1
|
Isogai M, Tatuto N, Ujiie C, Watanabe M, Yoshikawa N. Identification and characterization of blueberry latent spherical virus, a new member of subgroup C in the genus Nepovirus. Arch Virol 2011; 157:297-303. [PMID: 22109710 DOI: 10.1007/s00705-011-1177-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/12/2011] [Indexed: 10/15/2022]
Abstract
A new member of the genus Nepovirus was isolated from blueberry in Japan. The virus was associated with latent infection of blueberry trees and provisionally named blueberry latent spherical virus (BLSV). BLSV was found to have isometric particles approximately 30 nm in diameter, which were composed of a single coat protein (CP) of 55 kDa. The viral genome consisted of two positive-sense single-stranded RNA species (RNA1 and RNA2), which were 7,960 and 6,344 nucleotides (nt) long, respectively. The organization of RNA1 and RNA2 was similar to that of nepoviruses. The 3' non-coding regions of RNA1 and RNA2 were 1,379 nt and 1,392 nt long, respectively. The amino acid sequences of the BLSV polymerase and CP shared the highest amino acid sequence similarities with those of the subgroup C nepoviruses (57% and 43%, respectively). Additionally, the BLSV genome, in contrast to other nepovirus genomes, was predicted to encode a serine protease.
Collapse
|
2
|
Satheshkumar PS, Gayathri P, Prasad K, Savithri HS. "Natively unfolded" VPg is essential for Sesbania mosaic virus serine protease activity. J Biol Chem 2005; 280:30291-300. [PMID: 15944159 DOI: 10.1074/jbc.m504122200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyprotein processing is a major strategy used by many plant and animal viruses to maximize the number of protein products obtainable from a single open reading frame. In Sesbania mosaic virus, open reading frame-2 codes for a polyprotein that is cleaved into different functional proteins in cis by the N-terminal serine protease domain. The soluble protease domain lacking 70-amino-acid residues from the N terminus (deltaN70Pro, where Pro is protease) was not active in trans. Interestingly, the protease domain exhibited trans-catalytic activity when VPg (viral protein genome-linked) was present at the C terminus. Bioinformatic analysis of VPg primary structure suggested that it could be a disordered protein. Biophysical studies validated this observation, and VPg resembled "natively unfolded" proteins. CD spectral analysis showed that the deltaN70Pro-VPg fusion protein had a characteristic secondary structure with a 230 nm positive CD peak. Mutation of Trp-43 in the VPg domain to phenylalanine abrogated the positive peak with concomitant loss in cis- and trans-proteolytic activity of the deltaN70Pro domain. Further, deletion of VPg domain from the polyprotein completely abolished proteolytic processing. The results suggested a novel mechanism of activation of the protease, wherein the interaction between the natively unfolded VPg and the protease domains via aromatic amino acid residues alters the conformation of the individual domains and the active site of the protease. Thus, VPg is an activator of protease in Sesbania mosaic virus, and probably by this mechanism, the polyprotein processing could be regulated in planta.
Collapse
|
3
|
Thole V, Hull R. Characterization of a protein from Rice tungro spherical virus with serine proteinase-like activity. J Gen Virol 2002; 83:3179-3186. [PMID: 12466496 DOI: 10.1099/0022-1317-83-12-3179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA genome of Rice tungro spherical virus (RTSV) is predicted to be expressed as a large polyprotein precursor (Shen et al., Virology 193, 621-630, 1993 ). The polyprotein is processed by at least one virus-encoded protease located adjacent to the C-terminal putative RNA polymerase which shows sequence similarity to viral serine-like proteases. The catalytic activity of this protease was explored using in vitro transcription/translation systems. Besides acting in cis, the protease had activity in trans on precursors containing regions of the 3' half of the polyprotein but did not process a substrate consisting of a precursor of the coat proteins. The substitution mutation of Asp(2735) of the RTSV polyprotein had no effect on proteolysis; however, His(2680), Glu(2717), Cys(2811) and His(2830) proved to be essential for catalytic activity and could constitute the catalytic centre and/or substrate-binding pocket of the RTSV 3C-like protease.
Collapse
Affiliation(s)
- Vera Thole
- John Innes Centre, Department of Metabolic Biology1 and Department of Disease and Stress Biology2, Norwich Research Park, Norwich NR4 7UH, UK
| | - Roger Hull
- John Innes Centre, Department of Metabolic Biology1 and Department of Disease and Stress Biology2, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
4
|
Pouwels J, Carette JE, Van Lent J, Wellink J. Cowpea mosaic virus: effects on host cell processes. MOLECULAR PLANT PATHOLOGY 2002; 3:411-418. [PMID: 20569348 DOI: 10.1046/j.1364-3703.2002.00135.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Taxonomy: Cowpea mosaic virus (CPMV) is the type member of the Comoviridae and bears a strong resemblance to animal picornaviruses, both in gene organization and in the amino acid sequence of replication proteins. Little systematic work has been done to compare isolates of the virus from different parts of the world. Physical properties: Purified preparations of virus contain three centrifugal components; empty protein shells without RNA (T) and two nucleoprotein components (M and B), containing 24% and 34% RNA, respectively. The icosahedral particles have with a diameter of 28 nm, consist of 60 copies of two coat proteins, and are heat stable. Hosts: CPMV causes one of the most commonly reported virus diseases of cowpea (Vigna unguiculata), in which it produces chlorotic spots with diffuse borders in inoculated primary leaves. Trifoliate leaves develop a bright yellow or light green mosaic of increasing severity in younger leaves. The host range is rather limited, and few hosts are known outside the Leguminosae. The virus is transmitted by various beetles with biting mouthparts. Reported in Africa, the Philippines and Iran. Is apparently absent from North and South America. Useful website: http://mmtsb.scripps.edu/viper/1cpmv.html (structure); http://image.fs.uidaho.edu/vide/descr254.htm (general information).
Collapse
Affiliation(s)
- Jeroen Pouwels
- Laboratory of Molecular Biology and Virology, Wageningen University, Wageningen, the Netherlands
| | | | | | | |
Collapse
|
5
|
Abstract
The complete nucleotide sequence of peach rosette mosaic nepovirus (PRMV) RNA1 has been determined. A grapevine isolate of PRMV from Michigan was propagated and purified and cDNA clones representing 99. 5% of the RNA1 were constructed. The cDNA and direct RNA sequence analysis revealed a RNA species of 8004 nucleotides, excluding a 3' polyadenylated tail. The 5'- and 3'-untranslated regions were 52 and 1474 nucleotides, respectively. Computer analysis of the PRMV RNA1 nucleotide sequence unveiled a single long open reading frame of 6477 nucleotides, which is capable of encoding a 240 kDa polyprotein. Analysis of the predicted amino acid sequence of RNA1 revealed amino acid motifs characteristic of a replicase, proteinase, NTP-binding protein and a proteinase cofactor. The order and identity of these putative proteins are consistent with other nepoviruses. Analysis of PRMV RNA1 further distinguishes the taxonomic subdivisions within the nepovirus group, confirms the subgroup three status of PRMV and lays the groundwork for a replicase-mediated resistance strategy.
Collapse
Affiliation(s)
- A H Lammers
- Agritope, Inc., 16160 SW Upper Boone's Ferry Road, Portland 97224, OR, USA
| | | | | |
Collapse
|
6
|
Clark AJ, Bertens P, Wellink J, Shanks M, Lomonossoff GP. Studies on hybrid comoviruses reveal the importance of three-dimensional structure for processing of the viral coat proteins and show that the specificity of cleavage is greater in trans than in cis. Virology 1999; 263:184-94. [PMID: 10544093 DOI: 10.1006/viro.1999.9947] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of cowpea mosaic virus (CPMV)-based hybrid comoviral RNA-2 molecules have been constructed. In these, the region encoding both the large (L) and small (S) viral coat proteins was replaced by the equivalent region from bean pod mottle virus (BPMV). The hybrid RNA-2 molecules were able to replicate in cowpea protoplasts in the presence of CPMV RNA-1. Though processing of the hybrid polyproteins by the CPMV-specific 24K proteinase at the site between the 58/48K and L proteins could readily be achieved, no processing at the site between the L and S coat proteins could be obtained even when the sequence of amino acids between the two coat proteins was made CPMV-like. As a result, none of the hybrids was able to form functional virus particles, and they could not infect cowpea plants. Comparison with the processing of the L-S site in cis in reticulocyte lysates demonstrated that the requirements for processing are more stringent in trans than in cis. The results suggest that the L-S cleavage site is defined by more than just a linear sequence of amino acids and probably involves interactions between the L-S loop and the beta barrels of the viral coat proteins.
Collapse
Affiliation(s)
- A J Clark
- Department of Virus Research, John Innes Centre, Colney Lane, Norwich, NR4 7UH, United Kingdom
| | | | | | | | | |
Collapse
|
7
|
Proteinases Involved in Plant Virus Genome Expression. PROTEASES OF INFECTIOUS AGENTS 1999. [PMCID: PMC7271178 DOI: 10.1016/b978-012420510-9/50037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter discusses the proteinases involved in plant virus genome expression. The chapter focuses on virus-encoded proteinases. It gives an overall view of the use of proteolytic processing by different plant virus groups for the expression of their genomes. It also discusses that the development of full-length cDNA clones from which infectious transcripts can be produced either in vitro or in vivo, has facilitated the functional analysis of the plant virus proteinases. In spite of the high specificity of the viral proteinases, cellular substrates for animal virus proteinases have been described in this chapter. The activity of the viral proteinases can interfere with important cellular processes to favor virus replication. The recent use of proteinase inhibitors in AIDS therapy has emphasized the convenience of virus-encoded proteinases as targets of antiviral action. A mutant protein able to inhibit the activity of the TEV proteinase by manipulation of the α2-macroglobulin bait region was designed by Van Rompaey.
Collapse
|
8
|
|
9
|
Gorbalenya AE, Snijder EJ. Viral cysteine proteinases. PERSPECTIVES IN DRUG DISCOVERY AND DESIGN : PD3 1996; 6:64-86. [PMID: 32288276 PMCID: PMC7104566 DOI: 10.1007/bf02174046] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/1996] [Accepted: 06/13/1996] [Indexed: 11/26/2022]
Abstract
Dozens of novel cysteine proteinases have been identified in positive single-stranded RNA viruses and, for the first time, in large double-stranded DNA viruses. The majority of these proteins are distantly related to papain or chymotrypsin and may be direct descendants of primordial proteolytic enzymes. Virus genome synthesis and expression, virion formation, virion entry into the host cell, as well as cellular architecture and functioning can be under the control of viral cysteine proteinases during infection. RNA virus proteinases mediate their liberation from giant multidomain precursors in which they tend to occupy conserved positions. These proteinases possess a narrow substrate specificity, can cleave in cis and in trans, and may also have additional, nonproteolytic functions. The mechanisms of catalysis, substrate recognition and RNA binding were highlighted by the recent analysis of the three-dimensional structure of the chymotrypsin-like cysteine proteinases of two RNA viruses.
Collapse
Affiliation(s)
- Alexander E Gorbalenya
- 1M.P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, 142782 Moscow Region
- 2A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899 Moscow, Russia
| | - Eric J Snijder
- 3Department of Virology, Institute of Medical Microbiology, Leiden University, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
10
|
Hemmer O, Greif C, Dufourcq P, Reinbolt J, Fritsch C. Functional characterization of the proteolytic activity of the tomato black ring nepovirus RNA-1-encoded polyprotein. Virology 1995; 206:362-71. [PMID: 7831791 DOI: 10.1016/s0042-6822(95)80051-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Translation of tomato black ring virus (TBRV) RNA-1 in a rabbit reticulocyte lysate leads to the synthesis of a 250K polyprotein which cleaves itself into smaller proteins of 50, 60, 120, and 190K. Polypeptides synthesized from synthetic transcripts corresponding to different regions of TBRV RNA-1 are processed only when they encode the 23K protein delimited earlier by sequence homology with the cowpea mosaic virus 24K protease. The proteolytic activity of this protein is completely lost by mutating residues C170 (to I) or L188 (to H), residues which align with conserved residues of the viral serine-like proteases. The 120K protein is generated by cleavage of the dipeptide K/A localized in front of the VPg but is not further cleaved in vitro at the K/S site (at the C terminus of the VPg) or between the protease and polymerase domains. However, both the protein VPgProPol (120K) and the protein ProPol (117K) produced in vitro from synthetic transcripts can cleave in trans the RNA-2-encoded 150K polyprotein, but they cannot cleave in trans polypeptides containing a cleavage site expressed from RNA-1 transcripts in which the protease cistron is absent or modified.
Collapse
Affiliation(s)
- O Hemmer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|