral-induced spin selectivity effect and of the efficiency of spin-dependent electron transfer relative to competitive relaxation pathways. Herein, we highlight recent approaches used to detect and to analyze spin selectivity in photoinduced charge transfer including spin-transfer torque for local magnetization, nanoscale charge separation and polarization, and soft ferromagnetic substrate magnetization- and chirality-dependent photoluminescence. Building on these methods through systematic investigation of molecular and environmental parameters that influence spin filtering should elucidate means to manipulate electron spins and photoexcited states for room-temperature optoelectronic and photospintronic applications.
Collapse
Affiliation(s)
- John M Abendroth
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Dominik M Stemer
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Brian P Bloom
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Partha Roy
- Department of Chemistry , Central University of Rajasthan , Kishangarh 305817 Ajmer , India
| | - Ron Naaman
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David H Waldeck
- Department of Chemistry , University of Pittsburgh , Pittsburgh , Pennsylvania 15260 , United States
| | - Paul S Weiss
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | | |
Collapse
|
4
|
Rost U, Steinem C, Diederichsen U. β-Glutamine-mediated self-association of transmembrane β-peptides within lipid bilayers. Chem Sci 2016; 7:5900-5907. [PMID: 30034732 PMCID: PMC6022121 DOI: 10.1039/c6sc01147k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/18/2016] [Indexed: 11/21/2022] Open
Abstract
The rational design and synthesis of novel transmembrane β-peptides forming stable secondary structures in a membrane environment are described. Their state of aggregation within the membrane is controlled by hydrogen bonds.
Transmembrane β-peptide helices and their association in lipid membranes are still widely unexplored. We designed and synthesized transmembrane β-peptides harboring different numbers of d-β3-glutamine residues (hGln) by solid phase peptide synthesis. By means of circular dichroism spectroscopic measurements, the secondary structure of the β-peptides reconstituted into unilamellar vesicles was determined to be similar to a right-handed 314-helix. Fluorescence spectroscopy using d-β3-tryptophan residues strongly suggested a transmembrane orientation. Two or three hGln served as recognition units between the helices to allow helix–helix assembly driven by hydrogen bond formation. The association state of the transmembrane β-peptides as a function of the number of hGln residues was investigated by fluorescence resonance energy transfer (FRET). Therefore, two fluorescence probes (NBD, TAMRA) were covalently attached to the side chains of the transmembrane β-peptide helices. The results clearly demonstrate that only β-peptides with hGln as recognition units assemble into oligomers, presumably trimers. Temperature dependent FRET experiments further show that the strength of the helix–helix association is a function of the number of hGln residues in the helix.
Collapse
Affiliation(s)
- U Rost
- Institute of Organic and Biomolecular Chemistry , Georg-August-University Goettingen , Tammannstr. 2 , 37077 Goettingen , Germany . ;
| | - C Steinem
- Institute of Organic and Biomolecular Chemistry , Georg-August-University Goettingen , Tammannstr. 2 , 37077 Goettingen , Germany . ;
| | - U Diederichsen
- Institute of Organic and Biomolecular Chemistry , Georg-August-University Goettingen , Tammannstr. 2 , 37077 Goettingen , Germany . ;
| |
Collapse
|
5
|
Perrin J, Le Coadic M, Vernay A, Dias M, Gopaldass N, Ouertatani-Sakouhi H, Cosson P. TM9 family proteins control surface targeting of glycine-rich transmembrane domains. J Cell Sci 2015; 128:2269-77. [PMID: 25999474 PMCID: PMC4510845 DOI: 10.1242/jcs.164848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
TM9 family proteins (also named Phg1 proteins) have been previously shown to control cell adhesion by determining the cell surface localization of adhesion proteins such as the Dictyostelium SibA protein. Here, we show that the glycine-rich transmembrane domain (TMD) of SibA is sufficient to confer Phg1A-dependent surface targeting to a reporter protein. Accordingly, in Dictyostelium phg1A-knockout (KO) cells, proteins with glycine-rich TMDs were less efficiently transported out of the endoplasmic reticulum (ER) and to the cell surface. Phg1A, as well as its human ortholog TM9SF4 specifically associated with glycine-rich TMDs. In human cells, genetic inactivation of TM9SF4 resulted in an increased retention of glycine-rich TMDs in the endoplasmic reticulum, whereas TM9SF4 overexpression enhanced their surface localization. The bulk of the TM9SF4 protein was localized in the Golgi complex and a proximity-ligation assay suggested that it might interact with glycine-rich TMDs. Taken together, these results suggest that one of the main roles of TM9 proteins is to serve as intramembrane cargo receptors controlling exocytosis and surface localization of a subset of membrane proteins. Summary: TM9 proteins facilitate transport to the cell surface of proteins with gylcine-rich transmembrane domains. They might represent a new class of cargo receptors controlling transport in the secretory pathway.
Collapse
Affiliation(s)
- Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Marion Le Coadic
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Alexandre Vernay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Navin Gopaldass
- Department of Biochemistry, Sciences II, University of Geneva, 30 quai Ernest-Ansermet, Geneva 4 CH-1211, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, Geneva 4 CH-1211, Switzerland
| |
Collapse
|
6
|
Autographa californica Nucleopolyhedrovirus Ac76: a dimeric type II integral membrane protein that contains an inner nuclear membrane-sorting motif. J Virol 2013; 88:1090-103. [PMID: 24198428 DOI: 10.1128/jvi.02392-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Our previous study showed that the Autographa californica Nucleopolyhedrovirus (AcMNPV) ac76 gene is essential for both budded virion (BV) and occlusion-derived virion (ODV) development. More importantly, deletion of ac76 affects intranuclear microvesicle formation. However, the exact role by which ac76 affects virion morphogenesis remains unknown. In this report, we characterized the expression, distribution, and topology of Ac76 to further understand the functional role of Ac76 in virion morphogenesis. Ac76 contains an α-helical transmembrane domain, and phase separation showed that it was an integral membrane protein. In AcMNPV-infected cells, Ac76 was detected as a stable dimer that was resistant to SDS and thermal denaturation, and only a trace amount of monomer was detected. A coimmunoprecipitation assay demonstrated the dimerization of Ac76 by high-affinity self-association. Western blot analyses of purified virions and their nucleocapsid and envelope fractions showed that Ac76 was associated with the envelope fractions of both BVs and ODVs. Immunoelectron microscopy revealed that Ac76 was localized to the plasma membrane, endoplasmic reticulum (ER), nuclear membrane, intranuclear microvesicles, and ODV envelope. Amino acids 15 to 48 of Ac76 were identified as an atypical inner nuclear membrane-sorting motif because it was sufficient to target fusion proteins to the ER and nuclear membrane in the absence of viral infection and to the intranuclear microvesicles and ODV envelope during infection. Topology analysis of Ac76 by selective permeabilization showed that Ac76 was a type II integral membrane protein with an N terminus exposed to the cytosol and a C terminus hidden in the ER lumen.
Collapse
|
7
|
Zhang L, Liu L, Maltsev S, Lorigan GA, Dabney-Smith C. Investigating the interaction between peptides of the amphipathic helix of Hcf106 and the phospholipid bilayer by solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:413-8. [PMID: 24144541 DOI: 10.1016/j.bbamem.2013.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/15/2022]
Abstract
The chloroplast twin arginine translocation (cpTat) system transports highly folded precursor proteins into the thylakoid lumen using the protonmotive force as its only energy source. Hcf106, as one of the core components of the cpTat system, is part of the precursor receptor complex and functions in the initial precursor-binding step. Hcf106 is predicted to contain a single amino terminal transmembrane domain followed by a Pro-Gly hinge, a predicted amphipathic α-helix (APH), and a loosely structured carboxy terminus. Hcf106 has been shown biochemically to insert spontaneously into thylakoid membranes. To better understand the membrane active capabilities of Hcf106, we used solid-state NMR spectroscopy to investigate those properties of the APH. In this study, synthesized peptides of the predicted Hcf106 APH (amino acids 28-65) were incorporated at increasing mol.% into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) and POPC/MGDG (monogalactosyldiacylglycerol; mole ratio 85:15) multilamellar vesicles (MLVs) to probe the peptide-lipid interaction. Solid-state (31)P NMR and (2)H NMR spectroscopic experiments revealed that the peptide perturbs the headgroup and the acyl chain regions of phospholipids as indicated by changes in spectral lineshape, chemical shift anisotropy (CSA) line width, and (2)H order SCD parameters. In addition, the comparison between POPC MLVs and POPC/MGDG MLVs indicated that the lipid bilayer composition affected peptide perturbation of the lipids, and such perturbation appeared to be more intense in a system more closely mimicking a thylakoid membrane.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | | | | | | | | |
Collapse
|
8
|
Zhang L, Liu L, Maltsev S, Lorigan GA, Dabney-Smith C. Solid-state NMR investigations of peptide–lipid interactions of the transmembrane domain of a plant-derived protein, Hcf106. Chem Phys Lipids 2013; 175-176:123-30. [DOI: 10.1016/j.chemphyslip.2013.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 02/02/2023]
|
9
|
|
10
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
11
|
Yang C, Xie H, Zhang JK, Su BL. Anchoring proteins to Escherichia coli cell membranes using hydrophobic anchors derived from a Bacillus subtilis integral membrane protein. Protein Expr Purif 2012; 85:60-5. [DOI: 10.1016/j.pep.2012.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 12/01/2022]
|
12
|
Karjalainen EL, Barth A. Vibrational coupling between helices influences the amide I infrared absorption of proteins: application to bacteriorhodopsin and rhodopsin. J Phys Chem B 2012; 116:4448-56. [PMID: 22435481 DOI: 10.1021/jp300329k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The amide I spectrum of multimers of helical protein segments was simulated using transition dipole coupling (TDC) for long-range interactions between individual amide oscillators and DFT data from dipeptides (la Cour Jansen et al. J. Chem. Phys.2006, 125, 44312) for nearest neighbor interactions. Vibrational coupling between amide groups on different helices shift the helix absorption to higher wavenumbers. This effect is small for helix dimers (1 cm(-1)) at 10 Å distance and only moderately affected by changes in the relative orientation between the helices. However, the effect becomes considerable when several helices are bundled in membrane proteins. Particular examples are the 7-helix membrane proteins bacteriorhodopsin (BR) and rhodopsin, where the upshift is 4.3 and 5.3 cm(-1), respectively, due to interhelical coupling within a BR monomer. A further upshift of 4.0 cm(-1) occurs when BR monomers associate to trimers. We propose that interhelical vibrational coupling explains the experimentally observed unusually high wavenumber of the amide I band of BR.
Collapse
Affiliation(s)
- Eeva-Liisa Karjalainen
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
13
|
Sadovskaya NS, Sutormin RA, Gelfand MS. RECOGNITION OF TRANSMEMBRANE SEGMENTS IN PROTEINS: REVIEW AND CONSISTENCY-BASED BENCHMARKING OF INTERNET SERVERS. J Bioinform Comput Biol 2011; 4:1033-56. [PMID: 17099940 DOI: 10.1142/s0219720006002326] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/21/2006] [Accepted: 06/22/2006] [Indexed: 11/18/2022]
Abstract
Membrane proteins perform a number of crucial functions as transporters, receptors, and components of enzyme complexes. Identification of membrane proteins and prediction of their topology is thus an important part of genome annotation. We present here an overview of transmembrane segments in protein sequences, summarize data from large-scale genome studies, and report results of benchmarking of several popular internet servers.
Collapse
Affiliation(s)
- Nataliya S Sadovskaya
- Institute for Information Transmission Problems, Russian Academy of Science, Bolshoi Karetny per. 19, Moscow 127994, Russia.
| | | | | |
Collapse
|
14
|
du Plessis DJF, Nouwen N, Driessen AJM. The Sec translocase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:851-65. [PMID: 20801097 DOI: 10.1016/j.bbamem.2010.08.016] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 11/18/2022]
Abstract
The vast majority of proteins trafficking across or into the bacterial cytoplasmic membrane occur via the translocon. The translocon consists of the SecYEG complex that forms an evolutionarily conserved heterotrimeric protein-conducting membrane channel that functions in conjunction with a variety of ancillary proteins. For posttranslational protein translocation, the translocon interacts with the cytosolic motor protein SecA that drives the ATP-dependent stepwise translocation of unfolded polypeptides across the membrane. For the cotranslational integration of membrane proteins, the translocon interacts with ribosome-nascent chain complexes and membrane insertion is coupled to polypeptide chain elongation at the ribosome. These processes are assisted by the YidC and SecDF(yajC) complex that transiently interacts with the translocon. This review summarizes our current understanding of the structure-function relationship of the translocon and its interactions with ancillary components during protein translocation and membrane protein insertion. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- David J F du Plessis
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9751NN Haren, The Netherlands
| | | | | |
Collapse
|
15
|
YneA, an SOS-induced inhibitor of cell division in Bacillus subtilis, is regulated posttranslationally and requires the transmembrane region for activity. J Bacteriol 2010; 192:3159-73. [PMID: 20400548 DOI: 10.1128/jb.00027-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell viability depends on the stable transmission of genetic information to each successive generation. Therefore, in the event of intrinsic or extrinsic DNA damage, it is important that cell division be delayed until DNA repair has been completed. In Bacillus subtilis, this is accomplished in part by YneA, an inhibitor of division that is induced as part of the SOS response. We sought to gain insight into the mechanism by which YneA blocks cell division and the processes involved in shutting off YneA activity. Our data suggest that YneA is able to inhibit daughter cell separation as well as septum formation. YneA contains a LysM peptidoglycan binding domain and is predicted to be exported. We established that the YneA signal peptide is rapidly cleaved, resulting in secretion of YneA into the medium. Mutations within YneA affect both the rate of signal sequence cleavage and the activity of YneA. YneA does not stably associate with the cell wall and is rapidly degraded by extracellular proteases. Based on these results, we hypothesize that exported YneA is active prior to signal peptide cleavage and that proteolysis contributes to the inactivation of YneA. Finally, we identified mutations in the transmembrane segment of YneA that abolish the ability of YneA to inhibit cell division, while having little or no effect on YneA export or stability. These data suggest that protein-protein interactions mediated by the transmembrane region may be required for YneA activity.
Collapse
|
16
|
Hubert P, Sawma P, Duneau JP, Khao J, Hénin J, Bagnard D, Sturgis J. Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adh Migr 2010; 4:313-24. [PMID: 20543559 PMCID: PMC2900628 DOI: 10.4161/cam.4.2.12430] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 01/28/2023] Open
Abstract
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.
Collapse
Affiliation(s)
- Pierre Hubert
- LISM UPR 9027, CNRS-Aix-Marseille University, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
Finger C, Escher C, Schneider D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal 2009; 2:ra56. [PMID: 19797273 DOI: 10.1126/scisignal.2000547] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transmembrane signaling by receptor tyrosine kinases typically involves a dynamic receptor monomer-dimer equilibrium in which ligand binding to soluble extracellular domains triggers receptor dimerization and subsequent signaling events. Although the role in signal transduction of the single transmembrane helices of individual receptors, which connect the extracellular with the intracellular protein domains, is not understood in detail, we show here that the single transmembrane domains of all 58 human receptor tyrosine kinases alone have an intrinsic propensity to form stable dimeric structures within a membrane. Thus, defined interactions of the transmembrane domains are most likely generally involved in signaling by all human receptor tyrosine kinases.
Collapse
Affiliation(s)
- Carmen Finger
- Institut für Biochemie und Molekularbiologie, ZBMZ, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | |
Collapse
|
18
|
Assembly of a membrane receptor complex: roles of the uroplakin II prosequence in regulating uroplakin bacterial receptor oligomerization. Biochem J 2008; 414:195-203. [PMID: 18481938 DOI: 10.1042/bj20080550] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The apical surface of the mammalian urothelium is almost completely covered by two-dimensional protein crystals (known as urothelial plaques) of hexagonally packed 16 nm particles consisting of two UP (uroplakin) heterodimers, i.e. UPs Ia/II and Ib/III pairs. UPs are functionally important as they contribute to the urothelial permeability barrier function, and UPIa may serve as the receptor for the uropathogenic Escherichia coli that causes over 90% of urinary tract infections. We study here how the UP proteins are assembled and targeted to the urothelial apical surface, paying special attention to the roles of the prosequence of UPII in UP oligomerization. We show that (i) the formation of the UPIa/UPII heterodimer, necessary for ER (endoplasmic reticulum) exit, requires disulfide formation in the prosequence domain of proUPII (the immature form of UPII still containing its prosequence); (ii) differentiation-dependent N-glycosylation of the prosequence leads to UP stabilization; (iii) a failure to form tetramers in cultured urothelial cells, in part due to altered glycosylation of the prosequence, may block two-dimensional crystal formation; and (iv) the prosequence of UPII remains attached to the mature protein complex on the urothelial apical surface even after it has been cleaved by the trans-Golgi-network-associated furin. Our results indicate that proper secondary modifications of the prosequence of UPII play important roles in regulating the oligomerization and function of the UP protein complex.
Collapse
|
19
|
Hildebrand PW, Lorenzen S, Goede A, Preissner R. Analysis and prediction of helix–helix interactions in membrane channels and transporters. Proteins 2006; 64:253-62. [PMID: 16555307 DOI: 10.1002/prot.20959] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Membrane proteins span a large variety of different functions such as cell-surface receptors, redox proteins, ion channels, and transporters. Proteins with functional pores show different characteristics of helix-helix packing as other helical membrane proteins. We found that the helix-helix contacts of 13 nonhomologous high-resolution structures of membrane channels and transporters are mainly accomplished by weakly polar amino acids (G > S > T > F) that preferably create contacts every fourth residue, typical for right-handed helix crossings. There is a strong correlation between the now available biological hydrophobicity scale and the propensities of the weakly polar and hydrophobic residues to be buried at helix-helix interfaces or to be exposed to the lipids in membrane channels and transporters. The polar residues, however, make no major contribution towards the packing of their transmembrane helices, and are therefore subsumed to be primarily exposed to the polar milieu during the folding process. The contact formation of membrane channels and transporters is therefore ruled by the solubility of the residues, which we suppose to be the driving force for the assembly of their transmembrane helices. By contrast, in 14 nonhomologous high-resolution structures of other membrane protein coils, also large and polar amino acids (D > S > M > Q) create characteristic contacts every 3.5th residues, which is a signature for left-handed helix crossings. Accordingly, it seems that dependent on the function, different concepts of folding and stabilization are realized for helical membrane proteins. Using a sequence-based matrix prediction method these differences are exploited to improve the prediction of buried and exposed residues of transmembrane helices significantly. When the sequence motifs typical for membrane channels and transporters were applied for the prediction of helix-helix contacts the quality of prediction rises by 16% to an average value of 76%, compared to the same approach when only single amino acid positions are taken into account.
Collapse
|
20
|
Cristian L, Nanda V, Lear JD, DeGrado WF. Synergistic Interactions between Aqueous and Membrane Domains of a Designed Protein Determine its Fold and Stability. J Mol Biol 2005; 348:1225-33. [PMID: 15854657 DOI: 10.1016/j.jmb.2005.03.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/28/2022]
Abstract
Membrane-spanning proteins contain both aqueous and membrane-spanning regions, both of which contribute to folding and stability. To explore the interplay between these two domains we have designed and studied the assembly of coiled-coil peptides that span from the membrane into the aqueous phase. The membrane-spanning segment is based on MS1, a transmembrane coiled coil that contains a single Asn at a buried a position of a central heptad in its sequence. This Asn has been shown to drive assembly of the monomeric peptide in a membrane environment to a mixture of dimers and trimers. The coiled coil has now been extended into the aqueous phase by addition of water-soluble helical extensions. Although too short to fold in isolation, these helical extensions were expected to interact synergistically with the transmembrane domain and modulate its stability as well as its conformational specificity for forming dimers versus trimers. One design contains Asn at a position of the aqueous helical extension, which was expected to specify a dimeric state; a second peptide, which contains Val at this position, was expected to form trimers. The thermodynamics of assembly of the hybrid peptides were studied in micelles by sedimentation equilibrium ultracentrifugation. The aqueous helical extensions indeed conferred additional stability and conformational specificity to MS1 in the expected manner. These studies highlight the delicate interplay between membrane-spanning and water-soluble regions of proteins, and demonstrate how these different environments define the thermodynamics of a given specific interaction. In this case, an Asn in the transmembrane domain provided a strong driving force for folding but failed to specify a unique oligomerization state, while an Asn in the water-soluble domain was able to define specificity for a specific aggregation state as well as modulate stability.
Collapse
Affiliation(s)
- Lidia Cristian
- Department of Biochemistry & Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | | | | | |
Collapse
|
21
|
Nanda H, Sachs JN, Petrache HI, Woolf TB. Environmental Effects on Glycophorin A Folding and Structure Examined through Molecular Simulations. J Chem Theory Comput 2005; 1:375-88. [DOI: 10.1021/ct049928y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hirsh Nanda
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Jonathan N. Sachs
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Horia I. Petrache
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Thomas B. Woolf
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, Maryland 21205, Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892, and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
22
|
Schneider D. Rendezvous in a membrane: close packing, hydrogen bonding, and the formation of transmembrane helix oligomers. FEBS Lett 2005; 577:5-8. [PMID: 15527753 DOI: 10.1016/j.febslet.2004.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 10/08/2004] [Indexed: 11/18/2022]
Abstract
The interaction of transmembrane alpha-helices is promoted by a detailed fit between two helical surfaces, which results in close packing and van der Waals interactions of amino acid side chains between two helices. Recent studies additionally indicate an important role of hydrogen bonding for mediating and stabilizing transmembrane helix-helix interactions. The interplay between close packing and electrostatic interactions in influencing the specificity of helix-helix interactions on the one hand and the stability of an existing interaction on the other hand is still unknown. Here, we suggest that close packing mainly determines the specificity of a helix-helix interaction, whereas hydrogen bonding is important for stabilization of a preformed helix dimer.
Collapse
Affiliation(s)
- Dirk Schneider
- Institut für Biochemie und Molekularbiologie, Albert-Ludwigs-Universität, Hermann-Herder-Strasse 7, 79104 Freiburg, Germany.
| |
Collapse
|
23
|
Hildebrand PW, Rother K, Goede A, Preissner R, Frömmel C. Molecular packing and packing defects in helical membrane proteins. Biophys J 2004; 88:1970-7. [PMID: 15556989 PMCID: PMC1305249 DOI: 10.1529/biophysj.104.049585] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The packing of helices spanning lipid bilayers is crucial for the stability and function of alpha-helical membrane proteins. Using a modified Voronoi procedure, we calculated packing densities for helix-helix contacts in membrane spanning domains. Our results show that the transmembrane helices of protein channels and transporters are significantly more loosely packed compared with helices in globular proteins. The observed packing deficiencies of these membrane proteins are also reflected by a higher amount of cavities at functionally important sites. The cavities positioned along the gated pores of membrane channels and transporters are noticeably lined by polar amino acids that should be exposed to the aqueous medium when the protein is in the open state. In contrast, nonpolar amino acids surround the cavities in those protein regions where large rearrangements are supposed to take place, as near the hinge regions of transporters or at restriction sites of protein channels. We presume that the observed deficiencies of helix-helix packing are essential for the helical mobility that sustains the function of many membrane protein channels and transporters.
Collapse
|
24
|
Dave PC, Tiburu EK, Damodaran K, Lorigan GA. Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy. Biophys J 2004; 86:1564-73. [PMID: 14990483 PMCID: PMC1303991 DOI: 10.1016/s0006-3495(04)74224-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phospholamban (PLB) is a 52-amino acid integral membrane protein that regulates the flow of Ca(2+) ions in cardiac muscle cells. In the present study, the transmembrane domain of PLB (24-52) was incorporated into phospholipid bilayers prepared from 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC). Solid-state (31)P and (2)H NMR experiments were carried out to study the behavior of POPC bilayers in the presence of the hydrophobic peptide PLB at temperatures ranging from 30 degrees C to 60 degrees C. The PLB peptide concentration varied from 0 mol % to 6 mol % with respect to POPC. Solid-state (31)P NMR spectroscopy is a valuable technique to study the different phases formed by phospholipid membranes. (31)P NMR results suggest that the transmembrane protein phospholamban is incorporated successfully into the bilayer and the effects are observed in the lipid lamellar phase. Simulations of the (31)P NMR spectra were carried out to reveal the formation of different vesicle sizes upon PLB insertion. The bilayer vesicles fragmented into smaller sizes by increasing the concentration of PLB with respect to POPC. Finally, molecular order parameters (S(CD)) were calculated by performing (2)H solid-state NMR studies on deuterated POPC (sn-1 chain) phospholipid bilayers when the PLB peptide was inserted into the membrane.
Collapse
Affiliation(s)
- Paresh C Dave
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|
25
|
Schneider D, Engelman DM. Involvement of transmembrane domain interactions in signal transduction by alpha/beta integrins. J Biol Chem 2003; 279:9840-6. [PMID: 14681217 DOI: 10.1074/jbc.m312749200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha and beta subunits of alpha/beta heterodimeric integrins function together to bind ligands in the extracellular region and transduce signals across cellular membranes. A possible function for the transmembrane regions in integrin signaling has been proposed from structural and computational data. We have analyzed the capacity of the integrin alpha(2), alpha(IIb), alpha(4), beta(1), beta(3), and beta(7) transmembrane domains to form homodimers and/or heterodimers. Our data suggest that the integrin transmembrane helices can help to stabilize heterodimeric integrins but that the interactions do not specifically associate particular pairs of alpha and beta subunits; rather, the alpha/beta subunit interaction constrains the extramembranous domains, facilitating signal transduction by a promiscuous transmembrane helix-helix association.
Collapse
Affiliation(s)
- Dirk Schneider
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
26
|
Shmulevitz M, Salsman J, Duncan R. Palmitoylation, membrane-proximal basic residues, and transmembrane glycine residues in the reovirus p10 protein are essential for syncytium formation. J Virol 2003; 77:9769-79. [PMID: 12941885 PMCID: PMC224572 DOI: 10.1128/jvi.77.18.9769-9779.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian reovirus and Nelson Bay reovirus are two unusual nonenveloped viruses that induce extensive cell-cell fusion via expression of a small nonstructural protein, termed p10. We investigated the importance of the transmembrane domain, a conserved membrane-proximal dicysteine motif, and an endodomain basic region in the membrane fusion activity of p10. We now show that the p10 dicysteine motif is palmitoylated and that loss of palmitoylation correlates with a loss of fusion activity. Mutational and functional analyses also revealed that a triglycine motif within the transmembrane domain and the membrane-proximal basic region were essential for p10-mediated membrane fusion. Mutations in any of these three motifs did not influence events upstream of syncytium formation, such as p10 membrane association, protein topology, or surface expression, suggesting that these motifs are more intimately associated with the membrane fusion reaction. These results suggest that the rudimentary p10 fusion protein has evolved a mechanism of inducing membrane merger that is highly dependent on the specific interaction of several different motifs with donor membranes. In addition, cross-linking, coimmunoprecipitation, and complementation assays provided no evidence for p10 homo- or heteromultimer formation, suggesting that p10 may be the first example of a membrane fusion protein that does not form stable, higher-order multimers.
Collapse
Affiliation(s)
- Maya Shmulevitz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
27
|
Agnati LF, Ferré S, Lluis C, Franco R, Fuxe K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol Rev 2003; 55:509-50. [PMID: 12869660 DOI: 10.1124/pr.55.3.2] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular basis for the known intramembrane receptor/receptor interactions among G protein-coupled receptors was postulated to be heteromerization based on receptor subtype-specific interactions between different types of receptor homomers. The discovery of GABAB heterodimers started this field rapidly followed by the discovery of heteromerization among isoreceptors of several G protein-coupled receptors such as delta/kappa opioid receptors. Heteromerization was also discovered among distinct types of G protein-coupled receptors with the initial demonstration of somatostatin SSTR5/dopamine D2 and adenosine A1/dopamine D1 heteromeric receptor complexes. The functional meaning of these heteromeric complexes is to achieve direct or indirect (via adapter proteins) intramembrane receptor/receptor interactions in the complex. G protein-coupled receptors also form heteromeric complexes involving direct interactions with ion channel receptors, the best example being the GABAA/dopamine D5 receptor heteromerization, as well as with receptor tyrosine kinases and with receptor activity modulating proteins. As an example, adenosine, dopamine, and glutamate metabotropic receptor/receptor interactions in the striatopallidal GABA neurons are discussed as well as their relevance for Parkinson's disease, schizophrenia, and drug dependence. The heterodimer is only one type of heteromeric complex, and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist. These complexes may assist in the process of linking G protein-coupled receptors and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for some forms of learning and memory.
Collapse
Affiliation(s)
- Luigi F Agnati
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
28
|
Ozawa M. Lateral dimerization of the E-cadherin extracellular domain is necessary but not sufficient for adhesive activity. J Biol Chem 2002; 277:19600-8. [PMID: 11916976 DOI: 10.1074/jbc.m202029200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cadherins are transmembrane glycoproteins involved in Ca(2+)-dependent cell-cell adhesion. Using L cells coexpressing E-cadherin constructs with different epitope tags, we examined the lateral dimerization of E-cadherin and its adhesive activity by co-immunoprecipitation and aggregation assays, respectively. Although the transmembrane domain is required for dimerization, tail-less constructs possessing the transmembrane domain of either N-cadherin or CD45 show dimerization and are active in aggregation assays. Two mutant constructs having either of two amino acid substitutions, W2A or substitutions that disrupt the recognition sequence for endoproteolytic enzymes involved in removal of the precursor segment, cannot form dimers and are inactive in aggregation. These monomeric proteins, like their wild-type dimerizing counterparts, retain their Ca(2+)-dependent resistance to trypsin digestion, suggesting that dimerization per se does not induce a large conformational change. Two other constructs, having either an amino acid substitution, D134A, or a C-terminal deletion of 70 amino acid residues, retain the ability to associate laterally but are inactive in aggregation assays. Staurosporine treatment of cells expressing the latter construct increases aggregation but does not increase the extent of lateral dimerization. Thus, lateral dimerization is necessary, but not sufficient for adhesive activity.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Department of Biochemistry, Faculty of Medicine, Kagoshima University, Kagoshima 890-8520, Japan.
| |
Collapse
|
29
|
Abstract
Transmembrane helices are no longer believed to be just hydrophobic segments that exist solely to anchor proteins to a lipid bilayer, but rather they appear to have the capacity to specify function and structure. Specific interactions take place between hydrophobic segments within the lipid bilayer whereby subtle mutations that normally would be considered innocuous can result in dramatic structural differences. That such specificity takes place within the lipid bilayer implies that it may be possible to identify the most favorable interaction surface of transmembrane alpha-helices based on computational methods alone, as shown in this study. Herein, an attempt is made to map the energy surface of several transmembrane helix-helix interactions for several homo-oligomerizing proteins, where experimental data regarding their structure exist (glycophorin A, phospholamban, Influenza virus A M2, Influenza virus C CM2, and HIV vpu). It is shown that due to symmetry constraints in homo-oligomers the computational problem can be simplified. The results obtained are mostly consistent with known structural data and may additionally provide a view of possible alternate and intermediate configurations.
Collapse
Affiliation(s)
- J Torres
- Department of Biochemistry, Cambridge Centre for Molecular Recognition, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | |
Collapse
|
30
|
Abstract
Examples of G-protein-coupled receptors that can be biochemically detected in homo- or heteromeric complexes are emerging at an accelerated rate. Biophysical approaches have confirmed the existence of several such complexes in living cells and there is strong evidence to support the idea that dimerization is important in different aspects of receptor biogenesis and function. While the existence of G-protein-coupled-receptor homodimers raises fundamental questions about the molecular mechanisms involved in transmitter recognition and signal transduction, the formation of heterodimers raises fascinating combinatorial possibilities that could underlie an unexpected level of pharmacological diversity, and contribute to cross-talk regulation between transmission systems. Because G-protein-coupled receptors are major pharmacological targets, the existence of dimers could have important implications for the development and screening of new drugs. Here, we review the evidence supporting the existence of G-protein-coupled-receptor dimerization and discuss its functional importance.
Collapse
Affiliation(s)
- M Bouvier
- Department of Biochemistry and Groupe de Recherche sur le système Nerveux Autonome, Faculté de Médecine, Université de Montréal, P.O. Box 6128, Down-Town Station, Montréal, Quebec, H3C 3J7 Canada.
| |
Collapse
|
31
|
Petrache HI, Grossfield A, MacKenzie KR, Engelman DM, Woolf TB. Modulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations. J Mol Biol 2000; 302:727-46. [PMID: 10986130 DOI: 10.1006/jmbi.2000.4072] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Starting from the glycophorin A dimer structure determined by NMR, we performed simulations of both dimer and monomer forms in explicit lipid bilayers with constant normal pressure, lateral area, and temperature using the CHARMM potential. Analysis of the trajectories in four different lipids reveals how lipid chain length and saturation modulate the structural and energetic properties of transmembrane helices. Helix tilt, helix-helix crossing angle, and helix accessible volume depend on lipid type in a manner consistent with hydrophobic matching concepts: the most relevant lipid property appears to be the bilayer thickness. Although the net helix-helix interaction enthalpy is strongly attractive, analysis of residue-residue interactions reveals significant unfavorable electrostatic repulsion between interfacial glycine residues previously shown to be critical for dimerization. Peptide volume is nearly conserved upon dimerization in all lipid types, indicating that the monomeric helices pack equally well with lipid as dimer helices do with one another. Enthalpy calculations indicate that the helix-environment interaction energy is lower in the dimer than in the monomer form, when solvated by unsaturated lipids. In all lipid environments there is a marked preference for lipids to interact with peptide predominantly through one rather than both acyl chains. Although our trajectories are not long enough to allow a full thermodynamic treatment, these results demonstrate that molecular dynamics simulations are a powerful method for investigating the protein-protein, protein-lipid, and lipid-lipid interactions that determine the structure, stability and dynamics of transmembrane alpha-helices in membranes.
Collapse
Affiliation(s)
- H I Petrache
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
32
|
Cohen I, Girard J, Prip-Buus C. Biogenesis of the rat liver mitochondrial carnitine palmitoyltransferase I. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:1-16. [PMID: 10709623 DOI: 10.1007/0-306-46818-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- I Cohen
- Endocrinologie, Métabolisme et Développement CNRS UPR1524, Meudon, France
| | | | | |
Collapse
|
33
|
Shmulevitz M, Duncan R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J 2000; 19:902-12. [PMID: 10698932 PMCID: PMC305630 DOI: 10.1093/emboj/19.5.902] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1999] [Revised: 01/04/2000] [Accepted: 01/12/2000] [Indexed: 11/13/2022] Open
Abstract
The non-enveloped fusogenic avian and Nelson Bay reoviruses encode homologous 10 kDa non-structural transmembrane proteins. The p10 proteins localize to the cell surface of transfected cells in a type I orientation and induce efficient cell-cell fusion. Mutagenic studies revealed the importance of conserved sequence-predicted structural motifs in the membrane association and fusogenic properties of p10. These motifs included a centrally located transmembrane domain, a conserved cytoplasmic basic region, a small hydrophobic motif in the N-terminal domain and four conserved cysteine residues. Functional analysis indicated that the extreme C-terminus of p10 functions in a sequence-independent manner to effect p10 membrane localization, while the N-terminal domain displays a sequence-dependent effect on the fusogenic property of p10. The small size, unusual arrangement of structural motifs and lack of any homologues in previously described membrane fusion proteins suggest that the fusion-associated small transmembrane (FAST) proteins of reovirus represent a new class of membrane fusion proteins.
Collapse
Affiliation(s)
- M Shmulevitz
- Department of Microbiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|
34
|
Ciervo A, Beneduce F, Morace G. Polypeptide 3AB of hepatitis A virus is a transmembrane protein. Biochem Biophys Res Commun 1998; 249:266-74. [PMID: 9705870 DOI: 10.1006/bbrc.1998.9121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis A virus (HAV) protein 3AB is a membrane-interacting protein containing a stretch of 21 hydrophobic amino acid residues. The nature of its membrane association was studied in detail by analysing various deletion mutants. In vivo and in vitro expression of the wild-type protein and its mutants allowed to demonstrate that the hydrophobic domain interacts with membranes and to define the portions essential for this feature. Furthermore, the results suggest that 3AB behaves as an integral membrane protein. Expression in Escherichia coli showed that 3AB can be isolated, in association with membranes, both in monomeric and in dimeric form. This finding was confirmed in vitro after post-translational incubation of the protein with microsomal membranes. Analysis of deletion mutants demonstrated that the dimerization region colocalises with the hydrophobic transmembrane domain, implicating that HAV 3AB could form oligomers mediated by the interaction of transmembrane alpha-helices.
Collapse
Affiliation(s)
- A Ciervo
- Laboratory of Virology, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
35
|
Woolf TB. Molecular dynamics simulations of individual alpha-helices of bacteriorhodopsin in dimyristoylphosphatidylcholine. II. Interaction energy analysis. Biophys J 1998; 74:115-31. [PMID: 9449316 PMCID: PMC1299368 DOI: 10.1016/s0006-3495(98)77773-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The concepts of hydrophobicity and hydrophobic moments have been applied in attempts to predict membrane protein secondary and tertiary structure. The current paper uses molecular dynamics computer calculations of individual bacteriorhodopsin helices in explicit dimyristoylphosphatidylcholine bilayers to examine the atomic basis of these approaches. The results suggest that the types of interactions between a particular amino acid and the surrounding bilayer depend on the position and type of the amino acid. In particular, aromatic residues are seen to interact favorably at the interface region. Analysis of the trajectories in terms of hydrophobic moments suggests the presence of a particular face that prefers lipid. The results of these simulations may be used to improve secondary structure prediction methods and to provide further insights into the two-stage model of protein folding.
Collapse
Affiliation(s)
- T B Woolf
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
36
|
Abstract
The passage of molecules and information across cell membranes is mediated largely by membrane-spanning proteins acting as channels, pumps, receptors and enzymes. These proteins perform many tasks: they control electrochemical gradients across the membrane, receive signals from the environment or from other cells, convert light energy into chemical signals, transport small molecules into and out of cells, and harness proton gradients to generate the energy consumed in metabolism. Indeed, of the estimated 50000–100000 genes in the human genome, fully 20–40 % are thought to encode integral membrane proteins. If one also includes membrane-associated proteins, which are attached to the membrane surface through fatty acyl chains or electrostatic interactions, this percentage is likely to be much higher.
Collapse
Affiliation(s)
- S O Smith
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
37
|
Bakás L, Ostolaza H, Vaz WL, Goñi FM. Reversible adsorption and nonreversible insertion of Escherichia coli alpha-hemolysin into lipid bilayers. Biophys J 1996; 71:1869-76. [PMID: 8889162 PMCID: PMC1233654 DOI: 10.1016/s0006-3495(96)79386-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alpha-Hemolysin is an extracellular protein toxin (107 kDa) produced by some pathogenic strains of Escherichia coli. Although stable in aqueous medium, it can bind to lipid bilayers and produce membrane disruption in model and cell membranes. Previous studies had shown that toxin binding to the bilayer did not always lead to membrane lysis. In this paper, we find that alpha-hemolysin may bind the membranes in at least two ways, a reversible adsorption and an irreversible insertion. Reversibility is detected by the ability of liposome-bound toxin to induce hemolysis of added horse erythrocytes; insertion is accompanied by an increase in the protein intrinsic fluorescence. Toxin insertion does not necessarily lead to membrane lysis. Studies of alpha-hemolysin insertion into bilayers formed from a variety of single phospholipids, or binary mixtures of phospholipids, or of phospholipid and cholesterol, reveal that irreversible insertion is favored by fluid over gel states, by low over high cholesterol concentrations, by disordered liquid phases over gel or ordered liquid phases, and by gel over ordered liquid phases. These results are relevant to the mechanism of action of alpha-hemolysin and provide new insights into the membrane insertion of large proteins.
Collapse
Affiliation(s)
- L Bakás
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | |
Collapse
|
38
|
Clarke DJ, Jacq A, Holland IB. A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology. Mol Microbiol 1996; 20:1273-86. [PMID: 8809778 DOI: 10.1111/j.1365-2958.1996.tb02646.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe a novel Escherichia coli protein, DjlA, containing a highly conserved J-region motif, which is present in the DnaJ protein chaperone family and required for interaction with DnaK. Remarkably, DjlA is shown to be a membrane protein, localized to the inner membrane with the unusual Type III topology (N-out, C-in). Thus, DjlA appears to present an extremely short N-terminus to the periplasm and has a single transmembrane domain (TMD) and a large cytoplasmic domain containing the C-terminal J-region. Analysis of the TMD of DjlA and recently identified homologues in Coxiella burnetti and Haemophilus influenzae revealed a striking pattern of conserved glycines (or rarely alanine), with a four-residue spacing. This motif, predicted to form a spiral groove in the TMD, is more marked than a repeating glycine motif, implicated in the dimerization of TMDs of some eukaryotic proteins. This feature of DjlA could represent a promiscuous docking mechanism for interaction with a variety of membrane proteins. DjlA null mutants can be isolated but these appear rapidly to accumulate suppressors to correct envelope and growth defects. Moderate (10-fold) overproduction of DjlA suppresses a mutation in FtsZ but markedly perturbs cell division and cell-envelope growth in minimal medium. We propose that DjlA plays a role in the correct assembly, activity and/or maintenance of a number of membrane proteins, including two-component signal-transduction systems.
Collapse
Affiliation(s)
- D J Clarke
- Institut de Génétique et Microbiologie, URA 1354, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
39
|
Sahin-Tóth M, Kaback HR, Friedlander M. Association between the amino- and carboxyl-terminal halves of lactose permease is specific and mediated by multiple transmembrane domains. Biochemistry 1996; 35:2016-21. [PMID: 8639686 DOI: 10.1021/bi952496g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lactose permease of Escherichia coli is a polytopic membrane transport protein containing 12 membrane-spanning segments. When the amino (N6)- and carboxy (C6)-terminal halves are expressed as separate gene fragments, association of the first half (N6) of the permease with the second half (C6) is necessary for stable insertion of C6 [Bibi, E., & Kaback, H. R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4325-4329]. In this report we demonstrate that N6-C6 interaction is specific, since N6 fragments derived from the structurally related tetracycline or sucrose transporters are unable to stabilize insertion of C6 from lactose permease. Furthermore, this association appears to be mediated by multiple transmembrane domains, since co-expression of progressively truncated N-terminal fragments (N5, N4, N3, N2, N1) with C6 leads to markedly decreased, but detectable amounts of C6 in the membrane. The results indicate that the N- and C-terminal six transmembrane domains of lactose permease are integrated into the membrane as separate units, and insertion of the C-terminal half is directed by specific interactions with the N-terminal half of the protein.
Collapse
Affiliation(s)
- M Sahin-Tóth
- Robert Mealey Laboratory for the Study of Macular Degenerations, Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
40
|
Repke KR, Sweadner KJ, Weiland J, Megges R, Schön R. In search of ideal inotropic steroids: recent progress. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1996; 47:9-52. [PMID: 8961763 DOI: 10.1007/978-3-0348-8998-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K R Repke
- Max Delbrück Center of Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
41
|
von Heijne G. Principles of membrane protein assembly and structure. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 66:113-39. [PMID: 9175426 DOI: 10.1016/s0079-6107(97)85627-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- G von Heijne
- Department of Biochemistry, Stockholm University, Sweden
| |
Collapse
|
42
|
Repke KR, Weiland J, Megges R, Schön R. Modeling of the three-dimensional structure of the digitalis intercalating matrix in Na+/K(+)-ATPase protodimer. JOURNAL OF ENZYME INHIBITION 1996; 10:147-57. [PMID: 8835940 DOI: 10.3109/14756369609030308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Based on the knowledge that the digitalis receptor site in Na+/K(+)-ATPase is the interface between two interacting alpha-subunits of the protodimer (alpha beta)2, the present review makes an approach towards modeling the three-dimensional structure of the digitalis intercalating matrix by exploiting the information on: the primary structure and predicted membrane topology of the catalytic alpha-subunit; the determinants of the secondary, tertiary and quaternary structure of the membrane-spanning protein domains; the impact of mutational amino acid substitutions on the affinity of digitalis compounds, and the structural characteristics in potent representatives. The designed model proves its validity by allowing quantitative interpretations of the contributions of distinct amino acid side chains to the special bondings of the three structural elements of digitalis compounds.
Collapse
Affiliation(s)
- K R Repke
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
The current libraries of amino acid sequences of membrane proteins are a valuable resource for the analysis of elements common to these proteins. Multiple-sequence alignment techniques and the identification of conserved features of transmembrane segments have improved the prediction of membrane protein topology. Molecular modeling in combination with structural studies or site-directed mutagenesis is proving to be a powerful link between theory and experiment. Unfortunately, the number of high-resolution structures of intrinsic membrane proteins, although increased recently, presents a restricted and perhaps biased view of membrane protein structure.
Collapse
|
44
|
Haltia T, Freire E. Forces and factors that contribute to the structural stability of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:295-322. [PMID: 7640299 DOI: 10.1016/0304-4157(94)00161-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While a considerable amount of literature deals with the structural energetics of water-soluble proteins, relatively little is known about the forces that determine the stability of membrane proteins. Similarly, only a few membrane protein structures are known at atomic resolution, although new structures have recently been described. In this article, we review the current knowledge about the structural features of membrane proteins. We then proceed to summarize the existing literature regarding the thermal stability of bacteriorhodopsin, cytochrome-c oxidase, the band 3 protein, Photosystem II and porins. We conclude that a fundamental difference between soluble and membrane proteins is the high thermal stability of intrabilayer secondary structure elements in membrane proteins. This property manifests itself as incomplete unfolding, and is reflected in the observed low enthalpies of denaturation of most membrane proteins. By contrast, the extramembranous parts of membrane proteins may behave much like soluble proteins. A brief general account of thermodynamics factors that contribute to the stability of water soluble and membrane proteins is presented.
Collapse
Affiliation(s)
- T Haltia
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
45
|
Haltia T, Freire E. Forces and factors that contribute to the structural stability of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1228:1-27. [PMID: 7857960 DOI: 10.1016/0005-2728(94)00161-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
While a considerable amount of literature deals with the structural energetics of water-soluble proteins, relatively little is known about the forces that determine the stability of membrane proteins. Similarly, only a few membrane protein structures are known at atomic resolution, although new structures have recently been described. In this article, we review the current knowledge about the structural features of membrane proteins. We then proceed to summarize the existing literature regarding the thermal stability of bacteriorhodopsin, cytochrome-c oxidase, the band 3 protein, Photosystem II and porins. We conclude that a fundamental difference between soluble and membrane proteins is the high thermal stability of intrabilayer secondary structure elements in membrane proteins. This property manifests itself as incomplete unfolding, and is reflected in the observed low enthalpies of denaturation of most membrane proteins. By contrast, the extramembranous parts of membrane proteins may behave much like soluble proteins. A brief general account of thermodynamics factors that contribute to the stability of water soluble and membrane proteins is presented.
Collapse
Affiliation(s)
- T Haltia
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|