1
|
Kunkler CN, Hulewicz JP, Hickman SC, Wang MC, McCown PJ, Brown JA. Stability of an RNA•DNA-DNA triple helix depends on base triplet composition and length of the RNA third strand. Nucleic Acids Res 2019; 47:7213-7222. [PMID: 31265072 PMCID: PMC6698731 DOI: 10.1093/nar/gkz573] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA–DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA–DNA triple helices is not well understood beyond the canonical U•A–T and C•G–C base triplets. Using native gel-shift assays, the relative stability of 16 different base triplets at a single position, Z•X–Y (where Z = C, U, A, G and X–Y = A–T, G–C, T–A, C–G), in an RNA•DNA–DNA triple helix was determined. The canonical U•A–T and C•G–C base triplets were the most stable, while three non-canonical base triplets completely disrupted triple-helix formation. We further show that our RNA•DNA–DNA triple helix can tolerate up to two consecutive non-canonical A•G–C base triplets. Additionally, the RNA third strand must be at least 19 nucleotides to form an RNA•DNA–DNA triple helix but increasing the length to 27 nucleotides does not increase stability. The relative stability of 16 different base triplets in DNA•DNA–DNA and RNA•RNA–RNA triple helices was distinctly different from those in RNA•DNA–DNA triple helices, showing that base triplet stability depends on strand composition being DNA and/or RNA. Multiple factors influence the stability of triple helices, emphasizing the importance of experimentally validating formation of computationally predicted triple helices.
Collapse
Affiliation(s)
- Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sarah C Hickman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Matthew C Wang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Phillip J McCown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
2
|
Gowers DM, Bijapur J, Brown T, Fox KR. DNA triple helix formation at target sites containing several pyrimidine interruptions: stabilization by protonated cytosine or 5-(1-propargylamino)dU. Biochemistry 1999; 38:13747-58. [PMID: 10521282 DOI: 10.1021/bi9911637] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNase I footprinting has been used to study the formation of parallel triplexes at oligopurine target sequences which are interrupted by pyrimidines at regular intervals. TA interruptions are targeted with third strand oligonucleotides containing guanine, generating G x TA triplets, while CG base pairs are targeted with thymine, forming T x CG triplets. We have attempted to optimize the stability of these complexes by varying the base composition and sequence arrangement of the target sites, and by replacing the third strand thymines with the positively charged analogue 5-(1-propargylamino)dU (U(P)). For the target sequence (AAAT)(5)AA, in which pyrimidines are positioned at every fourth residue, triplex formation with TG-containing oligonucleotides is only detected in the presence of a triplex-binding ligand, though stable triplexes were detected at the target site (AAAAAT)(3)AAAA. Triplex stability at targets containing pyrimidines at every fourth residue is increased by introducing guanines into the duplex repeat unit using the targets (AGAT)(5)AA and (ATGA)(5)AA. In contrast, placing C(+) x GC triplets on the 5'-side of G x TA, using the target (AGTA)(5)TT, produces complexes of lower stability. We have attempted further to increase the stability of these complexes by using the positively charged thymine base analogue U(P), and have shown that (TU(P)TG)(5)TT forms a more stable complex with target (AAAT)(5)AA than the unmodified third strand, generating a footprint in the absence of a triplex-binding ligand. Triplex formation at (AGTA)(5)AA is improved by using the modified oligonucleotide (TCGU(P))(5)TT, generating a complex in which the charged triplets C(+) x GC and U(P) x AT alternate with uncharged triplets. In contrast, placing U(P) x AT triplets adjacent to C(+) x GC, using the third strand oligonucleotide (U(P)CGT)(5)TT, reduces triplex formation, while the third strand with both substitutions, (U(P)CGU(P))(5)TT, produces a complex with intermediate stability. It appears that, although adjacent U(P) x AT triplets form stable triplexes, placing U(P) x AT adjacent to C(+) x GC is unfavorable. Similar results were obtained with fragments containing CG inversions within the oligopurine tract, though triplexes at (AAAAAC)(3)AA were only detected in the presence of a triplex-binding ligand. Placing C(+) x GC on the 5'-side of T x CG triplets also reduces triplex formation, while a 3'-C(+) x GC produces complexes with increased stability.
Collapse
Affiliation(s)
- D M Gowers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, U.K
| | | | | | | |
Collapse
|
3
|
Xodo LE, Manzini G, Quadrifoglio F. Formation of stable DNA triple helices within the human bcr promoter at a critical oligopurine target interrupted in the middle by two adjacent pyrimidines. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:477-88. [PMID: 9918112 DOI: 10.1089/oli.1.1998.8.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antigene strategies based on the use of triplex-forming oligonucleotides (TFO) as artificial repressors are constrained by the need for genomic targets with a polypurine-polypyrimidine [poly (R.Y)] DNA motif. In this study, we demonstrate that both A/G and G/T motif oligonucleotides recognize and bind strongly to a critical polypurine sequence interrupted in the middle by two adjacent cytosines and located in the promoter of the human bcr gene at the transcription initiation. The interaction between the designed TFO and this irregular poly (R.Y) target has been studied using a number of techniques, including electrophoretic mobility shift assay (EMSA), circular dichroism (CD), DNase I, and dimethyl sulfate (DMS) footprinting. Although CD shows that the 24-mer TFO self-aggregate in solution, they bind to the bcr target at 37 degrees C, forming stable triplexes that do not dissociate during electrophoretic runs performed up to 50 degrees C in 50 mM Tris-acetate, pH 7.4, 10 mM MgCl2, 50 mM NaCl (buffer A). We used EMSA to determine the equilibrium dissociation constants (Kd) for the reaction T <==> D + TFO at 37 degrees C, either in buffer A or in 50 mM Tris-acetate, pH 7.4, 10 mM MgCl2, 5 mM NaCl (buffer B). The triplexes were found to be more stable in buffer B, a behavior that can be rationalized in terms of monovalent and divalent cation competition for binding to DNA. Footprinting experiments showed that the TFO interact with the irregular poly (R.Y) target in a highly sequence-specific way and that the A/G motif oligonucleotide, juxtaposing T to the double CG inversions of the target, formed the most stable triplex (e.g., 1 microM TFO promoted strong footprints at 37 degrees C). These triplexes, except the one containing two A.C.G mismatched triads, are not destabilized under near physiologic conditions, that is, in 50 mM Tris-acetate, pH 7.4, 80 mM KCl, 20 mM NaCl, 2 mM spermidine. Moreover, we found that guanine N7 in T.C.G and guanine N7 in A.C.G are both accessible to DMS and that the first is less reactive than the second. In conclusion, the results of this study indicate that a critical sequence in the human ber promoter may be used as a potential binding site for TFO designed to repress artificially the transcription of the fused bcr/abl gene expressed in leukemia cells.
Collapse
Affiliation(s)
- L E Xodo
- Department of Biomedical Sciences and Technologies, School of Medicine, University of Udine, Italy
| | | | | |
Collapse
|
4
|
Gowers DM, Fox KR. Triple helix formation at (AT)n adjacent to an oligopurine tract. Nucleic Acids Res 1998; 26:3626-33. [PMID: 9685475 PMCID: PMC147756 DOI: 10.1093/nar/26.16.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used DNase I footprinting to investigate the recognition of (AT) n tracts in duplex DNA using GT-containing oligonucleotides designed to form alternating G.TA and T.AT triplets. Previous studies have shown that the formation of these complexes is facilitated by anchoring the triplex with a block of adjacent T.AT triplets, i.e. using T11(TG)6to recognize the target A11(AT)6. (AT)6T11. In the present study we have examined how the stability of these complexes is affected by the length of either the T.AT tract or the region of alternating G.TA and T.AT triplets, using oligonucleotides of type T x (TG) y to recognize the sequence A11(AT)11. We find that successful triplex formation at (AT)n (n = 3, 6 or 11) can be achieved with a stabilizing tail of 11xT.AT triplets. The affinity of the third strand increases with the length of the (GT) n tract, suggesting that the alternating G.TA and T.AT triplets are making a positive contribution to stability. These complexes are stabilized by the presence of manganese or a triplex-specific binding ligand. Shorter oligo-nucleotides, such as T7(TG)5, bind less tightly and require the addition of a triplex-binding ligand. T4(GT)5showed no binding under any conditions. Oligo-nucleotides forming a 3'-terminal T.AT are marginally more stable that those with a terminal G.TA. The stability of these complexes was further increased by replacing two of the T.AT triplets in the T n tail region with two C+.GC triplets.
Collapse
Affiliation(s)
- D M Gowers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
5
|
Gowers DM, Fox KR. DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines. Nucleic Acids Res 1997; 25:3787-94. [PMID: 9380499 PMCID: PMC146974 DOI: 10.1093/nar/25.19.3787] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used DNase I footprinting to assess the formation of triple helices at 15mer oligopurine target sites which are interrupted by several (up to four) adjacent central pyrimidine residues. Third strand oligonucleotides were designed to generate complexes containing central (X.TA)nor (X.CG)n triplets (X = each base in turn) surrounded by C+.GC and T.AT triplets. It has previously been shown that G.TA and T.CG are the most stable triplets for recognition of single TA and CG interruptions. We show that these triplets are the most useful for recognizing consecutive pyrimidine interruptions and find that addition of each pyrimidine residue leads to a 30-fold decrease in third strand affinity. The addition of 10 microM naphthylquinoline triplex-binding ligand stabilizes each complex so that all the oligonucleotides produce footprints at similar concentrations (0.3 microM). Targets containing two pyrimidines are only bound by oligonucleotides generating (G.TA)2 and (T.CG)2 with a further 30-fold decrease in affinity. (G.TA)2 is slightly more stable than (T.CG)2. In the presence of the triplex-binding ligand the order of stability is (G.TA)2 > (C.TA)2 > (T.TA)2 > (A.TA)2 and (T.CG)2 > (C.CG)2 > (G.CG)2 = (A.CG)2. No oligonucleotide footprints are generated at target sites containing three consecutive pyrimidines, though addition of 10 microM triplex-binding ligand produces stable complexes with oligonucleotides generating (G.TA)3, (T.CG)3 and (C.CG)3, with a further 30-fold reduction in affinity. No footprints are generated at targets containing four Ts, though the ligand induces a weak interaction with the oligonucleotide generating (T.CG)4.
Collapse
Affiliation(s)
- D M Gowers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | |
Collapse
|
6
|
Choi SD, Kim MS, Kim SK, Lincoln P, Tuite E, Nordén B. Binding mode of [ruthenium(II) (1,10-phenanthroline)2L]2+ with poly (dT*dA-dT) triplex. Ligand size effect on third-strand stabilization. Biochemistry 1997; 36:214-23. [PMID: 8993336 DOI: 10.1021/bi961675a] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The binding of homochiral [Ru(II)(1,10-phenanthroline)2L]2+ complexes [where [L = 1,10-phenanthroline (phen), dipyrido[3,2-a:2',3'-c]phenazine (DPPZ) or benzodipyrido[3,2-a:2',3'-c]phenazine (BDPPZ)] to poly(dT*dA-dT) triplex has been investigated by linear and circular dichroism and thermal denaturation. Analysis of the linear dichroism spectra indicates that the extended DPPZ and BDPPZ ligands lie approximately parallel to the base-pair and base-triplet planes consistent with intercalation which is also supported by strong hypochromism in the interligand absorption bands with either duplex or triplex. The spectral properties of any of the metal complex enantiomers were similar for binding to either duplex or triplex DNA, indicating that the third strand, which occupies the major groove of the template duplex, has little effect on the binding geometries and hence supports the hypothesis that the metal complexes all bind from the minor groove with the DPPZ and BDPPZ ligands intercalated but without intercalation in the case of [Ru(phen)3]2+. Third-strand stabilization depended on the nature of the third substituted phenanthroline chelate ligand but was not directly related to its size, with stabilizing power increasing in the order phen < BDPPZ < DPPZ. This observation further supports intercalation of the extended ligands from the minor groove of the triplex since the extended BDPPZ ligand that would protrude into the major groove of the template would have greater steric interference than DPPZ with the third DNA strand.
Collapse
Affiliation(s)
- S D Choi
- Department of Chemistry, College of Sciences, Yeungnam University, Kyoung-buk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Cassidy SA, Strekowski L, Fox KR. DNA sequence specificity of a naphthylquinoline triple helix-binding ligand. Nucleic Acids Res 1996; 24:4133-8. [PMID: 8932362 PMCID: PMC146223 DOI: 10.1093/nar/24.21.4133] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have examined the effect of a naphthylquinoline triplex-binding ligand on the formation of intermolecular triplexes on DNA fragments containing the target sites A6G6xC6T6 and G6A6xT6C6. The ligand enhances the binding of T6C2, but not T2C6, to A6G6xC6T6 suggesting that it has a greater effect on TxAT than C+xGC triplets. The complex with T6C2 is only stable below pH 6.0, confirming the requirement for protonation of the third strand cytosines. Antiparallel triplexes with GT-containing oligonucleotides are also stabilised by the ligand. The complex between G5T5 and A6G6xC6T6 is stabilised by lower ligand concentrations than that between T5G5 and G6A6xC6T6. The ligand does not promote the interaction with GT-containing oligonucleotides which have been designed to bind in a parallel orientation. Although the formation of antiparallel triplexes is pH independent, we find that the ligand has a greater stabilising effect at lower pH, suggesting that the active species is protonated. The ligand does not promote the binding of antiparallel GA-containing oligonucleotides at pH 7.5 but induces the interaction between A5G5 and G6A6xT6C6 at pH 5.5. Ethidium bromide does not promote the formation of any of these triplexes and destabilises the interaction of acridine-linked pyrimidine-containing third strands with these target sites.
Collapse
Affiliation(s)
- S A Cassidy
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK
| | | | | |
Collapse
|
8
|
Faucon B, Mergny JL, Héléne C. Effect of third strand composition on the triple helix formation: purine versus pyrimidine oligodeoxynucleotides. Nucleic Acids Res 1996; 24:3181-8. [PMID: 8774898 PMCID: PMC146071 DOI: 10.1093/nar/24.16.3181] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Exon 5 of the human aprt gene contains an oligo-purine-oligopyrimidine stretch of 17 bp (5'-CCCTCTTCTCTCTCCT-3') within the coding region. (T,C)-, (G,T)- and (G,A)-containing oligonucleotides were compared for their ability to form stable triple helices with their DNA target. (G,T) oligodeoxynucleotides, whether parallel or antiparallel, were unable to bind to this sequence. This is in contrast to (G,A) (purine) and (T,C) (pyrimidine) oligonucleotides, which bind to the duplex at near neutral pH. Binding was highly sequence specific, as unrelated competitors were unable to interfere with target recognition. A major difference between the purine and pyrimidine oligodeoxynucleotides was observed in the kinetics of binding: the (G,A) oligonucleotide binds to its target much faster than the (T,C) oligomer. With the purine oligonucleotide, complete binding was achieved in a matter of minutes at micromolar concentrations, whereas several hours were required with the pyrimidine oligomer. Thus, the general observation that triplex formation is slow with pyrimidine oligodeoxynucleotides does not hold for (G,A) oligodeoxynucleotides. Purine and pyrimidine oligodeoxynucleotides covalently linked to a psoralen group were able to induce crosslinks on the double-stranded DNA target upon UV irradiation. This study provides a detailed comparison of the different types of DNA triplexes under the same experimental conditions.
Collapse
Affiliation(s)
- B Faucon
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U201, CNRS UA481, Paris, France
| | | | | |
Collapse
|
9
|
Sasaki S, Nakashima S, Nagatsugi F, Tanaka Y, Hisatome M, Maeda M. Design of a novel artificial nucleobase for the selective formation of a triple-complex with a cytosine-guanine base pair. Tetrahedron Lett 1995. [DOI: 10.1016/0040-4039(95)02064-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|