1
|
Hathout Y, Marathi RL, Rayavarapu S, Zhang A, Brown KJ, Seol H, Gordish-Dressman H, Cirak S, Bello L, Nagaraju K, Partridge T, Hoffman EP, Takeda S, Mah JK, Henricson E, McDonald C. Discovery of serum protein biomarkers in the mdx mouse model and cross-species comparison to Duchenne muscular dystrophy patients. Hum Mol Genet 2014; 23:6458-69. [PMID: 25027324 DOI: 10.1093/hmg/ddu366] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.
Collapse
Affiliation(s)
- Yetrib Hathout
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA,
| | - Ramya L Marathi
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sree Rayavarapu
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Aiping Zhang
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Kristy J Brown
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Haeri Seol
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Heather Gordish-Dressman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Sebahattin Cirak
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Luca Bello
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Terry Partridge
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Ogawa-higashi, Kodaira Tokyo 187-0031, Japan
| | - Jean K Mah
- Department of Pediatrics, Alberta Children's Hospital, Calgary, AB, Canada T3B 6A8 and
| | - Erik Henricson
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| | - Craig McDonald
- Department of Physical Medicine and Rehabilitation, University of California, Davis School of Medicine, Davis, CA 95618, USA
| |
Collapse
|
2
|
Westermann CM, Dorland L, van Diggelen OP, Schoonderwoerd K, Bierau J, Waterham HR, van der Kolk JH. Decreased oxidative phosphorylation and PGAM deficiency in horses suffering from atypical myopathy associated with acquired MADD. Mol Genet Metab 2011; 104:273-8. [PMID: 21843962 DOI: 10.1016/j.ymgme.2011.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 11/27/2022]
Abstract
Earlier research on ten horses suffering from the frequently fatal disorder atypical myopathy showed that MADD (multiple acyl-CoA dehydrogenase deficiency) is the biochemical derangement behind atypical myopathy. From five horses that died as a result of this disease and seven healthy control horses, urine and plasma were collected ante mortem and muscle biopsies were obtained immediately post-mortem (2 patients and 7 control horses), to analyse creatine, purine and carbohydrate metabolism as well as oxidative phosphorylation. In patients, the mean creatine concentration in urine was increased 17-fold and the concentration of uric acid approximately 4-fold, compared to controls. The highest degree of depletion of glycogen was observed in the patient with the most severe myopathy clinically. In this patient, glycolysis was more active than in the other patients and controls, which may explain this depletion. One patient demonstrated very low phosphoglycerate mutase (PGAM) activity, less than 10% of reference values. Most respiratory chain complex activity in patients was 20-30% lower than in control horses, complex II activity was 42% lower than normal, and one patient had severely decrease ATP-synthase activity, more than 60% lower than in control horses. General markers for myopathic damage are creatine kinase (CK) and lactic acid in plasma, and creatine and uric acid in urine. To obtain more information about the cause of the myopathy analysis of carbohydrate, lipid and protein metabolism as well as oxidative phosphorylation is advised. This study expands the diagnostic possibilities of equine myopathies.
Collapse
Affiliation(s)
- C M Westermann
- Department of Equine Sciences, Medicine Section, Faculty of Veterinary Medicine, Yalelaan 114, 3584 CM, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
3
|
Durany N, Carballo E, Joseph J, Bedini JL, Bartrons R, Ballesta AM, Carreras J. Activity of phosphoglycerate mutase and its isoenzymes in serum after acute myocardial infarction. Mol Pathol 2010; 49:M298-300. [PMID: 16696092 PMCID: PMC408076 DOI: 10.1136/mp.49.5.m298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims/background-In humans there are three phosphoglycerate mutase (PGM, EC 5.4.12.1) isoenzymes (MM, MB and BB) which have similar distribution and developmental pathways to creatine kinase (CK, EC 2.7.3.2) isoenzymes. Total serum PGM activity increases in acute myocardial infarction with the same time course as creatine kinase activity. The present study was undertaken to determine changes in the activity of PGM and its isoenzymes after acute myocardial infarction.Methods-PGM activity was measured spectrophotometrically, by coupling the formation of 2-phosphoglycerate from 3-phosphoglycerate with enolase, pyruvate kinase and lactate dehydrogenase catalysed reactions. Inter- and intra-assay reproducibility was assessed. PGM isoenzyme activities were measured using cellulose acetate electrophoresis.Results-Total PGM activity in serum was increased in patients with a confirmed diagnosis of acute myocardial infarction. PGM activity peaked 12 to 24 hours after the onset of symptoms and returned to normal values within 48 hours. Electrophoretic analysis of serum from healthy subjects showed a band corresponding to BB-PGM and two other artefactual bands that did not correspond to adenylate kinase. After myocardial infarction, BB-PGM activity increased and MB-PGM and MM-PGM could be detected. On immunoblot analysis, normal serum contained an inactive form of MM-PGM with a smaller molecular weight than that of PGM tissue isoenzymes.Conclusions-Total serum PGM activity increased in patients with acute myocardial infarction, following the same temporal course as creatine kinase activity. The increase in MM-PGM and MB-PGM activities in these patients was not as high as expected. It is suggested that PGM isoenzymes, after release into the blood, undergo postsynthetic, probably proteolytic, transformation.
Collapse
Affiliation(s)
- N Durany
- Unit of Biochemistry, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
4
|
Durany N, Carreras J, Valentí M, Cámara J, Carreras J. Inactivation of phosphoglycerate mutase and creatine kinase isoenzymes in human serum. Mol Pathol 2002; 55:242-9. [PMID: 12147715 PMCID: PMC1187187 DOI: 10.1136/mp.55.4.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS/BACKGROUND Total phosphoglycerate mutase (PGM) activity in serum has been shown to be increased in acute myocardial infarction with the same time course as creatine kinase (CK) activity. However, the increase in the muscle (MM) and in the cardiac (MB) PGM isoenzymes was not as high as expected. The present study was undertaken to characterise PGM inactivation by serum and to compare it with serum CK inactivation. METHODS The PGM and the CK activities of extracts of human heart, skeletal muscle, and brain were determined spectrophotometrically after incubation with different media, namely: plasma, whole serum, dialysed serum, heated serum, serum ultrafiltrate, urate solution, and buffer solution. RESULTS Type MM PGM was inactivated by plasma, whole serum, heated serum, dialysed serum, and serum ultrafiltrate. Inactivation in dialysed serum was reduced by EDTA and largely reversed by thiol agents. Inactivation in serum ultrafiltrate was not prevented by EDTA and only partially reversed by dithiothreitol. The muscle and type BB CK isoenzymes were inactivated in all the tested media. The incubation of human and rabbit skeletal muscle PGM and CK in urate solution showed that urate does not affect mutase activity under conditions that inactivate CK. CONCLUSIONS These results confirm the mechanisms of CK inactivation proposed by others and show that the type M PGM subunit is inactivated by two different mechanisms, which appear to involve the thiol groups of the enzyme. One mechanism is caused by either a protein component or a protein bound serum component and involves calcium ions and/or another chelatable metal ion. The other mechanism is caused by a lower molecular weight serum component and is metal ion independent.
Collapse
Affiliation(s)
- N Durany
- Health Science Faculty, International University of Catalunya, Gomera s/n, 08190-St Cugat del Vallés, Barcelona, Spain
| | | | | | | | | |
Collapse
|
6
|
Nagy B, Samaha FJ. Membrane defects in Duchenne dystrophy: protease affecting sarcoplasmic reticulum. Ann Neurol 1986; 20:50-6. [PMID: 3527039 DOI: 10.1002/ana.410200109] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human muscle sarcoplasmic reticulum (SR) yields three major protein bands. The percent distribution of the mean values of the bands from 15 normal human muscles was 55.4, 14.6, and 30.0 for the 100, 55, and 45-kDa mass proteins, respectively. A mean distribution similar to that in normal muscle SR was found in preparations from 7 patients with polymyositis and from 7 patients with myotonic dystrophy. In 12 preparations from patients with Duchenne dystrophy, the protein distribution differed from that of preparations from normal muscle. The 100-kDa mass protein band was decreased, whereas the 55- and 45-kDa mass bands were increased. Protease inhibitors pepstatin A, antipain, and leupeptin, as well as ethyleneglycol-bis(aminoethyl ether)-N,N,N',N'-tetraacetic acid or ethylenediaminetetraacetic acid, significantly reduced this change. However, some of the changes cannot be prevented by the addition of inhibitors and must be expressed in vivo. Neither protease inhibitors nor chelators affected SR preparations from normal muscle. We found a five- to ten-fold increase in calcium-activated neutral protease activity in Duchenne dystrophic muscles that degraded the calcium-adenosinetriphosphatase of SR. The active protease was identified as the cytoplasmic calpain II. The increased activity in Duchenne muscles may explain many reported abnormalities.
Collapse
|
7
|
Nicholls DM, Teichert-Kuliszewska K, Kuliszewski MJ. Glyceraldehyde-3-phosphate dehydrogenase mRNA. Activity and amount in dystrophic hamster muscle. J Neurol Sci 1986; 73:97-110. [PMID: 3701372 DOI: 10.1016/0022-510x(86)90068-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The activity and amount of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in muscle of young dystrophic hamsters was reduced to approximately half the level found in control animals. No changes in brain or liver enzyme activity were found. Several other glycolytic enzyme activities and creatine kinase activity in muscle were unchanged, except for modest decreases in aldolase and pyruvate kinase. To assess the synthesis of glyceraldehyde-3-phosphate dehydrogenase, the poly(A)+ RNA was isolated from muscle polysomes of dystrophic and control animals and its activity was assessed in an mRNA-dependent translation system. The translatability of the mRNA for GAPDH found in the dystrophic muscle preparations also was half of that found in the control muscle preparations. Decreases were also found in the translatability of mRNA for tropomyosin.
Collapse
|