1
|
Dubois M, Ortis M, Doglio A, Bougault V. Microbiote oral et santé bucco-dentaire des sportifs : revue narrative. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2024; 59:233-242. [DOI: 10.1016/j.cnd.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Anderson SD, Kippelen P. A proposal to account for the stimulus, the mechanism, and the mediators released in exercise-induced bronchoconstriction. FRONTIERS IN ALLERGY 2023; 4:1004170. [PMID: 38026130 PMCID: PMC10657894 DOI: 10.3389/falgy.2023.1004170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Exercise induced bronchoconstriction (EIB) describes the transient narrowing of the airways that follows vigorous exercise. It commonly occurs in children and adults who have asthma and in elite athletes. The primary stimulus is proposed to be loss of water, by evaporation, from the airway surface due to conditioning inspired air. The mechanism, whereby this evaporative loss of water provokes contraction of the bronchial smooth muscle, is thought to be an increase in osmolarity of the airway surface liquid. The increase in osmolarity causes mast cells to release histamines, prostaglandins, and leukotrienes. It is these mediators that contract smooth muscle causing the airways to narrow.
Collapse
Affiliation(s)
- Sandra D. Anderson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Pascale Kippelen
- Division of Sport, Health and Exercise Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
3
|
Reier-Nilsen T, Sewry N, Chenuel B, Backer V, Larsson K, Price OJ, Pedersen L, Bougault V, Schwellnus M, Hull JH. Diagnostic approach to lower airway dysfunction in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2023; 57:481-489. [PMID: 36717213 DOI: 10.1136/bjsports-2022-106059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To compare the performance of various diagnostic bronchoprovocation tests (BPT) in the assessment of lower airway dysfunction (LAD) in athletes and inform best clinical practice. DESIGN Systematic review with sensitivity and specificity meta-analyses. DATA SOURCES PubMed, EBSCOhost and Web of Science (1 January 1990-31 December 2021). ELIGIBILITY CRITERIA Original full-text studies, including athletes/physically active individuals (15-65 years) who underwent assessment for LAD by symptom-based questionnaires/history and/or direct and/or indirect BPTs. RESULTS In 26 studies containing data for quantitative meta-analyses on BPT diagnostic performance (n=2624 participants; 33% female); 22% had physician diagnosed asthma and 51% reported LAD symptoms. In athletes with symptoms of LAD, eucapnic voluntary hyperpnoea (EVH) and exercise challenge tests (ECTs) confirmed the diagnosis with a 46% sensitivity and 74% specificity, and 51% sensitivity and 84% specificity, respectively, while methacholine BPTs were 55% sensitive and 56% specific. If EVH was the reference standard, the presence of LAD symptoms was 78% sensitive and 45% specific for a positive EVH, while ECTs were 42% sensitive and 82% specific. If ECTs were the reference standard, the presence of LAD symptoms was 80% sensitive and 56% specific for a positive ECT, while EVH demonstrated 65% sensitivity and 65% specificity for a positive ECT. CONCLUSION In the assessment of LAD in athletes, EVH and field-based ECTs offer similar and moderate diagnostic test performance. In contrast, methacholine BPTs have lower overall test performance. PROSPERO REGISTRATION NUMBER CRD42020170915.
Collapse
Affiliation(s)
- Tonje Reier-Nilsen
- The Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway .,Oslo Sports Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,International Olympic Committee (IOC) Research Centre of South Africa, University of Pretoria, Pretoria, South Africa
| | - Bruno Chenuel
- Centre Hospitalier Régional Universitaire de Nancy, Department of Lung function and Exercise Physiology - University Center of Sports Medicine and Adapted Physical Activity, Université de Lorraine, Nancy, France.,Université de Lorraine, DevAH, Nancy, France
| | - Vibeke Backer
- Department of ENT, Rigshospitalet, Copenhagen University, Copenhagen, Denmark.,CFAS, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Kjell Larsson
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Lars Pedersen
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen, Denmark
| | - Valerie Bougault
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice, France
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,International Olympic Committee (IOC) Research Centre of South Africa, University of Pretoria, Pretoria, South Africa
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,Institute of Sport, Exercise and Health (ISEH), Division of surgery and Interventional science, University College London, London, UK
| |
Collapse
|
4
|
Schwellnus M, Adami PE, Bougault V, Budgett R, Clemm HH, Derman W, Erdener U, Fitch K, Hull JH, McIntosh C, Meyer T, Pedersen L, Pyne DB, Reier-Nilsen T, Schobersberger W, Schumacher YO, Sewry N, Soligard T, Valtonen M, Webborn N, Engebretsen L. International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 2: non-infective acute respiratory illness. Br J Sports Med 2022; 56:bjsports-2022-105567. [PMID: 35623888 DOI: 10.1136/bjsports-2022-105567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Acute respiratory illness (ARill) is common and threatens the health of athletes. ARill in athletes forms a significant component of the work of Sport and Exercise Medicine (SEM) clinicians. The aim of this consensus is to provide the SEM clinician with an overview and practical clinical approach to non-infective ARill in athletes. The International Olympic Committee (IOC) Medical and Scientific Committee appointed an international consensus group to review ARill in athletes. Key areas of ARill in athletes were originally identified and six subgroups of the IOC Consensus group established to review the following aspects: (1) epidemiology/risk factors for ARill, (2) infective ARill, (3) non-infective ARill, (4) acute asthma/exercise-induced bronchoconstriction and related conditions, (5) effects of ARill on exercise/sports performance, medical complications/return-to-sport (RTS) and (6) acute nasal/laryngeal obstruction presenting as ARill. Following several reviews conducted by subgroups, the sections of the consensus documents were allocated to 'core' members for drafting and internal review. An advanced draft of the consensus document was discussed during a meeting of the main consensus core group, and final edits were completed prior to submission of the manuscript. This document (part 2) of this consensus focuses on respiratory conditions causing non-infective ARill in athletes. These include non-inflammatory obstructive nasal, laryngeal, tracheal or bronchial conditions or non-infective inflammatory conditions of the respiratory epithelium that affect the upper and/or lower airways, frequently as a continuum. The following aspects of more common as well as lesser-known non-infective ARill in athletes are reviewed: epidemiology, risk factors, pathology/pathophysiology, clinical presentation and diagnosis, management, prevention, medical considerations and risks of illness during exercise, effects of illness on exercise/sports performance and RTS guidelines.
Collapse
Affiliation(s)
- Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Paolo Emilio Adami
- Health & Science Department, World Athletics, Monaco, Monaco Principality
| | - Valerie Bougault
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice, Provence-Alpes-Côte d'Azu, France
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Hege Havstad Clemm
- Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Wayne Derman
- Institute of Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- ISEM, IOC Research Center, South Africa, Stellenbosch, South Africa
| | - Uğur Erdener
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Ken Fitch
- School of Human Science; Sports, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London (UCL), London, UK
| | - Cameron McIntosh
- Dr CND McIntosh INC, Edge Day Hospital, Port Elizabeth, South Africa
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrucken, Germany
| | - Lars Pedersen
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Tonje Reier-Nilsen
- Oslo Sports Trauma Research Centre, The Norwegian Olympic Sports Centre, Oslo, Norway
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Wolfgang Schobersberger
- Insitute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), Kliniken Innsbruck and Private University UMIT Tirol, Hall, Austria
| | | | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Torbjørn Soligard
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, Calgary, Alberta, Canada
| | - Maarit Valtonen
- KIHU, Research Institute for Olympic Sports, Jyväskylä, Finland
| | - Nick Webborn
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Brighton, UK
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
5
|
Karamaoun C, Haut B, Blain G, Bernard A, Daussin F, Dekerle J, Bougault V, Mauroy B. Is airway damage during physical exercise related to airway dehydration? Inputs from a computational model. J Appl Physiol (1985) 2022; 132:1031-1040. [PMID: 35201932 PMCID: PMC11684989 DOI: 10.1152/japplphysiol.00520.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
In healthy subjects, at low minute ventilation (V̇e) during physical exercise, the water content and temperature of the airways are well regulated. However, with the increase in V̇e, the bronchial mucosa becomes dehydrated and epithelial damage occurs. Our goal was to demonstrate the correspondence between the ventilatory threshold inducing epithelial damage, measured experimentally, and the dehydration threshold, estimated numerically. In 16 healthy adults, we assessed epithelial damage before and following a 30-min continuous cycling exercise at 70% of maximal work rate, by measuring the variation pre- to postexercise of serum club cell protein (cc16/cr). Blood samples were collected at rest, just at the end of the standardized 10-min warm-up, and immediately, 30 min and 60 min postexercise. Mean V̇e during exercise was kept for analysis. Airway water and heat losses were estimated using a computational model adapted to the experimental conditions and were compared with a literature-based threshold of bronchial dehydration. Eleven participants exceeded the threshold for bronchial dehydration during exercise (group A) and five did not (group B). Compared with post warm-up, the increase in cc16/cr postexercise was significant (mean increase ± SE: 0.48 ± 0.08 ng·L-1 only in group A but not in group B (mean difference ± SE: 0.10 ± 0.04 ng·L-1). This corresponds to an increase of 101 ± 32% [range: 16%-367%] in group A (mean ± SE). Our findings suggest that the use of a computational model may be helpful to estimate an individual dehydration threshold of the airways that is associated with epithelial damage during physical exercise.NEW & NOTEWORTHY Using a computational model for heat and water transfers in the bronchi, we identified a threshold in ventilation during exercise above which airway dehydration is thought to occur. When this threshold was exceeded, epithelial damage was found. This threshold might therefore represent the ventilation upper limit during exercise in susceptible individuals. Our results might help to prevent maladaptation to chronic exercise such as exercise-induced bronchoconstriction or asthma.
Collapse
Affiliation(s)
- Cyril Karamaoun
- Laboratoire J. A. Dieudonné, UMR CNRS 7351, Université Côte d'Azur, Nice, France
- Centre VADER, Université Côte d'Azur, Nice, France
- Institut de Physique de Nice (INPHYNI), UMR CNRS 7010, Université Côte d'Azur, Nice, France
| | - Benoît Haut
- Transfers, Interfaces & Processes (TIPs), Université libre de Bruxelles, Brussels, Belgium
| | - Grégory Blain
- Centre VADER, Université Côte d'Azur, Nice, France
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Alfred Bernard
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Daussin
- Université de Lille, L'Université d'Artois, Université du Littoral Côte d'Opale, ULR 7369 - URePSSS-Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | - Jeanne Dekerle
- Fatigue and Exercise Tolerance Laboratory (FET), Centre for Sport Exercise Science and Medicine, University of Brighton, Brighton, United Kingdom
| | - Valérie Bougault
- Centre VADER, Université Côte d'Azur, Nice, France
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), Université Côte d'Azur, Nice, France
| | - Benjamin Mauroy
- Laboratoire J. A. Dieudonné, UMR CNRS 7351, Université Côte d'Azur, Nice, France
- Centre VADER, Université Côte d'Azur, Nice, France
| |
Collapse
|
6
|
Bougault V, Adami PE, Sewry N, Fitch K, Carlsten C, Villiger B, Schwellnus M, Schobersberger W. Environmental factors associated with non-infective acute respiratory illness in athletes: A systematic review by a subgroup of the IOC consensus group on “acute respiratory illness in the athlete”. J Sci Med Sport 2022; 25:466-473. [DOI: 10.1016/j.jsams.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
|
7
|
Pigakis KM, Stavrou VT, Pantazopoulos I, Daniil Z, Kontopodi AK, Gourgoulianis K. Exercise-Induced Bronchospasm in Elite Athletes. Cureus 2022; 14:e20898. [PMID: 35145802 PMCID: PMC8807463 DOI: 10.7759/cureus.20898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 11/05/2022] Open
|
8
|
Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med 2021; 52:725-740. [PMID: 34542868 PMCID: PMC8450723 DOI: 10.1007/s40279-021-01561-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2021] [Indexed: 12/14/2022]
Abstract
It is well established that physical activity reduces all-cause mortality and can prolong life. Ultra-endurance running (UER) is an extreme sport that is becoming increasingly popular, and comprises running races above marathon distance, exceeding 6 h, and/or running fixed distances on multiple days. Serious acute adverse events are rare, but there is mounting evidence that UER may lead to long-term health problems. The purpose of this review is to present the current state of knowledge regarding the potential long-term health problems derived from UER, specifically potential maladaptation in key organ systems, including cardiovascular, respiratory, musculoskeletal, renal, immunological, gastrointestinal, neurological, and integumentary systems. Special consideration is given to youth, masters, and female athletes, all of whom may be more susceptible to certain long-term health issues. We present directions for future research into the pathophysiological mechanisms that underpin athlete susceptibility to long-term issues. Although all body systems can be affected by UER, one of the clearest effects of endurance exercise is on the cardiovascular system, including right ventricular dysfunction and potential increased risk of arrhythmias and hypertension. There is also evidence that rare cases of acute renal injury in UER could lead to progressive renal scarring and chronic kidney disease. There are limited data specific to female athletes, who may be at greater risk of certain UER-related health issues due to interactions between energy availability and sex-hormone concentrations. Indeed, failure to consider sex differences in the design of female-specific UER training programs may have a negative impact on athlete longevity. It is hoped that this review will inform risk stratification and stimulate further research about UER and the implications for long-term health.
Collapse
|
9
|
Marshall H, Gibson OR, Romer LM, Illidi C, Hull JH, Kippelen P. Systemic but not local rehydration restores dehydration-induced changes in pulmonary function in healthy adults. J Appl Physiol (1985) 2021; 130:517-527. [PMID: 33300853 DOI: 10.1152/japplphysiol.00311.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Water transport and local (airway) hydration are critical for the normal functioning of lungs and airways. Currently, there is uncertainty regarding the effects of systemic dehydration on pulmonary function. Our aims were 1) to clarify the impact of exercise- or fluid restriction-induced dehydration on pulmonary function in healthy adults; and 2) to establish whether systemic or local rehydration can reverse dehydration-induced alterations in pulmonary function. Ten healthy participants performed four experimental trials in a randomized order (2 h exercise in the heat twice and 28 h fluid restriction twice). Pulmonary function was assessed using spirometry and whole body plethysmography in the euhydrated, dehydrated, and rehydrated states. Oral fluid consumption was used for systemic rehydration and nebulized isotonic saline inhalation for local rehydration. Both exercise and fluid restriction induced mild dehydration (2.7 ± 0.7% and 2.5 ± 0.4% body mass loss, respectively; P < 0.001) and elevated plasma osmolality (P < 0.001). Dehydration across all four trials was accompanied by a reduction in forced vital capacity (152 ± 143 mL, P < 0.01) and concomitant increases in residual volume (216 ± 177 mL, P < 0.01) and functional residual capacity (130 ± 144 mL, P < 0.01), with no statistical differences between modes of dehydration. These changes were normalized by fluid consumption but not nebulization. Our results suggest that, in healthy adults: 1) mild systemic dehydration induced by exercise or fluid restriction leads to pulmonary function impairment, primarily localized to small airways; and 2) systemic, but not local, rehydration reverses these potentially deleterious alterations.NEW & NOTEWORTHY This study demonstrates that, in healthy adults, mild systemic dehydration induced by exercise in the heat or a prolonged period of fluid restriction leads to negative alterations in pulmonary function, primarily localized to small airways. Oral rehydration, but not nebulized isotonic saline, is able to restore pulmonary function in dehydrated individuals. Our findings highlight the importance of maintaining an adequate systemic fluid balance to preserve pulmonary function.
Collapse
Affiliation(s)
- Hannah Marshall
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Oliver R Gibson
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health, and Exercise Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Lee M Romer
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health, and Exercise Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Camilla Illidi
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - James H Hull
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Department of Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Pascale Kippelen
- Centre for Human Performance, Exercise, and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health, and Exercise Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
10
|
Vollsæter M, Stensrud T, Maat R, Halvorsen T, Røksund OD, Sandnes A, Clemm H. Exercise Related Respiratory Problems in the Young-Is It Exercise-Induced Bronchoconstriction or Laryngeal Obstruction? Front Pediatr 2021; 9:800073. [PMID: 35047465 PMCID: PMC8762363 DOI: 10.3389/fped.2021.800073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Complaints of breathlessness during heavy exercise is common in children and adolescents, and represent expressions of a subjective feeling that may be difficult to verify and to link with specific diagnoses through objective tests. Exercise-induced asthma and exercise-induced laryngeal obstruction are two common medical causes of breathing difficulities in children and adolescents that can be challenging to distinguish between, based only on the complaints presented by patients. However, by applying a systematic clinical approach that includes rational use of tests, both conditions can usually be diagnosed reliably. In this invited mini-review, we suggest an approach we find feasible in our everyday clinical work.
Collapse
Affiliation(s)
- Maria Vollsæter
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Section for Paediatrics, University of Bergen, Bergen, Norway
| | - Trine Stensrud
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Robert Maat
- Department of Otorhinolaryngology, Saxenburgh Medical Center, Hardenberg, Netherlands
| | - Thomas Halvorsen
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Section for Paediatrics, University of Bergen, Bergen, Norway.,Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Ola Drange Røksund
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Faculty of Health and Social Sciences, Bergen University College, Bergen, Norway
| | - Astrid Sandnes
- Department of Internal Medicine, Innlandet Hospital Trust, Gjøvik, Norway
| | - Hege Clemm
- Department of Paediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Section for Paediatrics, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Hanstock HG, Ainegren M, Stenfors N. Exercise in Sub-zero Temperatures and Airway Health: Implications for Athletes With Special Focus on Heat-and-Moisture-Exchanging Breathing Devices. Front Sports Act Living 2020; 2:34. [PMID: 33345026 PMCID: PMC7739679 DOI: 10.3389/fspor.2020.00034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Asthma is highly prevalent among winter endurance athletes. This "occupational disease" of cross-country skiers, among others, was acknowledged during the 1990s, with the pathogenesis attributed to repeated and prolonged exposure to cold, dry air combined with high rates of ventilation during exercise. Nevertheless, more than 25 years later, the prevalence of asthma among Scandinavian cross-country skiers is unchanged, and prevention remains a primary concern for sports physicians. Heat-and-moisture-exchanging breathing devices (HMEs) prevent exercise-induced bronchoconstriction in subjects with pre-existing disease and may have potential as a preventative intervention for healthy athletes undertaking training and competition in winter endurance sports. Herein we firstly provide an overview of the influence of temperature and humidity on airway health and the implications for athletes training and competing in sub-zero temperatures. We thereafter describe the properties and effects of HMEs, identify gaps in current understanding, and suggest avenues for future research.
Collapse
Affiliation(s)
- Helen G Hanstock
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Mats Ainegren
- Sports Tech Research Centre, Department of Quality Management and Mechanical Engineering, Mid Sweden University, Östersund, Sweden
| | - Nikolai Stenfors
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Exercise-induced bronchoconstriction in elite or endurance athletes:: Pathogenesis and diagnostic considerations. Ann Allergy Asthma Immunol 2020; 125:47-54. [PMID: 32035936 DOI: 10.1016/j.anai.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To review the pathogenesis and evaluation of exercise-induced bronchoconstriction pertaining to the elite or endurance athlete, as well as propose a diagnostic algorithm based on the current literature. DATA SOURCES Studies were identified using Ovid MEDLINE and reference lists of key articles. STUDY SELECTIONS Randomized controlled trials were selected when available. Systematic reviews and meta-analyses of peer-reviewed literature were included, as were retrospective studies and observational studies of clinical interest. RESULTS Exercise-induced bronchoconstriction (EIB) is the physiologic entity in which exercise induces acute narrowing of the airways and occurs in patients both with and without asthma. It may present with or without respiratory symptoms, and the underlying cause is likely attributable to environment stressors to the airway encountered during exercise. These include the osmotic effects of inhaled dry air, temperature variations, autonomic nervous system dysregulation, sensory nerve reactivity, and airway epithelial injury. Deposition of allergens, particulate matter, and gaseous pollutants into the airway also contribute. Elite and endurance athletes are exposed to these stressors more frequently and in greater duration than the general population. CONCLUSION A greater awareness of EIB among elite and endurance athletes is needed, and a thorough evaluation should be performed if EIB is suspected in this population. We propose an algorithm to aid in this evaluation. Symptoms should not be solely relied on for diagnosis but should be taken into the context of bronchoprovocative challenges, which should replicate the competitive environment as closely as possible. Further research is needed to validate these tests' predictive values.
Collapse
|
13
|
Kim KB, Kwak YS. Dehydration affects exercise-induced asthma and anaphylaxis. J Exerc Rehabil 2019; 15:647-650. [PMID: 31723551 PMCID: PMC6834710 DOI: 10.12965/jer.1938470.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022] Open
Abstract
Allergies are generally triggered by food, medication, physical exercise, stress, alcohol consumption, and dehydration. There are reports that indicate dehydration affects various kinds of physical allergies. However, there are few studies that have focused on the effects of dehydration on asthma and allergy anaphylaxis. Therefore, we analyzed the effects of dehydration on several kinds of allergy responses and exercise-induced asthma especially during the endurance exercise. PubMed was searched from April to July of 2019 using predefined search terms "dehydration," "exercise," and "allergy responses." Based on the reference search, more than one-hundred articles were identified but eighteen papers met the inclusion criteria and were analyzed for connections among exercise and dehydration, dehydration and exercise-induced asthma, and allergy responses in the main text. Results suggest that dehydration directly impairs stroke volume, cardiac output, and skin blood flow. This results in larger increases in core temperature, heart rate, and stroke volume. Additionally, exercise-induced dehydration reduces airway surface hydration, which results in an amplified brocnchoconstriction. This response to exercise occurs in those who suffer from exercise-induced asthma. Moreover, damage to the gut and impaired gut function relates to increased intestinal permeability after endurance exercise. Endurance exercise changes the immunological profiles to activate antibody-mediated immunity. Also, numerous mast cells and eosinophils were recruited, therefore isotype switching to IgE antibodies occur, this hypersensitivity activates mast cell degranulation. After degranulation, proteases, leukotrienes, prostaglandins, and histamine lead to many kinds of allergy symptoms.
Collapse
Affiliation(s)
- Kwi-Baek Kim
- Youngsan Health Science Institute, Department of Marine Leisure and Tourism, Youngsan University, Busan, Korea
| | - Yi-Sub Kwak
- DEU Exe-Physio Lab, Department of Physical Education, Dong-Eui University, Busan, Korea
| |
Collapse
|
14
|
Kippelen P, Anderson SD, Hallstrand TS. Mechanisms and Biomarkers of Exercise-Induced Bronchoconstriction. Immunol Allergy Clin North Am 2019; 38:165-182. [PMID: 29631728 DOI: 10.1016/j.iac.2018.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exercise is a common trigger of bronchoconstriction. In recent years, there has been increased understanding of the pathophysiology of exercise-induced bronchoconstriction. Although evaporative water loss and thermal changes have been recognized stimuli for exercise-induced bronchoconstriction, accumulating evidence points toward a pivotal role for the airway epithelium in orchestrating the inflammatory response linked to exercise-induced bronchoconstriction. Overproduction of inflammatory mediators, underproduction of protective lipid mediators, and infiltration of the airways with eosinophils and mast cells are all established contributors to exercise-induced bronchoconstriction. Sensory nerve activation and release of neuropeptides maybe important in exercise-induced bronchoconstriction, but further research is warranted.
Collapse
Affiliation(s)
- Pascale Kippelen
- Department of Life Sciences, Division of Sport, Health and Exercise Sciences, Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Sandra D Anderson
- Central Clinical School, Sydney Medical School, University of Sydney, Parramatta Road, Sydney New South Wales 2006, Australia.
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Center for Lung Biology, University of Washington, Box 358052, 850 Republican Street, Seattle, WA 98109-4714, USA
| |
Collapse
|
15
|
Kaur M, Sharma RK, Tewari S, Narula SC. Influence of mouth breathing on outcome of scaling and root planing in chronic periodontitis. BDJ Open 2018; 4:17039. [PMID: 30425839 PMCID: PMC6226516 DOI: 10.1038/s41405-018-0007-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Dryness is known to be associated with inflammatory diseases such as dry eye disease and atopic dermatitis. There is significant water loss from the oral cavity during mouth breathing. This study is conducted to estimate the influence of mouth breathing on the outcome of scaling and root planing (SRP) in chronic periodontitis (CP). Materials and methods CP patients comprising of 33 mouth breathers (MBs) and 33 nose breathers (NBs) were recruited. Thirty patients in each group completed the study. At baseline, plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), and clinical attachment level (CAL) were measured. SRP was done in both groups. At the 4th, 8th, and 12th week, PI, GI, and BOP were recorded. PD and CAL were also assessed at the 12th week. Results At the 12th week, there was significantly less improvement in GI at palatal sites of maxillary anterior and maxillary posterior teeth in MB group. Sixty-nine percent of BOP positive sites with PD >4 mm were converted into BOP negative sites with PD ≤4 mm in maxillary posterior palatal sites in NB. This success was 38% in MB. Conclusion Control of periodontal inflammation by SRP in CP patients is affected at palatal sites of mouth breathers.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| | - Rajinder Kumar Sharma
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| | - Shikha Tewari
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| | - Satish Chander Narula
- Department of Periodontics and Oral Implantology, Post Graduate Institute of Dental Sciences, Rohtak, Haryana India
| |
Collapse
|
16
|
Anderson SD, Daviskas E, Brannan JD, Chan HK. Repurposing excipients as active inhalation agents: The mannitol story. Adv Drug Deliv Rev 2018; 133:45-56. [PMID: 29626547 DOI: 10.1016/j.addr.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
The story of how we came to use inhaled mannitol to diagnose asthma and to treat cystic fibrosis began when we were looking for a surrogate for exercise as a stimulus to identify asthma. We had proposed that exercise-induced asthma was caused by an increase in osmolarity of the periciliary fluid. We found hypertonic saline to be a surrogate for exercise but an ultrasonic nebuliser was required. We produced a dry powder of sodium chloride but it proved unstable. We developed a spray dried preparation of mannitol and found that bronchial responsiveness to inhaling mannitol identified people with currently active asthma. We reasoned that mannitol had potential to replace the 'osmotic' benefits of exercise and could be used as a treatment to enhance mucociliary clearance in patients with cystic fibrosis. These discoveries were the start of a journey to develop several registered products that are in clinical use globally today.
Collapse
|
17
|
Couto M, Kurowski M, Moreira A, Bullens DMA, Carlsen K, Delgado L, Kowalski ML, Seys SF. Mechanisms of exercise-induced bronchoconstriction in athletes: Current perspectives and future challenges. Allergy 2018; 73:8-16. [PMID: 28599081 DOI: 10.1111/all.13224] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 01/08/2023]
Abstract
The evidence of exercise-induced bronchoconstriction (EIB) without asthma (EIBwA ) occurring in athletes led to speculate about different endotypes inducing respiratory symptoms within athletes. Classical postulated mechanisms for bronchial obstruction in this population include the osmotic and the thermal hypotheses. More recently, the presence of epithelial injury and inflammation in the airways of athletes was demonstrated. In addition, neuronal activation has been suggested as a potential modulator of bronchoconstriction. Investigation of these emerging mechanisms is of major importance as EIB is a significant problem for both recreational and competitive athletes and is the most common chronic condition among Olympic athletes, with obvious implications for their competing performance, health and quality of life. Hereby, we summarize the latest achievements in this area and identify the current gaps of knowledge so that future research heads toward better defining the etiologic factors and mechanisms involved in development of EIB in elite athletes as well as essential aspects to ultimately propose preventive and therapeutic measures.
Collapse
Affiliation(s)
- M. Couto
- Allergy Unit Hospital & Instituto CUF Porto Porto Portugal
| | - M. Kurowski
- Department of Immunology, Rheumatology and Allergy Healthy Ageing Research Centre Medical University of Łódź Łódź Poland
| | - A. Moreira
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de Imunoalergologia Centro Hospitalar São João E.P.E. Porto Portugal
| | - D. M. A. Bullens
- Laboratory of Pediatric Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Division of Pediatrics UZ Leuven Leuven Belgium
| | - K.‐H. Carlsen
- Institute for Clinical Medicine University of Oslo Oslo Norway
| | - L. Delgado
- Basic and Clinical Immunology Department of Pathology Faculty of Medicine University of Porto Porto Portugal
- Serviço de Imunoalergologia Centro Hospitalar São João E.P.E. Porto Portugal
| | - M. L. Kowalski
- Department of Immunology, Rheumatology and Allergy Healthy Ageing Research Centre Medical University of Łódź Łódź Poland
| | - S. F. Seys
- Laboratory of Clinical Immunology Department of Microbiology and Immunology KU Leuven Leuven Belgium
| |
Collapse
|
18
|
High-intensity interval training-induced inflammation and airway narrowing of the lung parenchyma in male maturing rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2630-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Simpson AJ, Romer LM, Kippelen P. Exercise-induced dehydration alters pulmonary function but does not modify airway responsiveness to dry air in athletes with mild asthma. J Appl Physiol (1985) 2017; 122:1329-1335. [PMID: 28280109 PMCID: PMC5451531 DOI: 10.1152/japplphysiol.01114.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022] Open
Abstract
This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of recorded alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function. Local airway water loss is the main physiological trigger for exercise-induced bronchoconstriction (EIB). Our aim was to investigate the effects of whole body water loss on airway responsiveness and pulmonary function in athletes with mild asthma and/or EIB. Ten recreational athletes with a medical diagnosis of mild asthma and/or EIB completed a randomized, crossover study. Pulmonary function tests, including spirometry, whole body plethysmography, and diffusing capacity of the lung for carbon monoxide (DlCO), were conducted before and after three conditions: 1) 2 h of exercise in the heat with no fluid intake (dehydration), 2) 2 h of exercise with ad libitum fluid intake (control), and 3) a time-matched rest period (rest). Airway responsiveness was assessed 2 h postexercise/rest via eucapnic voluntary hyperpnea (EVH) to dry air. Exercise in the heat with no fluid intake induced a state of mild dehydration, with a body mass loss of 2.3 ± 0.8% (SD). After EVH, airway narrowing was not different between conditions: median (interquartile range) maximum fall in forced expiratory volume in 1 s was 13 (7–15)%, 11 (9–24)%, and 12 (7–20)% in dehydration, control, and rest conditions, respectively. Dehydration caused a significant reduction in forced vital capacity (300 ± 190 ml, P = 0.001) and concomitant increases in residual volume (260 ± 180 ml, P = 0.001) and functional residual capacity (260 ± 250 ml, P = 0.011), with no change in DlCO. Mild exercise-induced dehydration does not exaggerate airway responsiveness to dry air in athletes with mild asthma/EIB but may affect small airway function. NEW & NOTEWORTHY This study is the first to investigate the effect of whole body dehydration on airway responsiveness. Our data suggest that the airway response to dry air hyperpnea in athletes with mild asthma and/or exercise-induced bronchoconstriction is not exacerbated in a state of mild dehydration. On the basis of alterations in lung volumes, however, exercise-induced dehydration appears to compromise small airway function.
Collapse
Affiliation(s)
- A J Simpson
- Centre for Human Performance, Exercise, and Rehabilitation, Division of Sport, Health, and Exercise Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - L M Romer
- Centre for Human Performance, Exercise, and Rehabilitation, Division of Sport, Health, and Exercise Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - P Kippelen
- Centre for Human Performance, Exercise, and Rehabilitation, Division of Sport, Health, and Exercise Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
20
|
Weiler JM, Brannan JD, Randolph CC, Hallstrand TS, Parsons J, Silvers W, Storms W, Zeiger J, Bernstein DI, Blessing-Moore J, Greenhawt M, Khan D, Lang D, Nicklas RA, Oppenheimer J, Portnoy JM, Schuller DE, Tilles SA, Wallace D. Exercise-induced bronchoconstriction update-2016. J Allergy Clin Immunol 2016; 138:1292-1295.e36. [PMID: 27665489 DOI: 10.1016/j.jaci.2016.05.029] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/13/2016] [Accepted: 05/25/2016] [Indexed: 12/26/2022]
Abstract
The first practice parameter on exercise-induced bronchoconstriction (EIB) was published in 2010. This updated practice parameter was prepared 5 years later. In the ensuing years, there has been increased understanding of the pathogenesis of EIB and improved diagnosis of this disorder by using objective testing. At the time of this publication, observations included the following: dry powder mannitol for inhalation as a bronchial provocation test is FDA approved however not currently available in the United States; if baseline pulmonary function test results are normal to near normal (before and after bronchodilator) in a person with suspected EIB, then further testing should be performed by using standardized exercise challenge or eucapnic voluntary hyperpnea (EVH); and the efficacy of nonpharmaceutical interventions (omega-3 fatty acids) has been challenged. The workgroup preparing this practice parameter updated contemporary practice guidelines based on a current systematic literature review. The group obtained supplementary literature and consensus expert opinions when the published literature was insufficient. A search of the medical literature on PubMed was conducted, and search terms included pathogenesis, diagnosis, differential diagnosis, and therapy (both pharmaceutical and nonpharmaceutical) of exercise-induced bronchoconstriction or exercise-induced asthma (which is no longer a preferred term); asthma; and exercise and asthma. References assessed as relevant to the topic were evaluated to search for additional relevant references. Published clinical studies were appraised by category of evidence and used to document the strength of the recommendation. The parameter was then evaluated by Joint Task Force reviewers and then by reviewers assigned by the parent organizations, as well as the general membership. Based on this process, the parameter can be characterized as an evidence- and consensus-based document.
Collapse
|
21
|
Abstract
The prevalence of airway dysfunction in elite swimmers is among the highest in elite athletes. The traditional view that swimmers naturally gravitate toward swimming because of preexisting respiratory disorders has been challenged. There is now sufficient evidence that the higher prevalence of bronchial tone disorders in elite swimmers is not the result of a natural selection bias. Rather, the combined effects of repeated chlorine by-product exposure and chronic endurance training can lead to airway dysfunction and atopy. This review will detail the underpinning causes of airway dysfunction observed in elite swimmers. It will also show that airway dysfunction does not prevent success in elite level swimming. Neither does it inhibit lung growth and might be partially reversible when elite swimmers retire from competition.
Collapse
Affiliation(s)
- Mitch Lomax
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
22
|
Anderson SD. 'Indirect' challenges from science to clinical practice. Eur Clin Respir J 2016; 3:31096. [PMID: 26908255 PMCID: PMC4764958 DOI: 10.3402/ecrj.v3.31096] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Indirect challenges act to provoke bronchoconstriction by causing the release of endogenous mediators and are used to identify airway hyper-responsiveness. This paper reviews the historical development of challenges, with exercise, eucapnic voluntary hyperpnoea (EVH) of dry air, wet hypertonic saline, and with dry powder mannitol, that preceded their use in clinical practice. The first challenge developed for clinical use was exercise. Physicians were keen for a standardized test to identify exercise-induced asthma (EIA) and to assess the effect of drugs such as disodium cromoglycate. EVH with dry air became a surrogate for exercise to increase ventilation to very high levels. A simple test was developed with EVH and used to identify EIA in defence force recruits and later in elite athletes. The research findings with different conditions of inspired air led to the conclusion that loss of water by evaporation from the airway surface was the stimulus to EIA. The proposal that water loss caused a transient increase in osmolarity led to the development of the hypertonic saline challenge. The wet aerosol challenge with 4.5% saline, provided a known osmotic stimulus, to which most asthmatics were sensitive. To simplify the osmotic challenge, a dry powder of mannitol was specially prepared and encapsulated. The test pack with different doses and an inhaler provided a common operating procedure that could be used at the point of care. All these challenge tests have a high specificity to identify currently active asthma. All have been used to assess the benefit of treatment with inhaled corticosteroids. Over the 50 years, the methods for testing became safer, less complex, and less expensive and all used forced expiratory volume in 1 sec to measure the response. Thus, they became practical to use routinely and were recommended in guidelines for use in clinical practice.
Collapse
Affiliation(s)
- Sandra D Anderson
- Sydney Medical School, Central Clinical School, University of Sydney, Sydney, NSW, Australia;
| |
Collapse
|
23
|
Rundell KW, Anderson SD, Sue-Chu M, Bougault V, Boulet LP. Air quality and temperature effects on exercise-induced bronchoconstriction. Compr Physiol 2016; 5:579-610. [PMID: 25880506 DOI: 10.1002/cphy.c130013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested.
Collapse
Affiliation(s)
- Kenneth W Rundell
- Department of The Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| | - Sandra D Anderson
- Clinical Professor Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Malcolm Sue-Chu
- Department of Thoracic Medicine, St Olavs Hospital, Trondheim University Hospital, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
24
|
Wu D, Miyawaki S, Tawhai MH, Hoffman EA, Lin CL. A Numerical Study of Water Loss Rate Distributions in MDCT-Based Human Airway Models. Ann Biomed Eng 2015; 43:2708-21. [PMID: 25869455 DOI: 10.1007/s10439-015-1318-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/03/2015] [Indexed: 01/06/2023]
Abstract
Both three-dimensional (3D) and one-dimensional (1D) computational fluid dynamics methods are applied to study regional water loss in three multi-detector row computed-tomography-based human airway models at the minute ventilations of 6, 15 and 30 L/min. The overall water losses predicted by both 3D and 1D models in the entire respiratory tract agree with available experimental measurements. However, 3D and 1D models reveal different regional water loss rate distributions due to the 3D secondary flows formed at bifurcations. The secondary flows cause local skewed temperature and humidity distributions on inspiration acting to elevate the local water loss rate; and the secondary flow at the carina tends to distribute more cold air to the lower lobes. As a result, the 3D model predicts that the water loss rate first increases with increasing airway generation, and then decreases as the air approaches saturation, while the 1D model predicts a monotonic decrease of water loss rate with increasing airway generation. Moreover, the 3D (or 1D) model predicts relatively higher water loss rates in lower (or upper) lobes. The regional water loss rate can be related to the non-dimensional wall shear stress (τ (*)) by the non-dimensional mass transfer coefficient (h 0 (*) ) as [Formula: see text].
Collapse
Affiliation(s)
- Dan Wu
- Department of Mechanical and Industrial Engineering, 2406 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, 52242, Iowa, USA.,Department of IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, 52242, Iowa, USA
| | - Shinjiro Miyawaki
- Department of IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, 52242, Iowa, USA
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Eric A Hoffman
- Department of Biomedical Engineering, The University of Iowa, Iowa City, 52242, Iowa, USA.,Department of Internal Medicine, The University of Iowa, Iowa City, 52242, Iowa, USA.,Department of Radiology, The University of Iowa, Iowa City, 52242, Iowa, USA
| | - Ching-Long Lin
- Department of Mechanical and Industrial Engineering, 2406 Seamans Center for the Engineering Arts and Sciences, The University of Iowa, Iowa City, 52242, Iowa, USA. .,Department of IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, 52242, Iowa, USA.
| |
Collapse
|
25
|
Anderson SD, Kippelen P. Assessment of EIB: What you need to know to optimize test results. Immunol Allergy Clin North Am 2013; 33:363-80, viii. [PMID: 23830130 DOI: 10.1016/j.iac.2013.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Respiratory symptoms and asthma control questionnaires are poor predictors of the presence or severity of exercise-induced bronchoconstriction (EIB), and objective measurement is recommended. To optimize the chance of a positive test result, there are several factors to consider when exercising patients for EIB, including the ventilation achieved and sustained during exercise, water content of the inspired air, and the natural variability of the response. The high rate of negative exercise test results has led to the development of surrogates to identify EIB in laboratory or office settings, including eucapnic voluntary hyperpnea of dry air and inhalation of hyperosmolar aerosols.
Collapse
Affiliation(s)
- Sandra D Anderson
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Missenden road, Australia.
| | | |
Collapse
|
26
|
Kippelen P, Anderson SD. Pathogenesis of exercise-induced bronchoconstriction. Immunol Allergy Clin North Am 2013; 33:299-312, vii. [PMID: 23830126 DOI: 10.1016/j.iac.2013.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This article presents the various potential mechanisms responsible for the development of exercise-induced bronchoconstriction (EIB). Although the etiology of EIB is multifactorial, and the physiologic processes involved may vary between individuals (especially between those with and without asthma), drying of the small airways with an associated inflammatory response seems prerequisite for EIB. Dysregulated repair processes following exercise-induced airway epithelial injury may also serve as basis for EIB development/progression.
Collapse
Affiliation(s)
- Pascale Kippelen
- Centre for Sports Medicine & Human Performance, Brunel University, Uxbridge, Middlesex UB8 3PH, UK.
| | | |
Collapse
|
27
|
Hallstrand TS, Kippelen P, Larsson J, Bougault V, van Leeuwen JC, Driessen JMM, Brannan JD. Where to from here for exercise-induced bronchoconstriction: the unanswered questions. Immunol Allergy Clin North Am 2013; 33:423-42, ix. [PMID: 23830134 DOI: 10.1016/j.iac.2013.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of epithelial injury is an unanswered question in those with established asthma and in elite athletes who develop features of asthma and exercise-induced bronchorestriction (EIB) after years of training. The movement of water in response to changes in osmolarity is likely to be an important signal to the epithelium that may be central to the onset of EIB. It is generally accepted that the mast cell and its mediators play a major role in EIB and the presence of eosinophils is likely to enhance EIB severity.
Collapse
Affiliation(s)
- Teal S Hallstrand
- Division of Pulmonary and Critical Care, University of Washington, Department of Medicine, 1959 NE Pacific Street, Box 356166, Seattle, WA 98195-6522, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Exercise-induced bronchoconstriction. Ann Allergy Asthma Immunol 2013; 110:311-5. [PMID: 23621999 DOI: 10.1016/j.anai.2013.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/11/2013] [Accepted: 02/04/2013] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To review the literature regarding the pathophysiology of exercise-induced bronchoconstriction (EIB). DATA SOURCES The databases of PubMed, Ovid MEDLINE, and Scopus were searched for articles using the subject headings and/or keywords asthma, exercise-induced/etiology, exercise, mechanism, pathogenesis, and bronchoconstriction. STUDY SELECTIONS Articles were selected based on their relevance to the focus of this review, with emphasis on the specific pathophysiologic mechanisms of EIB. RESULTS EIB occurs in response to the loss of water from the lower airways that results from heating and humidifying large volumes of air in a short period. The resulting hyperosmolar environment activates various cellular mechanisms to release mediators from mast cells, eosinophils, epithelial cells, and sensory nerves. These mediators, in turn, lead to airway smooth muscle contraction and bronchoconstriction. Airway hyperresponsiveness in elite athletes may develop from a process of airway injury and changes in the contractile properties of airway smooth muscle. CONCLUSION EIB commonly affects individuals with and without clinically recognized asthma, especially those who participate in competitive athletics. Through years of research, the pathophysiology of EIB is now better understood and involves a complex interaction between several different cell types and mediators. Continued research to improve the knowledge regarding the mechanisms of EIB should aid the identification, diagnosis, and treatment of this common condition.
Collapse
|
29
|
Weiler JM, Anderson SD, Randolph C, Bonini S, Craig TJ, Pearlman DS, Rundell KW, Silvers WS, Storms WW, Bernstein DI, Blessing-Moore J, Cox L, Khan DA, Lang DM, Nicklas RA, Oppenheimer J, Portnoy JM, Schuller DE, Spector SL, Tilles SA, Wallace D, Henderson W, Schwartz L, Kaufman D, Nsouli T, Shieken L, Rosario N. Pathogenesis, prevalence, diagnosis, and management of exercise-induced bronchoconstriction: a practice parameter. Ann Allergy Asthma Immunol 2011; 105:S1-47. [PMID: 21167465 DOI: 10.1016/j.anai.2010.09.021] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/26/2010] [Indexed: 02/06/2023]
|
30
|
Warren NJ, Crampin EJ, Tawhai MH. The role of airway epithelium in replenishment of evaporated airway surface liquid from the human conducting airways. Ann Biomed Eng 2010; 38:3535-49. [PMID: 20596780 DOI: 10.1007/s10439-010-0111-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 06/21/2010] [Indexed: 11/26/2022]
Abstract
This article presents a multi-scale computational model describing the transport of water vapor and heat within the human conducting airways and its interaction with cellular fluid transport kinetics. This tight coupling between the cell and the evaporative flux allows the periciliary liquid (PCL) depth to be investigated within the context of a geometric framework of the human conducting airways with spatial and temporal variations. Within the in vivo airway, the epithelium is not the only source of fluid available for hydration of the PCL, and fluid may also be supplied from submucosal glands (SMGs) or via axial transport of the PCL. The model predicts that without fluid supplied by either SMGs or via PCL transport, significant dehydration would occur under normal breathing conditions. Previous studies have suggested that PCL transport from the periphery to the trachea would require absorption of the fluid by the epithelium; here we show that this can theoretically be sustained by the evaporative load under normal breathing conditions. SMGs could also provide a significant supply of fluid for airway hydration, a hypothesis which is corroborated by comparing the distribution of SMGs as a function of airway generation with the distribution of airway evaporative flux.
Collapse
Affiliation(s)
- N J Warren
- Auckland Bioengineering Institute, University of Auckland, New Zealand.
| | | | | |
Collapse
|
31
|
Davis MS, Royer CM, McKenzie EC, Williamson KK, Payton M, Marlin D. Cold air-induced late-phase bronchoconstriction in horses. Equine Vet J 2010:535-9. [PMID: 17402479 DOI: 10.1111/j.2042-3306.2006.tb05600.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
REASON FOR PERFORMING STUDY Inspired air is warmed to body temperature and fully humidified by the upper airway mucosa under normal resting conditions. This conditioning process may not be completed by the upper airways during conditions of increased minute ventilation or when the inspired air is unusually cold, resulting in cooling and desiccation of lower respiratory surfaces. Excess heat and water loss from intrapulmonary airways is believed to be the provocative stimulus for exercise-induced bronchoconstriction (occurring immediately after exercise) and associated late phase airway obstruction (occurring a few hours after exercise). HYPOTHESIS Exercise while breathing cold air results in airway obstruction in horses. METHODS Eight healthy horses performed a 15 min submaximal exercise challenge in a random crossover design. Independent variable was inspired air temperature during the challenge (25 or -5 degrees C). The dependent variables were total respiratory impedance, resistance, and reactance at 5, 24 and 48 h post exercise challenge, expressed as a percentage of the prechallenge baseline. RESULTS No significant effect of inspired air temperature was found on any respiratory mechanical parameter 5 h after exercise challenge. However, cold inspired air was associated with higher respiratory impedance and resistance 48 h after the exercise challenges. CONCLUSIONS These findings support the hypothesis that submaximal exercise while breathing subfreezing air can adversely affect respiratory mechanical properties in normal horses. However, the timecourse for development of abnormal respiratory mechanical properties is longer than that reported in other mammals. CLINICAL RELEVANCE Exercise in cold weather may be a common cause of lower airway disease in horses.
Collapse
Affiliation(s)
- M S Davis
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
32
|
Sivasankar M, Erickson E. Short-duration accelerated breathing challenges affect phonation. Laryngoscope 2009; 119:1658-63. [PMID: 19522007 DOI: 10.1002/lary.20530] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES/HYPOTHESIS Inhaled air must be adequately humidified to prevent vocal fold drying, which is detrimental to phonation. The water content of inspired air is reduced by parameters, such as increased breathing rate and oral route. Accelerated oral breathing challenges induce airway dehydration and are posited to affect airway function. The primary objective of this study was to investigate whether accelerated oral breathing challenges are detrimental to phonation. The secondary objective of this study was to determine whether individuals at increased risk for developing voice problems (i.e., smokers) have greater adverse phonatory effects after accelerated breathing challenge than nonsmoking controls. STUDY DESIGN Prospective study with between-subjects, repeated-measures design. METHODS Female smokers (n = 12) and nonsmoking controls (n = 12) participated in this experimental study over 2 days that differed in ambient humidity. Phonation threshold pressures (PTP) were collected prior to and following short-term accelerated and habitual breathing challenges. Respiratory measures were collected during the challenges. RESULTS Short-term accelerated breathing challenges significantly increased PTP. This increase in PTP with accelerated breathing was transient and not significantly influenced by breathing route, ambient humidity, or smoking status. Likewise, respiratory measures were not affected by breathing route, ambient humidity, or smoking status. CONCLUSIONS During daily activities, such as exercise, individuals may engage in accelerated breathing for prolonged durations. This study demonstrates that even extremely short durations of accelerated breathing may affect phonation.
Collapse
Affiliation(s)
- Mahalakshmi Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
33
|
Rundell KW, Slee JB. Exercise and other indirect challenges to demonstrate asthma or exercise-induced bronchoconstriction in athletes. J Allergy Clin Immunol 2008; 122:238-46; quiz 247-8. [PMID: 18678339 DOI: 10.1016/j.jaci.2008.06.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 10/21/2022]
Abstract
The prevalence of exercise-induced bronchoconstriction is reported to be high among recreational and elite athletes, yet diagnosis is often symptom-based. Indirect challenges such as the laboratory exercise challenge provide objective criteria for proper diagnosis and treatment. However, a standardized protocol using appropriate exercise intensity, duration, and dry air inhalation is often not implemented, and thus a false-negative test may result. This article reviews and describes the symptom-based diagnosis, the exercise challenge, and other indirect challenges such as eucapnic voluntary hyperpnea, hypertonic saline inhalation, and inhaled powdered mannitol as methods to diagnose and evaluate exercise-induced bronchoconstriction. Advantages and disadvantages of each diagnostic procedure are presented.
Collapse
Affiliation(s)
- Kenneth W Rundell
- Human Physiology Laboratory, Keith J. O'Neill Center for Healthy Families, Marywood University, Scranton, PA 18509, USA.
| | | |
Collapse
|
34
|
Airway injury as a mechanism for exercise-induced bronchoconstriction in elite athletes. J Allergy Clin Immunol 2008; 122:225-35; quiz 236-7. [PMID: 18554705 DOI: 10.1016/j.jaci.2008.05.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/30/2008] [Accepted: 05/01/2008] [Indexed: 12/28/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is a consequence of evaporative water loss in conditioning the inspired air. The water loss causes cooling and dehydration of the airway surface. One acute effect of dehydration is the release of mediators, such as prostaglandins, leukotrienes, and histamine, that can stimulate smooth muscle, causing contraction and a change in vascular permeability. Inspiring cold air increases dehydration of the surface area and causes changes in bronchial blood flow. This article proposes that the pathogenesis of EIB in elite athletes relates to the epithelial injury arising from breathing poorly conditioned air at high flows for long periods of time or high volumes of irritant particles or gases. The evidence to support this proposal comes from many markers of injury. The restorative process after injury involves plasma exudation and movement of cells into the airways, a process repeated many times during a season of training. This process has the potential to expose smooth muscle to a wide variety of plasma- and cell-derived substances. The exposure to these substances over time can lead to an alteration in the contractile properties of the smooth muscle, making it more sensitive to mediators of bronchoconstriction. It is proposed that cold-weather athletes have airway hyperresponsiveness (AHR) to pharmacologic agents as a result of epithelial injury. In those who are allergic, AHR can also be expressed as EIB. The role of beta(2)-receptor agonists in inhibiting and enhancing the development of AHR and EIB is discussed.
Collapse
|
35
|
Davis MS, Williams CC, Meinkoth JH, Malayer JR, Royer CM, Williamson KK, McKenzie EC. Influx of neutrophils and persistence of cytokine expression in airways of horses after performing exercise while breathing cold air. Am J Vet Res 2007; 68:185-9. [PMID: 17269885 DOI: 10.2460/ajvr.68.2.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine effects of exercise performed while breathing cold air on expression of cytokines and influx of neutrophils in airways of horses. ANIMALS 9 adult horses. PROCEDURES In a crossover study, bronchoalveolar lavage fluid (BALF) was obtained 24 and 48 hours after each of 2 submaximal exercise sessions performed by horses while breathing warm (25 degrees C) or cold (-5 degrees C) air. Total and differential nucleated cell counts were determined for each BALF sample. Relative mRNA expression of cytokines in BALF cells was quantified by use of a reverse transcription-PCR assay. RESULTS Horses had a modest but significant influx of neutrophils into the airways 24 hours after a single exercise session while breathing cold air. No other cell types were increased at 24 or 48 hours after exercising while breathing cold air. Continued increases in expression of cytokines interleukin (IL)-5 and-10 as well as proinflammatory cytokines IL-1, -6, and -8 were detected 24 hours after exercising while breathing cold air. Forty-eight hours after exercising while breathing cold air, expression of IL-10 was still higher than that for IL-10 after horses exercised while breathing warm air. Expression of tumor necrosis factor-alpha was significantly increased at 48 hours after exercising while breathing cold air. CONCLUSIONS AND CLINICAL RELEVANCE Exposure of intrapulmonary airways to cold air alters immunologic responses of horses for at least 48 hours. The increased expression of cytokines that suppress cell-mediated immunity may predispose athletes to viral infections of the respiratory tract following exercise in cold weather.
Collapse
Affiliation(s)
- Michael S Davis
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Davis MS, McKenzie EC, Royer CM, Williamson KK, Payton M, Nelson SL. Effect of training and recovery on airway inflammation in an animal model of ‘ski asthma’. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/ecp200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractRepeated strenuous exercise while breathing cold air is believed to induce chronic airway inflammation and hyperreactivity, a condition referred to in humans as ‘ski asthma’. However, the time course of development and resolution of ski asthma is unknown. We have previously shown that multi-day aerobic exercise induces airway inflammation and hyperreactivity in racing sled dogs. In the present study, a similar group of subjects was examined at multiple times during training to test the hypothesis that ski asthma spontaneously resolves during seasonal detraining, but is re-induced during training in the cold weather. At the beginning of training, bronchoalveolar lavage fluid (BALF) from detrained elite sled dogs (n = 16) had higher concentrations of lymphocytes (median 53.63 vs. 8.30 cells μl−1) and neutrophils (median 23.03 vs. 1.10 cells μl−1) compared with normal laboratory dogs (n = 5). However, there was no significant effect of training on BALF nucleated cell concentrations from exercised sled dogs (n = 11) compared with sedentary sled dogs (n = 8). In contrast to our hypothesis, our data support the contention that cold weather exercise-induced airway inflammation can persist through seasonal detraining, but that routine training does not cause significant worsening of the condition.
Collapse
|
37
|
Hebestreit A, Kersting U, Hebestreit H. Hypertonic saline inhibits luminal sodium channels in respiratory epithelium. Eur J Appl Physiol 2007; 100:177-83. [PMID: 17318647 DOI: 10.1007/s00421-007-0420-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Physical exercise with increased ventilation leads to a considerable rise in water loss from the airways. The mechanisms underlying the regulation of transepithelial fluid transport necessary to compensate for these losses are unknown but may include changes in luminal ion channel conductance. The present study was designed to examine the effects of an increase in luminal chloride and sodium concentrations which may locally occur during hyperventilation on luminal ion conductance in the respiratory epithelium of healthy controls and patients diagnosed with cystic fibrosis (CF). Changes in luminal chloride and sodium conductance were inferred by recording nasal potential difference in eight healthy subjects and 10 patients with CF, using superfusing solutions based on isotonic saline (150 mM) on one occasion and solutions based on hypertonic saline (300 mM) on the other. Switching from isotonic to hypertonic saline superfusion decreased potential difference in controls and CF patients significantly. Amiloride induced a decrease of potential difference which was larger with isotonic than with hypertonic saline (controls 9.5 +/- 6.1 vs. 3.7 +/- 4.6 mV; CF 17.2 +/- 7.2 vs. 9.8 +/- 7.6 mV). Chloride conductance stimulated with solutions low in chloride and containing isoproterenol was not significantly changed by hypertonic saline solutions compared with isotonic solutions in both groups. The findings indicate a significant inhibition of luminal sodium conductance by high luminal sodium concentrations. This mechanism may be involved in the regulation of fluid transport across the respiratory epithelium during exercise and in the improvement of mucociliary clearance and lung functions with inhalation of hypertonic saline in CF.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To remind readers that evaporative water loss from the airway surface is the stimulus for exercise-induced bronchoconstriction. To emphasize that recruitment of the peripheral airways determines severity of exercise-induced bronchoconstriction. To draw attention to the potential for injury of the epithelium and for plasma exudation to contribute to the pathogenesis of exercise-induced bronchoconstriction in athletes. To emphasize that many inflammatory mediators are involved in exercise-induced bronchoconstriction and that some are found in both asthmatic and healthy subjects. RECENT FINDINGS That inflammatory mediators are released into the airways in response to exercise and can be measured by inducing sputum (histamine, cysteinyl leukotrienes) or collecting condensate from exhaled air (cysteinyl leukotrienes and adenosine). The concentration of mediators was reduced in response to a combination of loratadine and montelukast. Exercise is a stimulus for upregulating the genes coding for the 5-lipoxygenase pathway in healthy subjects. SUMMARY Dehydration of the airways results in release of mediators. The likely source of these mediators is the mast cell. Epithelial injury occurs in exercise-induced bronchoconstriction. The process of repair may contribute to the development of airway hyperresponsiveness in healthy subjects. Measuring the airway response to exercise, or a surrogate for exercise, as an indicator of airway hyperresponsiveness is warranted in patients with symptoms of asthma.
Collapse
Affiliation(s)
- Sandra D Anderson
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.
| |
Collapse
|
39
|
|
40
|
Abstract
Exhaled breath condensate (EBC) samples contain molecules that have no appreciable vapor pressure; such molecules likely derive from droplets of airway fluid. We analyzed EBC gathered from a total of 62 healthy volunteers in order to quantify the volume of airway liquid that was the source of the non-volatiles; saliva was analyzed as a reference secretion. EBC urea averaged 0.52 +/- 0.12 micromol/L (n = 18), an 8,600-fold dilution from predicted blood urea nitrogen levels. Protein averaged 2.3 +/- 0.3 microg/ml (n = 31), three orders of magnitude less than in saliva (1.4 +/- 0.1 mg/ml, n = 15). EBC ammonia was 6.6 +/- 0.6 mmol/L (1/15 that of saliva) and EBC ammonium ion was 0.90 +/- 0.19 micromol/L, concentrations that are incompatible with an 8,600-fold dilution from a biological source. Thus, urea-derived dilution factors may be used to interpret EBC non-volatile molecules, but not EBC volatiles.
Collapse
Affiliation(s)
- Terry M Dwyer
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 30216-4505, USA.
| |
Collapse
|
41
|
Mickleborough TD, Murray RL, Ionescu AA, Lindley MR. Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes. Am J Respir Crit Care Med 2003; 168:1181-9. [PMID: 12904324 DOI: 10.1164/rccm.200303-373oc] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In elite athletes, exercise-induced bronchoconstriction (EIB) may respond to dietary modification, thereby reducing the need for pharmacologic treatment. Ten elite athletes with EIB and 10 elite athletes without EIB (control subjects) participated in a randomized, double-blind crossover study. Subjects entered the study on their normal diet, and then received either fish oil capsules containing 3.2 g eicosapentaenoic acid and 2.2 g docohexaenoic acid (n-3 polyunsaturated fatty acid [PUFA] diet; n = 5) or placebo capsules containing olive oil (placebo diet; n = 5) taken daily for 3 weeks. Diet had no effect on preexercise pulmonary function in either group or on postexercise pulmonary function in control subjects. However, in subjects with EIB, the n-3 PUFA diet improved postexercise pulmonary function compared with the normal and placebo diets. FEV1 decreased by 3 +/- 2% on n-3 PUFA diet, 14.5 +/- 5% on placebo diet, and 17.3 +/- 6% on normal diet at 15 minutes postexercise. Leukotriene (LT)E4, 9alpha, 11beta-prostaglandin F2, LTB4, tumor necrosis factor-alpha, and interleukin-1beta, all significantly decreased on the n-3 PUFA diet compared with normal and placebo diets and after the exercise challenge. These data suggest that dietary fish oil supplementation has a markedly protective effect in suppressing EIB in elite athletes, and this may be attributed to their antiinflammatory properties.
Collapse
Affiliation(s)
- Timothy D Mickleborough
- Department of Kinesiology, Indiana University, 1025 East 7th Street, HPER 112, Bloomington, IN 47401, USA.
| | | | | | | |
Collapse
|
42
|
Davis MS, Daviskas E, Anderson SD. Airway surface fluid desiccation during isocapnic hyperpnea. J Appl Physiol (1985) 2003; 94:2545-6; author reply 2546-7. [PMID: 12736196 DOI: 10.1152/japplphysiol.00018.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Davis MS, McKiernan B, McCullough S, Nelson S, Mandsager RE, Willard M, Dorsey K. Racing Alaskan sled dogs as a model of "ski asthma". Am J Respir Crit Care Med 2002; 166:878-82. [PMID: 12231501 DOI: 10.1164/rccm.200112-142bc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Athletes who play sports in cold weather, particularly skaters and cross-country skiers, have an increased prevalence of lower airway disease that is hypothesized to result from repeated penetration of incompletely conditioned air into the lung periphery. In this study, we investigated the hypothesis that canine winter athletes also suffer from increased prevalence of lung disease secondary to hyperpnea with cold air. Bronchoscopy and bronchoalveolar lavage was conducted in elite racing sled dogs 24 to 48 hours after completion of a 1,100-mile endurance race. Bronchoscopic abnormalities were classified as none, mild, moderate, or severe, based on the quantity and distribution of intralumenal debris. Eighty-one percent of the dogs (48 of 59) examined had abnormal accumulations of intralumenal debris, with 46% (27 of 59) classified as moderate or severe, indicating significant accumulation of exudate. Bronchoalveolar lavage obtained from dogs after the race had significantly higher nucleated macrophage and eosinophil counts compared with sedentary control dogs. Our findings support the hypothesis that strenuous exercise in cold environments can lead to lower airway disease and suggest that racing sled dogs may be a useful naturally occurring animal model of the analogous human disease.
Collapse
Affiliation(s)
- Michael S Davis
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sivasankar M, Fisher KV. Oral breathing increases Pth and vocal effort by superficial drying of vocal fold mucosa. J Voice 2002; 16:172-81. [PMID: 12150370 DOI: 10.1016/s0892-1997(02)00087-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oral breathing superficially dehydrates the airway lumen by decreasing the depth of the sol layer in humans and animals. Conversely, nasal breathing can increase the humidity of inspired air. We compared the effects of short-term oral and nasal breathing on Pth and perceived vocal effort in 20 female subjects randomly assigned to two groups: oral breathing (N = 10, age 21-32 years); nasal breathing (N = 10, age 20-36 years). We hypothesized that short-term oral breathing, but not nasal breathing, would increase Pth, and that subjects would perceive this change as an increase in vocal effort. Following 15 minutes of oral breathing, Pth increased at comfortable and low pitch (p < 0.01) with 6 of 10 subjects reporting increased vocal effort. Nasal breathing reduced Pth at all three pitches (p < 0.01), and 7 of 10 subjects reported decreased vocal effort. Over all subjects, 49% of the variance in treatment-induced change in Pth was accounted for by change in vocal effort (R = 0.70). We posit that obligatory oral breathing places healthy subjects at risk for symptoms of increased vocal effort. The facilitatory role of superficial hydration on vocal fold oscillation should be considered in biomechanical models of phonation and in the clinical prevention of laryngeal dryness.
Collapse
Affiliation(s)
- Mahalakshmi Sivasankar
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
45
|
Anderson SD, Holzer K. Exercise-induced asthma: is it the right diagnosis in elite athletes? J Allergy Clin Immunol 2000; 106:419-28. [PMID: 10984359 DOI: 10.1067/mai.2000.108914] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise-induced asthma, as recognized in asthmatic subjects, is an exaggerated airway response to airway dehydration in the presence of inflammatory cells and their mediators. The airway narrowing is primarily caused by contraction of bronchial smooth muscle. The milder airway narrowing documented in response to exercise in elite athletes and otherwise healthy subjects may simply be the result of the physiologic responses and pathologic changes in airway cells arising from dehydration injury. These changes, which include excessive mucus production and airway edema, would serve both to cause cough and to amplify the narrowing effects of normal bronchial smooth muscle contraction, resulting in symptoms. These changes are more likely to occur in healthy subjects who exercise intensely for long periods of time breathing cold air, dry air, or both. Under these conditions, the ability to humidify inspired air may be overwhelmed, causing significant dehydration of the airway mucosa and an increase in osmolarity, even in small airways. In addition to dehydration injury, airway narrowing to pharmacologic and physical agents may occur as a result of injury caused by large volumes of air containing irritant gases, particulate matter, or allergens being inspired during exercise. As a result, the airways may become inflamed, and the airway smooth muscle may become more sensitive. These events could result in the same exaggerated airway response to dehydration, as documented in asthmatic subjects.
Collapse
Affiliation(s)
- S D Anderson
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | | |
Collapse
|
46
|
Abstract
Exercise-induced asthma (EIA) refers to the transient narrowing of the airways that follows vigorous exercise. The mechanism whereby EIA occurs is thought to relate to the consequences of heating and humidifying large volumes of air during exercise. In 1978 airway cooling was identified as an important stimulus for EIA; however, severe EIA also occurred when hot dry air was inspired, and there was no abnormal cooling of the airways. In 1986 the thermal hypothesis proposed that cooling of the airways needed to be followed by rapid rewarming and that these two events caused a vasoconstriction and a reactive hyperemia of the bronchial microcirculation, together with edema of the airway wall, causing the airways to narrow after exercise. The osmotic, or airway-drying, hypothesis developed from 1982-1992 because neither airway cooling nor rewarming appeared to be necessary for EIA to occur. As water is evaporated from the airway surface liquid, it becomes hyperosmolar and provides an osmotic stimulus for water to move from any cell nearby, resulting in cell volume loss. It is proposed that the regulatory volume increase, after cell shrinkage, is the key event resulting in release of inflammatory mediators that cause airway smooth muscle to contract and the airways of asthmatic subjects to narrow. This event may or may not be associated with airway edema. The osmotic and thermal theories come together by considering that inspiration of cold air not only cools the airways but also increases the numbers of airway generations becoming dehydrated in the humidifying process.
Collapse
Affiliation(s)
- S D Anderson
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Camperdown, Australia
| | | |
Collapse
|
47
|
Freed AN, Anderson SD, Daviskas E. Thermally induced asthma and airway drying. Am J Respir Crit Care Med 2000; 161:2112-3. [PMID: 10852796 DOI: 10.1164/ajrccm.161.6.16161a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Randolph C. Exercise-induced asthma: update on pathophysiology, clinical diagnosis, and treatment. CURRENT PROBLEMS IN PEDIATRICS 1997; 27:53-77. [PMID: 9059761 DOI: 10.1016/s0045-9380(97)80002-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- C Randolph
- Pediatric Department, Yale University School of Medicine, Conn., USA
| |
Collapse
|
49
|
Abstract
The purpose of this study was to test the hypothesis that a heat-and-moisture-retaining mask would result in a significant decrease in respiratory water loss among healthy subjects sleeping in a cold environment. The study was done in a backyard near a tertiary-care center during winter nights with ambient temperatures of less than 0 degrees C. Subjects were 10 healthy volunteers, 8 males and 2 females, aged 23-40 years, with a mean of 30.9 years. In a crossover design study, subjects slept alone in mountaineering tents on two nights (8 h each night) using sleeping bags and ground insulation. On one night, they wore heat-and-moisture-retaining masks designed for cold weather exercise. On the other night, they wore no mask. Subjects were weighed before and after each session to obtain an estimate of respiratory water loss. Comparisons were made of weight loss with and without the mask. We found the use of the masks resulted in decreased weight loss in all but one subject. The mean reduction in weight loss was 0.13 kg (SD +/- 0.18 kg). Using a one-tailed t-test, this difference was found to be significant (p < .05). We conclude that the use of a simple and inexpensive face mask can result in a meaningful decrease in overnight respiratory water loss while sleeping in a cold environment.
Collapse
Affiliation(s)
- A E Rosen
- Department of Family Practice, Albany Medical College, NY 12208, USA
| | | |
Collapse
|
50
|
Abstract
It has been proposed that exercise induced asthma is a result of "rapid expansion of the blood volume of peribronchial plexi" (McFadden ER, Lancet 1990;335:880-3). This hypothesis proposes that the development of exercise induced asthma depends on the thermal gradient in the airways at the end of hyperpnoea. The events that result in exercise induced asthma are vasoconstriction and airway cooling followed by reactive hyperaemia. We agree that the airway microcirculation has the potential for contributing to the pathophysiology of exercise induced asthma. We do, however, question whether reactive hyperaemia, in response to airway cooling, is the mechanism whereby hyperpnoea provokes airways obstruction in asthmatic patients. Further, we question whether vasoconstriction accompanies dry air breathing and whether an abnormal temperature gradient and rapid rewarming of the airways are prerequisites for exercise induced asthma. From published experiments we conclude that dry air breathing is associated with vasodilation and increase in airway blood flow rather than vasoconstriction and a decrease in blood flow to the airways. We propose that the stimulus for the increase in airway blood flow is an increase in osmolarity of the airway submucosa. This osmotic change is caused by the movement of water to the airway lumen in response to evaporative water loss during hyperpnoea. The increase in airway blood flow may occur directly or indirectly by the osmotic release of mediators. Exercise induced asthma is most likely to be due to the contraction of bronchial smooth muscle caused by the same mediators. Whether it is enhanced or inhibited by alterations in airway blood flow is not yet established in man.
Collapse
Affiliation(s)
- S D Anderson
- Department of Respiratory Medicine, Page Chest Pavilion, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | |
Collapse
|