1
|
Liu C, Zhang K, Zhang S, Li X, Sun H, Ma L. Maggot Kinase and Natural Thrombolytic Proteins. ACS OMEGA 2024; 9:21768-21779. [PMID: 38799322 PMCID: PMC11112594 DOI: 10.1021/acsomega.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Huiting Sun
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
2
|
Cramer DAT, Yin V, Caval T, Franc V, Yu D, Wu G, Lloyd G, Langendorf C, Whisstock JC, Law RHP, Heck AJR. Proteoform-Resolved Profiling of Plasminogen Activation Reveals Novel Abundant Phosphorylation Site and Primary N-Terminal Cleavage Site. Mol Cell Proteomics 2024; 23:100696. [PMID: 38101751 PMCID: PMC10825491 DOI: 10.1016/j.mcpro.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Dingyi Yu
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Guojie Wu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Gordon Lloyd
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Christopher Langendorf
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Elrod J, Heuer A, Knopf J, Schoen J, Schönfeld L, Trochimiuk M, Stiel C, Appl B, Raluy LP, Saygi C, Zlatar L, Hosari S, Royzman D, Winkler TH, Lochnit G, Leppkes M, Grützmann R, Schett G, Tomuschat C, Reinshagen K, Herrmann M, Fuchs TA, Boettcher M. Neutrophil extracellular traps and DNases orchestrate formation of peritoneal adhesions. iScience 2023; 26:108289. [PMID: 38034352 PMCID: PMC10682263 DOI: 10.1016/j.isci.2023.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/05/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Peritoneal adhesions are poorly understood but highly prevalent conditions that can cause intestinal obstruction and pelvic pain requiring surgery. While there is consensus that stress-induced inflammation triggers peritoneal adhesions, the molecular processes of their formation still remain elusive. We performed murine models and analyzed human samples to monitor the formation of adhesions and the treatment with DNases. Various molecular analyses were used to evaluate the adhesions. The experimental peritoneal adhesions of the murine models and biopsy material from humans are largely based on neutrophil extracellular traps (NETs). Treatment with DNASE1 (Dornase alfa) and the human DNASE1L3 analog (NTR-10), significantly reduced peritoneal adhesions in experimental models. We conclude that NETs serve as essential scaffold for the formation of adhesions; DNases interfere with this process. Herein, we show that therapeutic application of DNases can be employed to prevent the formation of murine peritoneal adhesions. If this can be translated into the human situation requires clinical studies.
Collapse
Affiliation(s)
- Julia Elrod
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annika Heuer
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lavinia Schönfeld
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolin Stiel
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ceren Saygi
- Bioinformatics Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leticija Zlatar
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sami Hosari
- Department of Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Dmytro Royzman
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas H. Winkler
- Division of Genetics, Department of Biology, Nikolaus-Fiebiger-Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Friedrichstrasse 24, Giessen, Germany
| | - Moritz Leppkes
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1 - Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Tomuschat
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias A. Fuchs
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
Quek AJ, Cowieson NP, Caradoc-Davies TT, Conroy PJ, Whisstock JC, Law RHP. A High-Throughput Small-Angle X-ray Scattering Assay to Determine the Conformational Change of Plasminogen. Int J Mol Sci 2023; 24:14258. [PMID: 37762561 PMCID: PMC10531915 DOI: 10.3390/ijms241814258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Plasminogen (Plg) is the inactive form of plasmin (Plm) that exists in two major glycoforms, referred to as glycoforms I and II (GI and GII). In the circulation, Plg assumes an activation-resistant "closed" conformation via interdomain interactions and is mediated by the lysine binding site (LBS) on the kringle (KR) domains. These inter-domain interactions can be readily disrupted when Plg binds to lysine/arginine residues on protein targets or free L-lysine and analogues. This causes Plg to convert into an "open" form, which is crucial for activation by host activators. In this study, we investigated how various ligands affect the kinetics of Plg conformational change using small-angle X-ray scattering (SAXS). We began by examining the open and closed conformations of Plg using size-exclusion chromatography (SEC) coupled with SAXS. Next, we developed a high-throughput (HTP) 96-well SAXS assay to study the conformational change of Plg. This method enables us to determine the Kopen value, which is used to directly compare the effect of different ligands on Plg conformation. Based on our analysis using Plg GII, we have found that the Kopen of ε-aminocaproic acid (EACA) is approximately three times greater than that of tranexamic acid (TXA), which is widely recognized as a highly effective ligand. We demonstrated further that Plg undergoes a conformational change when it binds to the C-terminal peptides of the inhibitor α2-antiplasmin (α2AP) and receptor Plg-RKT. Our findings suggest that in addition to the C-terminal lysine, internal lysine(s) are also necessary for the formation of open Plg. Finally, we compared the conformational changes of Plg GI and GII directly and found that the closed form of GI, which has an N-linked glycosylation, is less stable. To summarize, we have successfully determined the response of Plg to various ligand/receptor peptides by directly measuring the kinetics of its conformational changes.
Collapse
Affiliation(s)
- Adam J. Quek
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Nathan P. Cowieson
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Tom T. Caradoc-Davies
- Australian Synchrotron, ANSTO_Melbourne, 800 Blackburn Rd., Clayton, VIC 3168, Australia
| | - Paul J. Conroy
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - James C. Whisstock
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
5
|
Hudson NE. Biophysical Mechanisms Mediating Fibrin Fiber Lysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2748340. [PMID: 28630861 PMCID: PMC5467299 DOI: 10.1155/2017/2748340] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/30/2017] [Indexed: 01/19/2023]
Abstract
The formation and dissolution of blood clots is both a biochemical and a biomechanical process. While much of the chemistry has been worked out for both processes, the influence of biophysical properties is less well understood. This review considers the impact of several structural and mechanical parameters on lytic rates of fibrin fibers. The influences of fiber and network architecture, fiber strain, FXIIIa cross-linking, and particle transport phenomena will be assessed. The importance of the mechanical aspects of fibrinolysis is emphasized, and future research avenues are discussed.
Collapse
Affiliation(s)
- Nathan E. Hudson
- Department of Physics, East Carolina University, N304 Howell Science Complex, Greenville, NC 27858, USA
| |
Collapse
|
6
|
Gomes C, Almeida A, Ferreira JA, Silva L, Santos-Sousa H, Pinto-de-Sousa J, Santos LL, Amado F, Schwientek T, Levery SB, Mandel U, Clausen H, David L, Reis CA, Osório H. Glycoproteomic analysis of serum from patients with gastric precancerous lesions. J Proteome Res 2013; 12:1454-66. [PMID: 23312025 DOI: 10.1021/pr301112x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gastric cancer is preceded by a carcinogenesis pathway that includes gastritis caused by Helicobacter pylori infection, chronic atrophic gastritis that may progress to intestinal metaplasia (IM), dysplasia, and ultimately gastric carcinoma of the more common intestinal subtype. The identification of glycosylation changes in circulating serum proteins in patients with precursor lesions of gastric cancer is of high interest and represents a source of putative new biomarkers for early diagnosis and intervention. This study applies a glycoproteomic approach to identify altered glycoproteins expressing the simple mucin-type carbohydrate antigens T and STn in the serum of patients with gastritis, IM (complete and incomplete subtypes), and control healthy individuals. The immunohistochemistry analysis of the gastric mucosa of these patients showed expression of T and STn antigens in gastric lesions, with STn being expressed only in IM. The serum glycoproteomic analysis using 2D-gel electrophoresis, Western blot, and MALDI-TOF/TOF mass spectrometry led to the identification of circulating proteins carrying these altered glycans. One of the glycoproteins identified was plasminogen, a protein that has been reported to play a role in H. pylori chronic infection of the gastric mucosa and is involved in extracellular matrix modeling and degradation. Plasminogen was further characterized and showed to carry STn antigens in patients with gastritis and IM. These results provide evidence of serum proteins displaying abnormal O-glycosylation in patients with precursor lesions of gastric carcinoma and include a panel of putative targets for the non-invasive clinical diagnosis of individuals with gastritis and IM.
Collapse
Affiliation(s)
- Catarina Gomes
- Institute of Molecular Pathology and Immunology University of Porto, IPATIMUP, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Godier A, Hunt BJ. Plasminogen receptors and their role in the pathogenesis of inflammatory, autoimmune and malignant disease. J Thromb Haemost 2013; 11:26-34. [PMID: 23140188 DOI: 10.1111/jth.12064] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plasminogen is the proenzyme of plasmin, the key protease of the fibrinolytic system, but its role is not limited to fibrinolysis regulation. Plasminogen binds not only to fibrin, but also to different receptors on cell surfaces, including the heterotetrameric complex Annexin A2-S100A10, enolase-1, histone H2B and the plasminogen receptor Plg-R(KT) . These receptors localize plasmin generation to the cell surface and provide a broad spectrum of reactions including proteolytic activity, cell migration and recruitment as well as signaling pathway activation. These plasminogen-binding proteins are involved in both physiologic and pathologic processes such as inflammation, thrombosis and cancer. Thus, plasminogen is at the center of a complex tightly controlled and regulated system where plasminogen-binding proteins have a crucial role, suggesting new therapeutic and diagnostic strategies. This review will discuss currently available information on plasminogen receptors, particularly their mechanisms of action and their roles in inflammatory, autoimmune and malignant disease.
Collapse
Affiliation(s)
- A Godier
- Department of Anaesthesia and Critical Care, Groupe Hospitalier Cochin Hôtel-Dieu, Université Paris Descartes, Paris, France
| | | |
Collapse
|
8
|
Shin EF, Vodolazhsky DI, Golikov AY, Belova TN, Boyko NV, Zimakov DV, Cherkasova EN, Kogan MI, Chibichian MB, Moshkovskii SA, Tarasov VA, Matishov DG. Separation and study of the range of plasminogen isoforms in patients with prostate cancer. BIOCHEMISTRY (MOSCOW) 2012; 77:1065-71. [DOI: 10.1134/s0006297912090143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Law R, Caradoc-Davies T, Cowieson N, Horvath A, Quek A, Encarnacao J, Steer D, Cowan A, Zhang Q, Lu B, Pike R, Smith A, Coughlin P, Whisstock J. The X-ray Crystal Structure of Full-Length Human Plasminogen. Cell Rep 2012; 1:185-90. [DOI: 10.1016/j.celrep.2012.02.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022] Open
|
10
|
Gonzalez-Gronow M, Gawdi G, Pizzo SV. Tissue factor is the receptor for plasminogen type 1 on 1-LN human prostate cancer cells. Blood 2002; 99:4562-7. [PMID: 12036889 DOI: 10.1182/blood.v99.12.4562] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue factor (TF), the initiator of the extrinsic pathway of coagulation, binds plasminogen (Pg) with high affinity through an interaction between kringles 1-3 of Pg and the extracellular domain of TF. We investigated the binding of Pg type 1 (Pg 1) and Pg type 2 (Pg 2) to highly invasive, TF-expressing, 1-LN human prostate tumor cells and to TF isolated from 1-LN cell membranes. Pg 1, containing both N-linked and O-linked oligosaccharide chains, bound to isolated TF with high affinity, whereas Pg 2, containing only one O-linked oligosaccharide chain, did not bind to TF. Although Pg 1 and Pg 2 bind to 1-LN cells, only anti-TF antibodies inhibited the binding of Pg 1, suggesting that TF functions as the receptor for Pg 1 on 1-LN cells. Binding of Pg 1 to isolated TF was inhibited by 6-aminohexanoic acid and alpha-methylmannoside, suggesting that Pg 1 L-lysine binding sites and the biantennary, mannose-containing N-linked oligosaccharide chain are involved in this interaction. Binding of Pg 1 to 1-LN cells promoted activation by receptor-bound urinary-type Pg activator (u-PA) and initiated a Ca(++) signaling cascade. In previous studies we demonstrated that the Pg 2 O-linked carbohydrate chain is essential for its binding to CD26 on 1-LN cells. The current studies suggest that Pg oligosaccharide chains regulate the binding of Pg 1 and Pg 2 to separate receptors on the cell surface.
Collapse
|
11
|
Gonzalez-Gronow M, Grenett HE, Weber MR, Gawdi G, Pizzo SV. Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells. Biochem J 2001; 355:397-407. [PMID: 11284727 PMCID: PMC1221751 DOI: 10.1042/0264-6021:3550397] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Both plasminogen (Pg) activation and matrix metalloproteinases (MMPs) are involved in the proteolytic degradation of extracellular matrix components, a requisite event for malignant cell metastasis. The highly invasive 1-LN human prostate tumour cell line synthesizes and secretes large amounts of Pg activators and MMPs. We demonstrate here that the Pg type 2 (Pg 2) receptor in these cells is composed primarily of the membrane glycoprotein dipeptidyl peptidase IV (DPP IV). Pg 2 has six glycoforms that differ in their sialic acid content. Only the highly sialylated Pg 2gamma, Pg 2delta and Pg 2epsilon glycoforms bind to DPP IV via their carbohydrate chains and induce a Ca(2+) signalling cascade; however, Pg 2epsilon alone is also able to significantly stimulate expression of MMP-9. We further demonstrate that the Pg-mediated invasive activity of 1-LN cells is dependent on the availability of Pg 2epsilon. This is the first demonstration of a direct association between the expression of MMP-9 and the Pg activation system.
Collapse
Affiliation(s)
- M Gonzalez-Gronow
- Department of Pathology, Box 3712, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
12
|
Hatton MW, Southward SM, Ross-Ouellet B, Richardson M, Winocour PD. Comparative metabolism of plasminogen glycoforms I and II in the alloxan-diabetic rabbit. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 269:E1017-23. [PMID: 8572191 DOI: 10.1152/ajpendo.1995.269.6.e1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The metabolism of plasminogen glycoforms I and II was measured in alloxan-induced diabetic and in age-matched control rabbits. Radiolabeled plasminogen I and II were degraded significantly more slowly in diabetic compared with control rabbits; plasminogen II [half-time (T1/2), 1.31 days] was degraded faster than plasminogen I (T1/2), 1.86 days) in diabetic rabbits and in control rabbits (T1/2, 1.18 and 1.58 days, respectively). From the catabolic rates and relative quantities in plasma, we calculated that approximately four molecules of plasminogen II were degraded for one molecule of plasminogen I in the diabetic and control rabbits. To verify this later observation, plasminogen I and II production by diabetic rabbit livers was compared with that by the control livers in vitro. During perfusion with [3H]leucine, 3H-labeled protein was released more slowly from diabetic than from control livers, but no quantitative difference in total plasminogen yield between diabetic and control livers was found. Nevertheless, plasminogen II was produced 0.7 +/- 0.4 and 4.3 +/- 0.3 times faster than plasminogen I by diabetic and control livers, respectively. Plasminogen metabolism in the diabetic rabbit did not differ qualitatively from that in the control rabbit except that catabolism was slowed.
Collapse
Affiliation(s)
- M W Hatton
- Department of Pathology, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
13
|
Hatton MW, Southward S, Ross-Ouellet B. Catabolism of plasminogen glycoforms I and II in rabbits: relationship to plasminogen synthesis by the rabbit liver in vitro. Metabolism 1994; 43:1430-7. [PMID: 7968599 DOI: 10.1016/0026-0495(94)90040-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The metabolisms of the two glycoforms of rabbit plasminogen have been compared in rabbits. Plasminogen I and II (ratio in plasma, 1:2.2) differ only in glycan content: plasminogen I probably possesses one N-glycan and one O-glycan, and plasminogen II only one O-glycan. New Zealand White (NZW) rabbits were injected intravenously with 125I-plasminogen I and 131I-plasminogen II, and blood samples were taken at regular intervals over 5 days. Kinetic behaviors were determined from protein-bound radioactivities using a three-compartment model. Fractional catabolic rates for plasminogen II in the vascular space (2.42 d-1) and the total body (0.56 d-1) were significantly greater than those measured for plasminogen I (1.12 and 0.45 d-1); half-lives were 1.53 and 1.23 days for plasminogen I and II, respectively (P < .01). Fractional distributions among the vascular, noncirculating vascular, and extravascular compartments were 0.41, 0.13, and 0.46 for plasminogen I, and 0.23, 0.11, and 0.65 for plasminogen II. From these data, we determined that plasminogen II was catabolized 4.8 times more rapidly than plasminogen I and was quantitatively contained largely in the extravascular space. By comparison, perfusion of rabbit livers ex corpora showed that plasminogen II was synthesized and released 5.0 times faster than plasminogen I over a 5-hour period. The possible roles for these glycoforms in vivo with respect to their different turnover rates and compartmental distributions are discussed.
Collapse
Affiliation(s)
- M W Hatton
- Department of Pathology, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
14
|
Stack MS, Pizzo SV, Gonzalez-Gronow M. Effect of desialylation on the biological properties of human plasminogen. Biochem J 1992; 284 ( Pt 1):81-6. [PMID: 1599413 PMCID: PMC1132700 DOI: 10.1042/bj2840081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are two major isoenzymes of plasminogen (Pg) in human plasma, designated Pg1 and Pg2. Both Pg forms have an identical primary structure, but differ in their extent of glycosylation. Removal of the oligosaccharide chains alters the normal physiological function of the zymogen and decreases the circulation time of both Pg glycoforms. Recent studies in our laboratory demonstrated that Pg2, with one carbohydrate chain, binds to the surface of U937 monocytoid cells considerably better than Pg1, with two carbohydrate chains, indicating a major role for the carbohydrate chains as determinants for differential binding to the cell surface [Gonzalez-Gronow, Grenett, Fuller & Pizzo (1990) Biochim. Biophys. Acta 1039, 269-276]. In this report we provide evidence that removal of terminal sialic acid from the Thr345-linked oligosaccharide chain of Pg2 is accompanied by the appearance of spontaneous amidolytic and fibrinolytic activity in the single-chain zymogen. Kinetic data demonstrate that asialo-Pg hydrolyses peptide substrates approximately 10% as efficiently as Pm. In addition, the change in carbohydrate content also alters Pg binding to U937 cells. Asialo-Pg binds to U937 cells with a decreased capacity but with a greater affinity than native Pg. Furthermore, asialo-Pg does not compete with native Pg for cell binding. These studies directly demonstrate that the oligosaccharide chains contribute to the heterogeneity observed in the physicochemical and biological properties of Pg1 and Pg2.
Collapse
Affiliation(s)
- M S Stack
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
15
|
Edelberg J, Pizzo S. Lipoprotein (a): The link between impaired fibrinolysis and atherosclerosis. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0268-9499(91)90015-v] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Witmer MR, Hatton MW. Antithrombin III-beta associates more readily than antithrombin III-alpha with uninjured and de-endothelialized aortic wall in vitro and in vivo. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1991; 11:530-9. [PMID: 2029494 DOI: 10.1161/01.atv.11.3.530] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The properties of two isoforms, alpha and beta, of rabbit antithrombin III (ATIII) were compared in the presence of undamaged or de-endothelialized rabbit aortic wall. Similar quantities of ATIII-alpha and ATIII-beta bound to and rapidly saturated the endothelium in vitro, but the rate of transendothelial passage of ATIII-beta exceeded that of ATIII-alpha by 22%. Furthermore, ATIII-beta was adsorbed approximately twice as rapidly as ATIII-alpha by the subendothelium of the de-endothelialized aorta. Binding of both isoforms was decreased (ATIII-beta more than ATIII-alpha) by pretreating the subendothelial surface with heparitinase. Also, subendothelium-bound ATIII-beta was desorbed more readily than bound ATIII-alpha by thrombin. In vivo, the rate of uptake of iodine-131-labeled ATIII-beta from the circulation by the aortic wall and the major organs was 30-50% faster than that of iodine-125-labeled ATIII-alpha. In contrast, the uptake of 131I-ATIII-beta by the de-endothelialized aorta in vivo was three times faster than that of 125I-ATIII-alpha. By these criteria, ATIII-beta is the more active of the two isoforms. We surmise that plasma and, consequently, vessel wall levels of ATIII-beta may be vital for controlling thrombogenic events caused by injury to the vascular wall.
Collapse
Affiliation(s)
- M R Witmer
- Department of Pathology, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | |
Collapse
|
17
|
Gonzalez-Gronow M, Grenett HE, Fuller GM, Pizzo SV. The role of carbohydrate in the function of human plasminogen: comparison of the protein obtained from molecular cloning and expression in Escherichia coli and COS cells. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1039:269-76. [PMID: 2198941 DOI: 10.1016/0167-4838(90)90259-i] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A cDNA library was constructed in the phage lambda gt11 from human liver mRNA enriched for plasminogen mRNA by chromatography on Sepharose 4B. A full-length cDNA clone of human plasminogen was isolated. The 2.7 kb cDNA encoded the entire plasminogen molecule, a signal peptide sequence and two start codons with a 5'-untranslated region of about 80 base pairs. In the 3'-non coding region of 280 base pairs a consensus signal AATAAA was found at a distance of 46 base pairs upstream of the poly(A) tail. The plasminogen cDNA was subcloned in the eukaryotic expression vector p91023 (B), and human plasminogen was expressed in monkey kidney (COS m6) cells and in Escherichia coli. The recombinant molecule obtained from COS cells has physicochemical and biological properties similar to native human plasminogen I, indicating that it has folded in a manner similar to plasminogen synthesized by liver. By contrast, plasminogen expressed in E. coli could not be activated and showed biological properties which are very different from glycosylated forms of plasminogen. However, the non-glycosylated plasminogen was bound by lysine-Sepharose and reacted with a conformation dependent monoclonal antibody to kringles 1 to 3. These data suggest that the protein has properly folded kringle domains. Our studies suggest that the carbohydrate domains may play an important role in the function of the plasminogen molecule.
Collapse
Affiliation(s)
- M Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
18
|
Hall SW, VandenBerg SR, Gonias SL. Plasminogen carbohydrate side chains in receptor binding and enzyme activation: a study of C6 glioma cells and primary cultures of rat hepatocytes. J Cell Biochem 1990; 43:213-27. [PMID: 1696276 DOI: 10.1002/jcb.240430303] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human [Glu1]-plasminogen carbohydrate isozymes, plasminogen type I (Pg 1) and plasminogen type II (Pg 2), were separated by chromatography and studied in cell binding experiments at 4 degrees C with primary cultures of rat hepatocytes and rat C6 glioma cells. In both cell systems, Pg 1 and Pg 2 bound to an equivalent number of receptors, apparently representing the same population of surface molecules. The affinity for Pg 2 was slightly higher. With hepatocytes, the KD for Pg 1 was 3.2 +/- 0.2 microM, and the KD for Pg 2 was 1.9 +/- 0.1 microM, as determined from Scatchard transformations of the binding isotherms. The Bmax was approximately the same for both isozymes. With C6 cells, the KD for Pg 1 was 2.2 +/- 0.1 microM vs. 1.5 +/- 0.2 microM for Pg 2. Again, the Bmax was similar with both isozymes. 125I-Pg 1 and 125I-Pg 2 were displaced from specific binding sites by either nonradiolabeled isozyme. The KI for Pg 2 was slightly lower than the KI for Pg 1 with hepatocytes (0.9 vs. 1.3 microM) and with C6 cells (0.6 vs. 1.1 microM). No displacement was detected with miniplasminogen at concentrations up to 5.0 microM. Activation of Pg 1 and Pg 2 by recombinant two-chain tissue-plasminogen activator (rt-PA) was enhanced by hepatocyte cultures. The enhancing effect was greater with Pg 2. Hepatocyte cultures did not affect the activation of miniplasminogen by rt-PA or the activation of plasminogen by streptokinase. Unlike the hepatocytes, C6 cells did not enhance the activation of plasminogen by rt-PA or streptokinase; however, plasmin generated in the presence of C6 cells reacted less readily with alpha 2-antiplasmin.
Collapse
Affiliation(s)
- S W Hall
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | |
Collapse
|
19
|
Gonzalez-Gronow M, Edelberg JM, Pizzo SV. Further characterization of the cellular plasminogen binding site: evidence that plasminogen 2 and lipoprotein a compete for the same site. Biochemistry 1989; 28:2374-7. [PMID: 2543441 DOI: 10.1021/bi00432a005] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Specific cell surface receptors for plasminogen (Pg) are expressed by a wide variety of cell types and serve to promote fibrinolysis and local Pg proteolysis. Pg types 1 and 2, separated by chromatography on concanavalin A-Sepharose, were utilized to determine their binding to the monocytoid U937 cell line. Both forms bind in a dose-dependent manner. However, Pg 2 binds to the cellular receptor considerably better than Pg 1 and at equilibrium demonstrates approximately 10-fold greater binding. Lipoprotein a [Lp(a)], which possesses a subunit showing considerable homology to Pg, competes with Pg 2 for the Pg receptor in U937 cells. Moreover, Pg 1 is not able to displace Pg 2 from the receptor. These studies suggest that high levels of Lp(a) may alter the profibrinolytic activity at the cell surface and increase the risks of atherosclerosis and thrombosis. This hypothesis is in accord with the 2-5-fold increased risk of atherosclerosis in patients having high levels of Lp(a).
Collapse
Affiliation(s)
- M Gonzalez-Gronow
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
20
|
de Serrano VS, Urano T, Gaffney PJ, Castellino FJ. Influence of various structural domains of fibrinogen and fibrin on the potentiation of plasminogen activation by recombinant tissue plasminogen activator. JOURNAL OF PROTEIN CHEMISTRY 1989; 8:61-77. [PMID: 2527513 DOI: 10.1007/bf01025079] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibrinogen, fibrin, and related fragments have varying stimulatory effects on the initial rate of the activation of human plasminogen ([ Glu1]Pg) by recombinant tissue plasminogen activator (rt-PA). A detailed analysis of this enhancement was undertaken using various purified and complexed forms of the known domains of fibrin(ogen) with a view to gaining additional knowledge regarding the substructures of fibrinogen and fibrin that are important for their stimulatory capacities. Both arvin-mediated fibrin, as well as fibrinogen fragments generated as a result of its cleavage with CNBr, stimulate the activation in a biphasic manner, most likely as a result of changes in the promoter molecule accompanying the denaturation processes that are normally employed to either solubilize or generate these particular promoters. Using purified fibrinogen and fibrin fragments, it was found that fragment E, which binds to [Glu1]Pg, does not enhance the activation reaction, while fragment D1 has a potentiating effect. This suggests that the binding of [Glu1]Pg to fibrin(ogen) alone is not, in itself, sufficient for stimulation of activation to occur, but that the rt-PA-fibrin(ogen) interaction is fundamental to this same process. All purified and mixtures of fragments containing the fragment D domain (e.g., D2E, X-oligomer, fragment X) stimulate the reaction to a greater degree than fibrinogen and fragment D1. It is concluded that the fibrinogen D domain is a sine qua non for the enhancement reaction, while structures containing the E domain had a symbiotic effect on enhancement.
Collapse
Affiliation(s)
- V S de Serrano
- Department of Chemistry, University of Notre Dame, Indiana 46556
| | | | | | | |
Collapse
|
21
|
|