1
|
Magro G, Laterza V, Tosto F. Leigh Syndrome: A Comprehensive Review of the Disease and Present and Future Treatments. Biomedicines 2025; 13:733. [PMID: 40149709 PMCID: PMC11940177 DOI: 10.3390/biomedicines13030733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Leigh syndrome (LS) is a severe neurodegenerative condition with an early onset, typically during early childhood or infancy. The disorder exhibits substantial clinical and genetic diversity. From a clinical standpoint, Leigh syndrome showcases a broad range of irregularities, ranging from severe neurological issues to minimal or no discernible abnormalities. The central nervous system is most affected, resulting in psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also experience involvement of the peripheral nervous system, such as polyneuropathy or myopathy, as well as non-neurological anomalies, such as diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). Mutations associated with Leigh syndrome impact genes in both the mitochondrial and nuclear genomes. Presently, LS remains without a cure and shows limited response to various treatments, although certain case reports suggest potential improvement with supplements. Ongoing preclinical studies are actively exploring new treatment approaches. This review comprehensively outlines the genetic underpinnings of LS, its current treatment methods, and preclinical investigations, with a particular focus on treatment.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| | - Vincenzo Laterza
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Federico Tosto
- Department of Neuroscience, “Giovanni Paolo II” Hospital, 88100 Lamezia Terme, Italy
| |
Collapse
|
2
|
Walker MA, Miranda M, Allred A, Mootha VK. On the dynamic and even reversible nature of Leigh syndrome: Lessons from human imaging and mouse models. Curr Opin Neurobiol 2021; 72:80-90. [PMID: 34656053 PMCID: PMC8901530 DOI: 10.1016/j.conb.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Leigh syndrome (LS) is a neurodegenerative disease characterized by bilaterally symmetric brainstem or basal ganglia lesions. More than 80 genes, largely impacting mitochondrial energy metabolism, can underlie LS, and no approved medicines exist. Described 70 years ago, LS was initially diagnosed by the characteristic, necrotic lesions on autopsy. It has been broadly assumed that antemortem neuroimaging abnormalities in these regions correspond to end-stage histopathology. However, clinical observations and animal studies suggest that neuroimaging findings may represent an intermediate state, that is more dynamic than previously appreciated, and even reversible. We review this literature, discuss related conditions that are treatable, and present two new LS cases with radiographic improvement. We review studies in which hypoxia reverses advanced LS in a mouse model. The fluctuating and potentially reversible nature of radiographic LS lesions will be important in clinical trial design. Better understanding of this plasticity could lead to new therapies.
Collapse
Affiliation(s)
- Melissa A Walker
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States; Broad Institute of Harvard, MIT, United States; Department of Neurology, Massachusetts General Hospital, United States.
| | - Maria Miranda
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States; Broad Institute of Harvard, MIT, United States
| | - Amanda Allred
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States
| | - Vamsi K Mootha
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, United States; Broad Institute of Harvard, MIT, United States.
| |
Collapse
|
3
|
Shelkowitz E, Ficicioglu C, Stence N, Van Hove J, Larson A. Serial Magnetic Resonance Imaging (MRI) in Pyruvate Dehydrogenase Complex Deficiency. J Child Neurol 2020; 35:137-145. [PMID: 31665995 DOI: 10.1177/0883073819881940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To report 2 additional cases of pyruvate dehydrogenase complex deficiency with reversible deep gray matter lesions following initiation of ketogenic diet and to perform a literature review of serial imaging in patients with pyruvate dehydrogenase complex. METHODS Clinical data on 3 previously unpublished cases of patients with pyruvate dehydrogenase complex deficiency and with serial magnetic resonance imagings (MRIs) before and after institution of ketogenic diet were reported. A systematic literature review was performed to search for published cases of patients with confirmed pyruvate dehydrogenase complex deficiency who underwent serial MRIs. RESULTS The 3 subjects in this series demonstrated clinical improvement on ketogenic diet. Two subjects showed reversal of some brain lesions on repeat MRI following initiation of ketogenic diet. Of the 21 published cases with serial MRIs, 13 patients underwent some form of treatment, and of this smaller subset 4 patients had repeat MRIs that showed definitive improvement. In both our described cases and those published in the literature, improvement occurred in lesions in the basal ganglia. CONCLUSIONS In patients with pyruvate dehydrogenase complex deficiency, basal ganglia lesions on MRI are reversible with treatment in some cases and could serve as a biomarker for measuring response to treatment.
Collapse
Affiliation(s)
- Emily Shelkowitz
- Section of Genetics, Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Can Ficicioglu
- Division of Human Genetics, The Children's Hospital Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Stence
- Department of Radiology, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Johan Van Hove
- Section of Genetics, Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| | - Austin Larson
- Section of Genetics, Department of Pediatrics, University of Colorado, School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Chen L, Cui Y, Jiang D, Ma C, Tse HF, Hwu WL, Lian Q. Management of Leigh syndrome: Current status and new insights. Clin Genet 2018; 93:1131-1140. [DOI: 10.1111/cge.13139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 01/11/2023]
Affiliation(s)
- L. Chen
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - Y. Cui
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - D. Jiang
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - C.Y. Ma
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - H.-F. Tse
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - W.-L. Hwu
- Department of Pediatrics and Medical Genetics; National Taiwan University Hospital; Taipei City Taiwan
| | - Q. Lian
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
- School of Biomedical Sciences; The University of Hong Kong; Hong Kong SAR P. R. China
| |
Collapse
|
5
|
Mori M, Yamagata T, Goto T, Saito S, Momoi MY. Dichloroacetate treatment for mitochondrial cytopathy: long-term effects in MELAS. Brain Dev 2004; 26:453-8. [PMID: 15351081 DOI: 10.1016/j.braindev.2003.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 12/26/2003] [Accepted: 12/26/2003] [Indexed: 11/19/2022]
Abstract
The long-term effects of the sodium salt of dichloroacetic acid (DCA) were evaluated in four patients with mitochondrial encephalomyelopathy with lactic acidosis and stroke-like episodes (MELAS) carrying A3243G mutation. Oral administration of DCA in MELAS patients was followed for an average of 5 years 4 months. Serum levels of lactate and pyruvate were maintained at around 10 and 0.6 mg/dl, respectively. Serum levels of DCA were 40-136 microg/ml. Symptoms responding to treatment included persistent headache, abdominal pain, muscle weakness, and stroke-like episodes. In contrast, no improvements in mental status, deafness, short stature, or neuroelectrophysiological findings were observed. Adverse effects included mild liver dysfunction in all patients, hypocalcemia in three and peripheral neuropathy in one. None of these adverse events was severe enough to require discontinuation of treatment. To determine suitable indications for DCA therapy, analysis of many more patients who have undergone DCA administration is required.
Collapse
Affiliation(s)
- Masato Mori
- Department of Pediatrics, Jichi Medical School, 3311-1 Yakushiji, Minamikawachi, Tochigi 329-0498, Japan.
| | | | | | | | | |
Collapse
|
6
|
Fujii T, Ito M, Miyajima T, Okuno T. Dichloroacetate therapy in Leigh syndrome with a mitochondrial T8993C mutation. Pediatr Neurol 2002; 27:58-61. [PMID: 12160976 DOI: 10.1016/s0887-8994(02)00378-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A 6-year-old female with Leigh syndrome associated with a T-to-C mutation at nucleotide 8993 of mitochondrial deoxyribonucleic acid (T8993C) was treated with dichloroacetate, once during the first acute deterioration after a febrile illness and another time when she demonstrated subacute regression without precipitating events. Dichloroacetate reversed the clinical course on both occasions, and diffuse lesions in the midbrain revealed on magnetic resonance imaging during the second episode disappeared completely. However, dichloroacetate could not prevent the second acute deterioration associated with a febrile illness that occurred during the second treatment. Thus dichloroacetate treatment, although limited, was effective for T8993C-associated Leigh syndrome.
Collapse
Affiliation(s)
- Tatsuya Fujii
- Department of Pediatrics, Shiga Medical Center for Children, 5-7-30 Moriyama, Moriyama-City, Shiga 524-0022, Japan
| | | | | | | |
Collapse
|
7
|
Andreassen OA, Ferrante RJ, Huang HM, Dedeoglu A, Park L, Ferrante KL, Kwon J, Borchelt DR, Ross CA, Gibson GE, Beal MF. Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington's disease. Ann Neurol 2001; 50:112-7. [PMID: 11456300 DOI: 10.1002/ana.1085] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dichloroacetate (DCA) stimulates pyruvate dehydrogenase complex (PDHC) activity and lowers cerebral lactate concentrations. In the R6/2 and N171-82Q transgenic mouse models of Huntington's disease (HD), DCA significantly increased survival, improved motor function, delayed loss of body weight, attenuated the development of striatal neuron atrophy, and prevented diabetes. The percentage of PDHC in the active form was significantly reduced in R6/2 mice at 12 weeks of age, and DCA ameliorated the deficit. These results provide further evidence for a role of energy dysfunction in HD pathogenesis and suggest that DCA may exert therapeutic benefits in HD.
Collapse
Affiliation(s)
- O A Andreassen
- Neurochemistry Laboratory, Neurology Service, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Tarnopolsky MA, Beal MF. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol 2001. [DOI: 10.1002/ana.1028] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Kimura S, Ohtuki N, Nezu A, Tanaka M, Takeshita S. Clinical and radiologic improvements in mitochondrial encephalomyelopathy following sodium dichloroacetate therapy. Brain Dev 1997; 19:535-40. [PMID: 9440797 DOI: 10.1016/s0387-7604(97)00074-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We administered sodium dichloroacetate (DCA), which reduces the circulating lactate and pyruvate concentrations by stimulating the activity of the pyruvate dehydrogenase complex (PDHC), to three children with mitochondrial encephalomyelopathy. Significant clinical, biochemical and radiologic improvements were obtained following DCA therapy (approximately 30 mg/kg per day, divided into three doses). All three patients had non-pyruvate dehydrogenase complex (PDHC) deficiencies: two exhibited Leigh syndrome (complex I deficiency and unknown etiology), and one abnormal myelination (multienzyme deficiency), demonstrated on magnetic resonance imaging (MRI). The lactic and pyruvic acid concentrations in serum and cerebrospinal fluid (CSF) were decreased significantly by the oral DCA treatment. The lactic acid peak on MR spectroscopy also markedly decreased in parallel with the CSF level. In addition, the brain lesions observed on MRI were improved in all patients. No exacerbation was observed in any of the patients, who have been followed-up more than 21 months following the DCA therapy. These results suggest that DCA therapy should be considered in all patients with a mitochondria-related enzyme deficiency.
Collapse
Affiliation(s)
- S Kimura
- Department of Pediatrics, Urafune Hospital, Yokohama City University, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|