1
|
Bas A, El SN. Nutritional evaluation of biscuits enriched with cricket flour (Acheta domesticus). Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
2
|
Biochemical and sensory characteristics of the cricket and mealworm fractions from supercritical carbon dioxide extraction and air classification. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2931-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Yi L, Lakemond CMM, Sagis LMC, Eisner-Schadler V, van Huis A, van Boekel MAJS. Extraction and characterisation of protein fractions from five insect species. Food Chem 2013; 141:3341-8. [PMID: 23993491 DOI: 10.1016/j.foodchem.2013.05.115] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/18/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Tenebrio molitor, Zophobas morio, Alphitobius diaperinus, Acheta domesticus and Blaptica dubia were evaluated for their potential as a future protein source. Crude protein content ranged from 19% to 22% (Dumas analysis). Essential amino acid levels in all insect species were comparable with soybean proteins, but lower than for casein. After aqueous extraction, next to a fat fraction, a supernatant, pellet, and residue were obtained, containing 17-23%, 33-39%, 31-47% of total protein, respectively. At 3% (w/v), supernatant fractions did not form stable foams and gels at pH 3, 5, 7, and 10, except for gelation for A. domesticus at pH 7. At 30% w/v, gels at pH 7 and pH 10 were formed, but not at pH 3 and pH 5. In conclusion, the insect species studied have potential to be used in foods due to: (1) absolute protein levels; (2) protein quality; (3) ability to form gels.
Collapse
Affiliation(s)
- Liya Yi
- Food Quality & Design Group, Wageningen University & Research Centre, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
4
|
Bullard B, Garcia T, Benes V, Leake MC, Linke WA, Oberhauser AF. The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proc Natl Acad Sci U S A 2006; 103:4451-6. [PMID: 16537423 PMCID: PMC1450192 DOI: 10.1073/pnas.0509016103] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Projectin and kettin are titin-like proteins mainly responsible for the high passive stiffness of insect indirect flight muscles, which is needed to generate oscillatory work during flight. Here we report the mechanical properties of kettin and projectin by single-molecule force spectroscopy. Force-extension and force-clamp curves obtained from Lethocerus projectin and Drosophila recombinant projectin or kettin fragments revealed that fibronectin type III domains in projectin are mechanically weaker (unfolding force, F(u) approximately 50-150 pN) than Ig-domains (F(u) approximately 150-250 pN). Among Ig domains in Sls/kettin, the domains near the N terminus are less stable than those near the C terminus. Projectin domains refolded very fast [85% at 15 s(-1) (25 degrees C)] and even under high forces (15-30 pN). Temperature affected the unfolding forces with a Q(10) of 1.3, whereas the refolding speed had a Q(10) of 2-3, probably reflecting the cooperative nature of the folding mechanism. High bending rigidities of projectin and kettin indicated that straightening the proteins requires low forces. Our results suggest that titin-like proteins in indirect flight muscles could function according to a folding-based-spring mechanism.
Collapse
Affiliation(s)
- Belinda Bullard
- *European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
| | - Tzintzuni Garcia
- Department of Neuroscience and Cell Biology and Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Vladimir Benes
- *European Molecular Biology Laboratory, D-69012 Heidelberg, Germany
| | - Mark C. Leake
- Institute of Physiology, University of Heidelberg, D-69120 Heidelberg, Germany
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom; and
| | - Wolfgang A. Linke
- Institute of Physiology, University of Heidelberg, D-69120 Heidelberg, Germany
- Physiology and Biophysics Laboratory, University of Muenster, D-48149 Muenster, Germany
| | - Andres F. Oberhauser
- Department of Neuroscience and Cell Biology and Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
6
|
Abstract
In striated muscles, the rapid production of macroscopic levels of force and displacement stems directly from highly ordered and hierarchical protein organization, with the sarcomere as the elemental contractile unit. There is now a wealth of evidence indicating that the giant elastic protein titin has important roles in controlling the structure and extensibility of vertebrate muscle sarcomeres.
Collapse
Affiliation(s)
- Larissa Tskhovrebova
- Astbury Centre for Structural Molecular Biology, and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
7
|
AL-Khayat HA, Hudson L, Reedy MK, Irving TC, Squire JM. Myosin head configuration in relaxed insect flight muscle: x-ray modeled resting cross-bridges in a pre-powerstroke state are poised for actin binding. Biophys J 2003; 85:1063-79. [PMID: 12885653 PMCID: PMC1303227 DOI: 10.1016/s0006-3495(03)74545-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 04/14/2003] [Indexed: 10/21/2022] Open
Abstract
Low-angle x-ray diffraction patterns from relaxed insect flight muscle recorded on the BioCAT beamline at the Argonne APS have been modeled to 6.5 nm resolution (R-factor 9.7%, 65 reflections) using the known myosin head atomic coordinates, a hinge between the motor (catalytic) domain and the light chain-binding (neck) region (lever arm), together with a simulated annealing procedure. The best head conformation angles around the hinge gave a head shape that was close to that typical of relaxed M*ADP*Pi heads, a head shape never before demonstrated in intact muscle. The best packing constrained the eight heads per crown within a compact crown shelf projecting at approximately 90 degrees to the filament axis. The two heads of each myosin molecule assume nonequivalent positions, one head projecting outward while the other curves round the thick filament surface to nose against the proximal neck of the projecting head of the neighboring molecule. The projecting heads immediately suggest a possible cross-bridge cycle. The relaxed projecting head, oriented almost as needed for actin attachment, will attach, then release Pi followed by ADP, as the lever arm with a purely axial change in tilt drives approximately 10 nm of actin filament sliding on the way to the nucleotide-free limit of its working stroke. The overall arrangement appears well designed to support precision cycling for the myogenic oscillatory mode of contraction with its enhanced stretch-activation response used in flight by insects equipped with asynchronous fibrillar flight muscles.
Collapse
Affiliation(s)
- Hind A AL-Khayat
- Biological Structure and Function Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Leake MC, Wilson D, Bullard B, Simmons RM. The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Lett 2003; 535:55-60. [PMID: 12560078 DOI: 10.1016/s0014-5793(02)03857-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kettin is a high molecular mass protein of insect muscle associated with thin filaments and alpha-actinin in the Z-disc. It is thought to form a link between thin and thick filaments towards its C-terminus, contributing significantly to passive sarcomere stiffness. Here the elastic properties were characterised by mechanical stretches on an antibody-delimited region of the single molecule using two independent optical traps capable of exerting forces up to 150 pN. Step-like events were observed in the force-extension relationships consistent with the unfolding of Ig domains at moderate force and refolding of these domains at significantly higher forces than have been observed for related modular proteins.
Collapse
Affiliation(s)
- Mark C Leake
- The Randall Centre for Molecular Mechanisms of Cell Function, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK.
| | | | | | | |
Collapse
|
9
|
Rose U, Ferber M, Hustert R. Maturation of muscle properties and its hormonal control in an adult insect. J Exp Biol 2001; 204:3531-45. [PMID: 11707502 DOI: 10.1242/jeb.204.20.3531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The oviposition of female locusts requires longitudinal muscles to tolerate remarkable lengthening. Whether this ability together with concomitant properties develops during maturation or is present throughout life was investigated. The properties of the locust abdominal muscles involved in oviposition behaviour were investigated with respect to their maturation, segment- and gender-specificity and regulation by juvenile hormone (JH). Muscles from the sixth abdominal segment (an oviposition segment) of mature females (>18 days old) were able to tolerate large extensions (>8 mm). At this length, muscles were still able to generate considerable neurally evoked twitch tension. In contrast, muscle fibres from females less than 5 days old did not tolerate extension of more than 4 mm. At this length, tension generation was negligible. The maximum tension generated at different stimulus frequencies was significantly higher in muscles of females more than 18 days old than in females less than 5 days old. Furthermore, the cross-sectional area of muscle fibres increased significantly during reproductive development. Current-clamp recordings from denervated muscle fibres of females more than 18 days old revealed their ability to generate overshooting action potentials. The potentials were tetrodotoxin (TTX)-insensitive (0.5 μmol l–1 TTX), but were blocked by Cd2+ (50 μmol l–1) or nifedipine (50 μmol l–1), which suggests the involvement of L-type Ca2+ channels. Action potentials recorded from females less than 5 days old differed considerably in amplitude and shape from those recorded from females more than 18 days old, suggesting their maturation during the first 2 weeks of adult life. Inactivation of the corpora allata (CA) by precocene inhibited the maturation of these muscle properties, whereas injection of JH into precocene-treated females reversed this effect. Homologous muscles from the third abdominal segment (a non-oviposition segment, M169) and muscles from males (M214) revealed no comparable changes, although some minor changes occurred during reproductive development. The results suggest a gender- and segment-specific maturation of muscle properties that is related to reproductive behaviour and controlled by JH.
Collapse
Affiliation(s)
- U Rose
- Abteilung Neurobiologie, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
10
|
Trombitás K, Freiburg A, Greaser M, Labeit S, Granzier H. From connecting filaments to co-expression of titin isoforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:405-18. [PMID: 10987086 DOI: 10.1007/978-1-4615-4267-4_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The molecular basis of elasticity in insect flight muscle has been analyzed using both the mechanism of extensibility of titin filaments (Trombitás et al., J. Cell Biol. 1998;140:853-859), and the sequence of projectin (Daley et al., J. Mol. Biol. 1998;279:201-210). Since a PEVK-like domain is not found in the projectin sequence, it is suggested that the sarcomere elongation causes the slightly "contracted" projectin extensible region to straighten without requiring Ig/Fn domain unfolding. Thus, the extensible region of the projectin may be viewed as a single entropic spring. The serially linked entropic spring model developed for skeletal muscle titin was applied to titin in the heart. The discovery of unique N2B sequence extension in physiological sarcomere length range (Helmes et al., Circ. Res. 1999;84:1339-1352) suggests that cardiac titin can be characterized as a serially linked three-spring system. Two different cardiac titin isoform (N2BA and N2B) co-exist in the heart. These isoforms can be differentiated by immunoelectron microscopy using antibody against sequences C-terminal of the unique N2B sequence, which is present in both isoforms. Immunolabeling experiments show that the two different isoform are co-expressed within the same sarcomere.
Collapse
Affiliation(s)
- K Trombitás
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, USA
| | | | | | | | | |
Collapse
|
11
|
Benian GM, Ayme-Southgate A, Tinley TL. The genetics and molecular biology of the titin/connectin-like proteins of invertebrates. Rev Physiol Biochem Pharmacol 1999; 138:235-68. [PMID: 10396143 DOI: 10.1007/bfb0119629] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- G M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
12
|
|
13
|
|
14
|
The genetics and molecular biology of the titin/connectin-like proteins of invertebrates. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Yang P, Tameyasu T, Pollack GH. Stepwise dynamics of connecting filaments measured in single myofibrillar sarcomeres. Biophys J 1998; 74:1473-83. [PMID: 9512043 PMCID: PMC1299493 DOI: 10.1016/s0006-3495(98)77859-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Single relaxed myofibrils of bumblebee flight muscle were subjected to motor-imposed ramp-length changes. The image of the striations was projected onto a linear photodiode array, and sarcomere length was computed as the spacing between centroids of contiguous A-bands. Centroid position was determined by integrating the respective A-band intensity peak and computing the location at which the area on one side was equal to the other. The resulting trace of centroid to centroid span versus time was stepwise, with periods of rapid shortening alternating with periods of pause. An alternative nondiscrete sensor gave similar steps. If thick filament length remains constant, stepwise sarcomere length changes imply that length changes in the connecting filament must be stepwise. Thus, shortening of the connecting filament occurs as a sequence of discrete events rather than as a continuous event.
Collapse
Affiliation(s)
- P Yang
- Department of Bioengineering, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|