1
|
Caballo-Ponce E, Pintado A, Moreno-Pérez A, Murillo J, Smalla K, Ramos C. Pseudomonas savastanoi pv. mandevillae pv. nov., a Clonal Pathogen Causing an Emerging, Devastating Disease of the Ornamental Plant Mandevilla spp. PHYTOPATHOLOGY 2021; 111:1277-1288. [PMID: 33428471 DOI: 10.1094/phyto-11-20-0526-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Commercial production of the ornamental plant dipladenia (Mandevilla spp.) is threatened by dipladenia leaf and stem spot disease, caused by the bacterium Pseudomonas savastanoi. P. savastanoi includes four pathovars of woody hosts differentiated by a characteristic host range in olive, oleander, ash, and broom plants. However, isolates from dipladenia have not been ascribed to any particular lineage or P. savastanoi pathovar. Here we report that isolates from dipladenia represent a distinct, clonal lineage. First, dipladenia isolates display very similar plasmid profiles, including a plasmid encoding the iaaM gene for biosynthesis of indole-3-acetic acid. Second, multilocus sequence analysis and core genome single-nucleotide polymorphisms phylogenies showed a monophyletic origin for dipladenia isolates, which cluster with isolates from oleander (pathovar nerii) in a distinct clade well separated from other P. savastanoi strains. Metabolic profiling and cross-pathogenicity tests in olive, oleander, ash, broom, and dipladenia clearly distinguished dipladenia isolates from the four P. savastanoi pathovars. Comparative genomics of the draft genome sequence of the dipladenia strain Ph3 with the other four pathovars showed that Ph3 encodes very few strain-specific genes and a similar set of virulence genes to pv. nerii, including its repertoire of type III secretion system effectors. However, hierarchical clustering based on the catalog of effectors and their allelic variants clearly separated Ph3 from pv. nerii strains. Based on their distinctive pathogenicity profile, we propose a de novo pathovar for P. savastanoi isolates from dipladenia, P. savastanoi pv. mandevillae pv. nov., for which strain Ph3 (CFBP 8832PT) has been designated as the pathotype strain.
Collapse
Affiliation(s)
- Eloy Caballo-Ponce
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| | - Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| | - Jesús Murillo
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, E-31192 Mutilva Baja, Spain
| | - Kornelia Smalla
- Julius Kühn-Institute Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, D-38104 Braunschweig, Germany
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Campus Teatinos s/n, E-29010 Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Consejo Superior de Investigaciones Científicas, 29010 Málaga, Spain
| |
Collapse
|
2
|
Ma Z, Smith JJ, Zhao Y, Jackson RW, Arnold DL, Murillo J, Sundin GW. Phylogenetic analysis of the pPT23A plasmid family of Pseudomonas syringae. Appl Environ Microbiol 2007; 73:1287-95. [PMID: 17114318 PMCID: PMC1828660 DOI: 10.1128/aem.01923-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/07/2006] [Indexed: 11/20/2022] Open
Abstract
The pPT23A plasmid family of Pseudomonas syringae contains members that contribute to the ecological and pathogenic fitness of their P. syringae hosts. In an effort to understand the evolution of these plasmids and their hosts, we undertook a comparative analysis of the phylogeny of plasmid genes and that of conserved chromosomal genes from P. syringae. In total, comparative sequence and phylogenetic analyses were done utilizing 47 pPT23A family plasmids (PFPs) from 16 pathovars belonging to six genomospecies. Our results showed that the plasmid replication gene (repA), the only gene currently known to be distributed among all the PFPs, had a phylogeny that was distinct from that of the P. syringae hosts of these plasmids and from those of other individual genes on PFPs. The phylogenies of two housekeeping chromosomal genes, those for DNA gyrase B subunit (gyrB) and primary sigma factor (rpoD), however, were strongly associated with genomospecies of P. syringae. Based on the results from this study, we conclude that the pPT23A plasmid family represents a dynamic genome that is mobile among P. syringae pathovars.
Collapse
Affiliation(s)
- Zhonghua Ma
- Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Sundin GW. Genomic insights into the contribution of phytopathogenic bacterial plasmids to the evolutionary history of their hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:129-51. [PMID: 17367270 DOI: 10.1146/annurev.phyto.45.062806.094317] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plasmids are common residents of phytopathogenic bacteria and contribute significantly to host evolution in a multi-faceted manner. Plasmids tend to encode determinants of virulence and ecological fitness that can enhance adaptation to a specific niche or can influence niche expansion. Many of these determinants appear to have been acquired from other bacteria via horizontal transfer, illustrating an important function of plasmids in the acquisition of sequences that enable rapid evolution. These genes can ultimately be delivered to the host chromosome through plasmid integration events, thus stabilizing important acquired determinants within the genome. Most plasmids characterized in phytopathogenic bacteria are self-transmissible and possess suites of genes encoding type IV secretion systems. In addition, the phytopathogenic bacterial plasmid "mobilome" includes insertion sequence and other transposable elements that contribute to the movement of sequences within and between genomes. Possession of mosaic and ever-changing plasmids allows phytopathogenic bacteria to maintain a dynamic, flexible genome and possible advantage in host-pathogen and other environmental interactions that belies the concept of plasmids as apparently selfish genetic elements.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant Pathology and Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
4
|
Zhao Y, Ma Z, Sundin GW. Comparative genomic analysis of the pPT23A plasmid family of Pseudomonas syringae. J Bacteriol 2005; 187:2113-26. [PMID: 15743960 PMCID: PMC1064049 DOI: 10.1128/jb.187.6.2113-2126.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 12/13/2004] [Indexed: 01/30/2023] Open
Abstract
Members of the pPT23A plasmid family of Pseudomonas syringae play an important role in the interaction of this bacterial pathogen with host plants. Complete sequence analysis of several pPT23A family plasmids (PFPs) has provided a glimpse of the gene content and virulence function of these plasmids. We constructed a macroarray containing 161 genes to estimate and compare the gene contents of 23 newly analyzed and eight known PFPs from 12 pathovars of P. syringae, which belong to four genomospecies. Hybridization results revealed that PFPs could be distinguished by the type IV secretion system (T4SS) encoded and separated into four groups. Twelve PFPs along with pPSR1 from P. syringae pv. syringae, pPh1448B from P. syringae pv. phaseolicola, and pPMA4326A from P. syringae pv. maculicola encoded a type IVA T4SS (VirB-VirD4 conjugative system), whereas 10 PFPs along with pDC3000A and pDC3000B from P. syringae pv. tomato encoded a type IVB T4SS (tra system). Two plasmids encoded both T4SSs, whereas six other plasmids carried none or only a few genes of either the type IVA or type IVB secretion system. Most PFPs hybridized to more than one putative type III secretion system effector gene and to a variety of additional genes encoding known P. syringae virulence factors. The overall gene contents of individual PFPs were more similar among plasmids within each of the four groups based on T4SS genes; however, a number of genes, encoding plasmid-specific functions or hypothetical proteins, were shared among plasmids from different T4SS groups. The only gene shared by all PFPs in this study was the repA gene, which encoded sequences with 87 to 99% amino acid identityamong 25 sequences examined. We proposed a model to illustrate the evolution and gene acquisition of the pPT23A plasmid family. To our knowledge, this is the first such attempt to conduct a global genetic analysis of this important plasmid family.
Collapse
Affiliation(s)
- Youfu Zhao
- Department of Plant Pathology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
5
|
Sundin GW, Mayfield CT, Zhao Y, Gunasekera TS, Foster GL, Ullrich MS. Complete nucleotide sequence and analysis of pPSR1 (72,601 bp), a pPT23A-family plasmid from Pseudomonas syringae pv. syringae A2. Mol Genet Genomics 2003; 270:462-76. [PMID: 14634868 DOI: 10.1007/s00438-003-0945-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 10/02/2003] [Indexed: 11/26/2022]
Abstract
Plasmid pPSR1 is a conjugative plasmid originally isolated from Pseudomonas syringae pv. syringae A2, and is a member of the recently described pPT23A plasmid family. We have determined the complete sequence of pPSR1 and found the plasmid to be 72,601 bp in length, encoding 55 ORFs. Putative functions were assigned to 49 ORFs; of these, 24 (49.0%) are involved in plasmid replication, maintenance or conjugation, 17 (34.7%) have roles in virulence or ecological fitness, and eight (16.3%) encode transposase functions as part of mobile elements. pPSR1 carries the effector gene orf34, the mutagenic DNA repair operon rulAB which confers tolerance to ultraviolet radiation, and two genes for methyl-accepting chemotaxis proteins, one of which was located within the novel transposon Tn 5395. The streptomycin resistance transposon Tn 5393a, which carries a strA-strB determinant, was found inserted immediately downstream of the pPSR1 repA gene. Functional analysis of the replication region of pPSR1 indicated that the repA gene and flanking upstream and downstream sequences are required for autonomous replication in P. syringae. Hybridization analyses of the distribution of 11 of the pPSR1 ORFs indicated that many of the ecologically important ORFs were confined to the pathovar P. syringae pv. syringae -either to strains from the local population from which pPSR1 was originally isolated, or strains from a worldwide collection. Conjugative transfer genes and a gene encoding a transcriptional regulator were more widely distributed among several P. syringae pathovars. The sequence analysis of pPSR1 suggests that pPT23A-family plasmids evolve by accumulating genes that are important for host-pathogen interactions or growth on plant hosts, which are incorporated onto a conserved backbone encoding conjugation and stability determinants.
Collapse
Affiliation(s)
- G W Sundin
- Department of Plant Pathology and Center for Microbial Ecology, Michigan State University, 103 Center for Integrated Plant Systems, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Sundin GW, Jacobs JL, Murillo J. Sequence diversity of rulA among natural isolates of Pseudomonas syringae and effect on function of rulAB-mediated UV radiation tolerance. Appl Environ Microbiol 2000; 66:5167-73. [PMID: 11097885 PMCID: PMC92439 DOI: 10.1128/aem.66.12.5167-5173.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.
Collapse
Affiliation(s)
- G W Sundin
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA.
| | | | | |
Collapse
|
7
|
Albiach MR, Lopez MM. Plasmid Heterogeneity in Spanish Isolates of
Agrobacterium tumefaciens
from Thirteen Different Hosts. Appl Environ Microbiol 1992; 58:2683-7. [PMID: 16348756 PMCID: PMC195841 DOI: 10.1128/aem.58.8.2683-2687.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid DNA was isolated from 80 Spanish isolates of
Agrobacterium tumefaciens
from 13 hosts of several geographical and temporal origins. One to five plasmids occurred in all of the isolates studied. Plasmid sizes varied between 5 and greater than 1,000 MDa. Generally, there was no correlation between plasmid number or size and geographical origin, host, biovar, sensitivity to agrocin 84, or opine-catabolizing ability of the different isolates.
Collapse
Affiliation(s)
- M R Albiach
- Instituto Valenciano de Investigaciones Agrarias, Apartado Oficial, 46113 Moncada, Valencia, Spain
| | | |
Collapse
|
8
|
Bloom RA, Mullin BC, Tate RL. DNA restriction patterns and DNA-DNA solution hybridization studies of Frankia isolates from Myrica pennsylvanica (bayberry). Appl Environ Microbiol 1989; 55:2155-60. [PMID: 2802599 PMCID: PMC203049 DOI: 10.1128/aem.55.9.2155-2160.1989] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sixteen Frankia strains were isolated from Myrica pennsylvanica (bayberry) root nodules collected at diverse sites in New Jersey. Restriction pattern analysis of total genomic DNA was used to group the isolates into gel groups, and the genetic relatedness among the isolates was evaluated by DNA-DNA solution hybridization studies. Restriction pattern analysis provided a distinctive reproducible fingerprint for each isolate. Isolates fell into nine separate groups (strain types). More than one strain type was isolated from most sites. Isolates from two different gel groups were found in 3 of 10 nodules examined. Of the 16 isolates, 10 contained extrachromosomal DNA. Six different extrachromosomal DNA banding patterns were found. Genomically similar isolates carried related, but different, banding patterns. DNA hybridization studies indicated that isolates from a single plant species can be minimally related as determined by total genome homology. Homology ranged from 12 to 99%. Highly divergent strains were isolated from the same plant and found to cohabit the same nodule. Thus, this study demonstrated that Frankia strains which infect the same host plant are not only phenotypically different but also genetically diverse.
Collapse
Affiliation(s)
- R A Bloom
- Department of Soils and Crops, Rutgers University, New Brunswick, New Jersey 08903-0231
| | | | | |
Collapse
|
9
|
Mayer LW. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Clin Microbiol Rev 1988; 1:228-43. [PMID: 2852997 PMCID: PMC358044 DOI: 10.1128/cmr.1.2.228] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasmids are circular deoxyribonucleic acid molecules that exist in bacteria, usually independent of the chromosome. The study of plasmids is important to medical microbiology because plasmids can encode genes for antibiotic resistance or virulence factors. Plasmids can also serve as markers of various bacterial strains when a typing system referred to as plasmid profiling, or plasmid fingerprinting is used. In these methods partially purified plasma deoxyribonucleic acid species are separated according to molecular size by agarose gel electrophoresis. In a second procedure, plasmid deoxyribonucleic acid which has been cleaved by restriction endonucleases can be separated by agarose gel electrophoresis and the resulting pattern of fragments can be used to verify the identity of bacterial isolates. Because many species of bacteria contain plasmids, plasmid profile typing has been used to investigate outbreaks of many bacterial diseases and to trace inter- and intra-species spread of antibiotic resistance.
Collapse
Affiliation(s)
- L W Mayer
- Division of Bacterial Diseases, Center for Infectious Diseases, Atlanta, Georgia 30333
| |
Collapse
|