1
|
Abstract
The venom glands of reptiles, particularly those of front-fanged advanced snakes, must satisfy conflicting biological demands: rapid synthesis of potentially labile and highly toxic proteins, storage in the gland lumen for long periods, stabilization of the stored secretions, immediate activation of toxins upon deployment and protection of the animal from the toxic effects of its own venom. This dynamic system could serve as a model for the study of a variety of different phenomena involving exocrine gland activation, protein synthesis, stabilization of protein products and secretory mechanisms. However, these studies have been hampered by a lack of a long-term model that can be propagated in the lab (as opposed to whole-animal studies). Numerous attempts have been made to extend the lifetime of venom gland secretory cells, but only recently has an organoid model been shown to have the requisite qualities of recapitulation of the native system, self-propagation and long-term viability (>1 year). A tractable model is now available for myriad cell- and molecular-level studies of venom glands, protein synthesis and secretion. However, venom glands of reptiles are not identical, and many differ very extensively in overall architecture, microanatomy and protein products produced. This Review summarizes the similarities among and differences between venom glands of helodermatid lizards and of rear-fanged and front-fanged snakes, highlighting those areas that are well understood and identifying areas where future studies can fill in significant gaps in knowledge of these ancient, yet fascinating systems.
Collapse
Affiliation(s)
- Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA
| |
Collapse
|
3
|
Post Y, Puschhof J, Beumer J, Kerkkamp HM, de Bakker MAG, Slagboom J, de Barbanson B, Wevers NR, Spijkers XM, Olivier T, Kazandjian TD, Ainsworth S, Iglesias CL, van de Wetering WJ, Heinz MC, van Ineveld RL, van Kleef RGDM, Begthel H, Korving J, Bar-Ephraim YE, Getreuer W, Rios AC, Westerink RHS, Snippert HJG, van Oudenaarden A, Peters PJ, Vonk FJ, Kool J, Richardson MK, Casewell NR, Clevers H. Snake Venom Gland Organoids. Cell 2020; 180:233-247.e21. [PMID: 31978343 DOI: 10.1016/j.cell.2019.11.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/29/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.
Collapse
Affiliation(s)
- Yorick Post
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Harald M Kerkkamp
- Naturalis Biodiversity Center, 2333 CR Leiden, the Netherlands; Institute of Biology Leiden, Department of Animal Science and Health, 2333 BE Leiden, the Netherlands
| | - Merijn A G de Bakker
- Institute of Biology Leiden, Department of Animal Science and Health, 2333 BE Leiden, the Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, the Netherlands
| | - Buys de Barbanson
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Nienke R Wevers
- Mimetas BV, Organ-on-a-Chip Company, 2333 CH Leiden, the Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Xandor M Spijkers
- Mimetas BV, Organ-on-a-Chip Company, 2333 CH Leiden, the Netherlands; Department of Translational Neuroscience, Utrecht University Medical Center, 3584 CG Utrecht, the Netherlands
| | - Thomas Olivier
- Mimetas BV, Organ-on-a-Chip Company, 2333 CH Leiden, the Netherlands
| | - Taline D Kazandjian
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Carmen Lopez Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Willine J van de Wetering
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Maria C Heinz
- Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Ravian L van Ineveld
- Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Yotam E Bar-Ephraim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | | | - Anne C Rios
- Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Hugo J G Snippert
- Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Alexander van Oudenaarden
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, the Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 LA Amsterdam, the Netherlands; Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Michael K Richardson
- Institute of Biology Leiden, Department of Animal Science and Health, 2333 BE Leiden, the Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, 3584 CT Utrecht, the Netherlands; Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands; The Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.
| |
Collapse
|
4
|
Ainsworth S, Slagboom J, Alomran N, Pla D, Alhamdi Y, King SI, Bolton FMS, Gutiérrez JM, Vonk FJ, Toh CH, Calvete JJ, Kool J, Harrison RA, Casewell NR. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Commun Biol 2018; 1:34. [PMID: 30271920 PMCID: PMC6123674 DOI: 10.1038/s42003-018-0039-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/26/2018] [Indexed: 01/19/2023] Open
Abstract
Snake envenoming causes several potentially lethal pathologies. The specific pathology is dictated by the toxin composition of venom, which varies by species, geography and ontogeny. This variation severely restricts the paraspecific efficacy of antivenoms used to treat snakebite victims. With a view to devising pathology-specific snakebite treatments, we assessed the procoagulant activity of 57 snake venoms and investigated the efficacy of various antivenoms. We find that procoagulant venoms act differentially on key steps of the coagulation cascade, and that certain monospecific antivenoms work in a previously unrecognised paraspecific manner to neutralise this activity, despite conventional assumptions of congener-restricted efficacy. Moreover, we demonstrate that the metal chelator EDTA is also capable of neutralising venom-induced lethality in vivo. This study illustrates the exciting potential of developing new, broad-spectrum, toxin-targeting antivenoms capable of treating key snakebite pathologies, and advocates a thorough re-examination of enzyme inhibiting compounds as alternative therapies for treating snakebite victims.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Julien Slagboom
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Nessrin Alomran
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, 46010, Spain
| | - Yasir Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sarah I King
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Fiona M S Bolton
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501-2060, Costa Rica
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
| | - Cheng-Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, L7 8XP, UK
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, 46010, Spain
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
5
|
Cooper AM, Kelln WJ, Hayes WK. Venom regeneration in the centipede Scolopendra polymorpha: evidence for asynchronous venom component synthesis. ZOOLOGY 2015; 117:398-414. [PMID: 25456977 DOI: 10.1016/j.zool.2014.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/21/2014] [Accepted: 06/27/2014] [Indexed: 01/15/2023]
Abstract
Venom regeneration comprises a vital process in animals that rely on venom for prey capture and defense. Venom regeneration in scolopendromorph centipedes likely influences their ability to subdue prey and defend themselves, and may influence the quantity and quality of venom extracted by researchers investigating the venom's biochemistry. We investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in the North American centipede Scolopendra polymorpha. We further tested the hypothesis that venom protein components, separated by reversed-phase fast protein liquid chromatography (RP-FPLC), undergo asynchronous (non-parallel) synthesis. During the first 48 h, volume and protein mass increased linearly. Protein regeneration lagged behind volume regeneration, with 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No additional regeneration occurred over the subsequent 12 days, and neither volume nor protein mass reached initial levels 7 months later (93% and 76%, respectively). Centipede body length was negatively associated with rate of venom regeneration. Analysis of chromatograms of individual venom samples revealed that 5 of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area (i.e., percent of total protein) among milking intervals, indicating that venom proteins are regenerated asynchronously. Moreover, specimens from Arizona and California differed in relative amounts of some venom components. The considerable regeneration of venom occurring within the first 48 h, despite the reduced protein content, suggests that predatory and defensive capacities are minimally constrained by the timing of venom replacement.
Collapse
|
7
|
Abstract
Mamba venoms contain pharmacologically active proteins that interfere with neuromuscular transmission by binding to and altering the normal functioning of neuronal proteins involved, directly or indirectly, with regulating nerve transmission. Of the mamba toxins studied to date, many act on voltage-sensitive K+ channels, nicotinic or muscarinic acetylcholine receptors, or acetylcholinesterase. In an attempt to clone, characterize, and express the genes encoding these toxins, as well as other genes specifying activities not completely elucidated as yet, a cDNA library was constructed from mRNA isolated from the glands of the black mamba. Clones from the library harboring sequences encoding 14 different mamba toxins were isolated and characterized by nucleotide sequence analysis. Genes coding for three proteins, dendrotoxins (DTX) K, I, and E, were expressed as maltose-binding (MBP) fusion proteins in the periplasmic space of Escherichia coli. The DTXK-MBP fusion protein was affinity purified, cleaved from its chaperon, and the recombinant DTXK purified from MBP. Recombinant DTXK was shown to be identical to native DTXK in its N-terminal sequence, chromatographic behavior, convulsion-inducing activity, and binding to voltage-activated K+ channels in bovine synaptic membranes. Computer modeling was employed to create three-dimensional structures of DTXK and DTX1 from the X-ray crystal structure of alpha-DTX utilizing both structural and sequence homologies. Comparisons were made between the three toxins, providing a framework for site-directed mutagenesis.
Collapse
Affiliation(s)
- L A Smith
- Department of Immunology and Molecular Biology, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | | |
Collapse
|