1
|
Stimuli-responsive polymersomes of poly [2-(dimethylamino) ethyl methacrylate]-b-polystyrene. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03533-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Farkuh L, Hennies PT, Nunes C, Reis S, Barreiros L, Segundo MA, Oseliero Filho PL, Oliveira CLP, Cassago A, Portugal RV, Muramoto RA, Carretero GPB, Schreier S, Chaimovich H, Cuccovia IM. Characterization of phospholipid vesicles containing lauric acid: physicochemical basis for process and product development. Heliyon 2019; 5:e02648. [PMID: 31720452 PMCID: PMC6838897 DOI: 10.1016/j.heliyon.2019.e02648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 11/24/2022] Open
Abstract
Lauric acid (LAH) strongly inhibits the growth of acne-causing bacteria. LAH is essentially water-insoluble and the solubility of laurate (LA) salts are medium and temperature dependent. Hence, LAH/LA preparations are difficult to formulate. Here we fully characterized phospholipid vesicles containing up to 50 mol% LAH. Vesicles of dipalmitoylphosphatidylcholine (DPPC) containing LAH, at pHs 7.4 and 5.0, were characterized measuring size, charge, bilayer phase transition temperature (Tm) and permeability of water-soluble probes. Small angle X-ray scattering and cryotransmission electron microscopy showed multilamellar vesicles at low LAH %. Increasing LAH % had a negligible effect on particle size. An internal aqueous compartment in all vesicle's preparations, even at equimolar DPPC: LAH fractions, was demonstrated using water-soluble probes. At pH 5.0, the interaction between DPPC and LAH increased the Tm and phase transition cooperativity showing a single lipid phase formed by hydrogen-bonded DPPC: LAH complexes. At pH 7.4, vesicles containing 50 mol% LAH exhibited distinct phases, ascribed to complex formation between LAH and LA or LAH and DPPC. LAH incorporated in the vesicles minimally permeated a skin preparation at both pHs, indicating that the primary sites of LAH solubilization were the skin layers. These results provide the foundations for developing processes and products containing DPPC: LAH.
Collapse
Affiliation(s)
- Laura Farkuh
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Cláudia Nunes
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luisa Barreiros
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marcela A Segundo
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Pedro L Oseliero Filho
- Department of Experimental Physics, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Cristiano L P Oliveira
- Department of Experimental Physics, Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Alexandre Cassago
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Rodrigo A Muramoto
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gustavo P B Carretero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Hernan Chaimovich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Iolanda M Cuccovia
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Kaur P, Li Y, Cai J, Song L. Selective Membrane Disruption Mechanism of an Antibacterial γ-AApeptide Defined by EPR Spectroscopy. Biophys J 2017; 110:1789-1799. [PMID: 27119639 DOI: 10.1016/j.bpj.2016.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/14/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
γ-AApeptides are a new class of antibacterial peptidomimetics that are not prone to antibiotic resistance and are highly resistant to protease degradation. It is not clear how γ-AApeptides interact with bacterial membranes and alter lipid assembly, but such information is essential to understanding their antimicrobial activities and guiding future design of more potent and specific antimicrobial agents. Using electron paramagnetic resonance techniques, we characterized the membrane interaction and destabilizing mechanism of a lipo-cyclic-γ-AApeptide (AA1), which has broad-spectrum antibacterial activities. The analyses revealed that AA1 binding increases the membrane permeability of POPC/POPG liposomes, which mimic negatively charged bacterial membranes. AA1 binding also inhibits membrane fluidity and reduces solvent accessibility around the lipid headgroup region. Moreover, AA1 interacts strongly with POPC/POPG liposomes, inducing significant lipid lateral-ordering and membrane thinning. In contrast, minimal membrane property changes were observed upon AA1 binding for liposomes mimicking mammalian cell membranes, which consist of neutral lipids and cholesterol. Our findings suggest that AA1 interacts and disrupts bacterial membranes through a carpet-like mechanism. The results showed that the intrinsic features of γ-AApeptides are important for their ability to disrupt bacterial membranes selectively, the implications of which extend to developing new antibacterial biomaterials.
Collapse
Affiliation(s)
- Pavanjeet Kaur
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida
| | - Yaqiong Li
- Department of Chemistry, University of South Florida, Tampa, Florida
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida.
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida.
| |
Collapse
|
4
|
Krishnamani V, Hegde BG, Langen R, Lanyi JK. Secondary and Tertiary Structure of Bacteriorhodopsin in the SDS Denatured State. Biochemistry 2012; 51:1051-60. [DOI: 10.1021/bi201769z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Venkatramanan Krishnamani
- Department
of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| | - Balachandra G. Hegde
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
90033, United States
| | - Ralf Langen
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California
90033, United States
| | - Janos K. Lanyi
- Department
of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
5
|
Krishnamani V, Lanyi JK. Structural changes in bacteriorhodopsin during in vitro refolding from a partially denatured state. Biophys J 2011; 100:1559-67. [PMID: 21402039 DOI: 10.1016/j.bpj.2011.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022] Open
Abstract
We report on the formation of the secondary and tertiary structure of bacteriorhodopsin during its in vitro refolding from an SDS-denatured state. We used the mobility of single spin labels in seven samples, attached at various locations to six of the seven helical segments to engineered cysteine residues, to follow coil-to-helix formation. Distance measurements obtained by spin dipolar quenching in six samples labeled at either the cytoplasmic or extracellular ends of pairs of helices revealed the time dependence of the recovery of the transmembrane helical bundle. The secondary structure in the majority of the helical segments refolds with a time constant of <100-140 ms. Recovery of the tertiary structure is achieved by sequential association of the helices and occurs in at least three distinct steps with time constants of 1), well below 1 s; 2), 3-4 s; and 3), 60-130 s (the latter depending on the helical pair). The slowest of these processes occurs in concert with recovery of the retinal chromophore.
Collapse
|
6
|
Fournier I, Barwicz J, Tancrède P. The structuring effects of amphotericin B on pure and ergosterol- or cholesterol-containing dipalmitoylphosphatidylcholine bilayers: a differential scanning calorimetry study. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:76-86. [PMID: 9733926 DOI: 10.1016/s0005-2736(98)00083-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Amphotericin B (AmB) is the most widely used polyene antibiotic to treat systemic fungal infections which affect an increasing number of immunocompromised patients. It is generally thought that AmB forms pores within the fungi membranes by interacting with ergosterol, the main sterol of fungi. However, it also interacts with the cholesterol contained in mammalian cells, hence its toxicity. In order to have a better understanding of the interactions prevailing between AmB and sterols, differential scanning calorimetry was used to study various mixtures incorporating from 6.5 to 25 mol% of AmB in pure dipalmitoylphosphatidylcholine (DPPC) vesicles and in ergosterol- or cholesterol-containing DPPC vesicles. The sterol concentration was kept constant at 12.5 mol% with respect to the phospholipid. Our results show that three phases co-exist when AmB is dispersed in the pure phospholipid. One corresponds to the phospholipid phase alone. The two others are characterised by a broad transition at temperatures higher than the main transition temperature of the pure phospholipid, corresponding to the drug in interaction with the aliphatic chains of the lipid. The fact that the transition temperatures of these additional components are higher than that of the pure phospholipid suggests that AmB interacts strongly with the aliphatic chains of the lipid, consistent with the idea prevailing in the literature that AmB by itself may form pores in a lipid matrix. When AmB interacts with cholesterol-containing bilayers the thermograms also present three components. Upon increasing the concentration of AmB, though, an important broadening of these components is observed which is explained in terms of destabilisation of the organisation of the aliphatic chains. The situation is strikingly different if ergosterol is present in the lipid matrix. The thermograms remain unmodified as the concentration of AmB is increased and a broad transition, now involving only two components when the thermograms are decomposed, is observed. An analysis of the results shows that various interacting units, e.g. AmB+DPPC and (AmB+ergosterol)+DPPC, are present within the membrane. These units involve the phospholipid and hence contribute to its structurisation. The important differences between the thermograms obtained with the ergosterol- as compared to the cholesterol-containing bilayers, in spite of the structural similarity of these two sterols, provides strong evidence for the selectivity of interaction of AmB with ergosterol as compared to cholesterol. It is thus clear that the action of AmB on cholesterol- as compared to ergosterol-containing membranes results from different mechanisms. Finally, UV-visible spectra of AmB in pure as well as sterol-containing DPPC vesicles show the presence of absorption bands that give support to the interpretation derived from the calorimetric data.
Collapse
Affiliation(s)
- I Fournier
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, B.P. 500, Three Rivers, Que. G9A 5H7, Canada
| | | | | |
Collapse
|
7
|
Marcocci L, Mavelli I, Di Giulio A, Pedersen JZ, Desideri A, Rotilio G. Room temperature electron spin resonance of superoxide dismutase-loaded liposomes and erythrocytes. A direct approach to the interaction of O2- with cells. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 979:99-104. [PMID: 2537108 DOI: 10.1016/0005-2736(89)90528-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human erythrocytes were enriched with bovine superoxide dismutase by fusion with liposomes containing the entrapped enzyme. Liquid solution ESR of intact cells at room temperature was used to measure directly the increase in the superoxide dismutase content. From the spectral characteristics (g-value and hyperfine splitting tensor), the structural integrity of the Cu site of the enzyme was found to be unaffected by the liposome preparation procedure or the incubation with cells. Changes in the ESR signal size were used to test directly the interaction of superoxide with the enzyme entrapped in liposomes or delivered to erythrocytes. It was found that the liposome-entrapped enzyme does not react with externally generated O2-, but once delivered to red blood cells this reaction can take place. This is the first demonstration of O2- -scavenging activity by superoxide dismutase delivered into an intact cell structure and is therefore to be considered as strong evidence for activity of this enzyme under in vivo conditions.
Collapse
Affiliation(s)
- L Marcocci
- Department of Biology, Tor Vergata University of Rome, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Ondrias K. Use of electron spin resonance spectroscopy of spin labels for studying drug-induced membrane perturbation. J Pharm Biomed Anal 1989; 7:649-75. [PMID: 2562323 DOI: 10.1016/0731-7085(89)80110-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of electron spin resonance spectroscopy of spin labels is reviewed in the context of drug-induced membrane perturbation. The correlation between membrane perturbation and biological effects is also considered.
Collapse
Affiliation(s)
- K Ondrias
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava, Czechoslovakia
| |
Collapse
|
9
|
Frezzatti WA, Toselli WR, Schreier S. Spin label study of local anesthetic-lipid membrane interactions. Phase separation of the uncharged form and bilayer micellization by the charged form of tetracaine. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 860:531-8. [PMID: 3017421 DOI: 10.1016/0005-2736(86)90550-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interaction between tetracaine and egg phosphatidylcholine (egg PC) multibilayers was examined. ESR spectra of an ester spin label indicate that at low uncharged anesthetic: lipid ratios, membrane organization decreases. At higher ratios, saturation and phase separation occur, as suggested by a second spectral component which appears when the water solubility of tetracaine is reached. However, experiments with the drug in the absence and in the presence of membranes, making use of a phospholipid spin label, suggest that the new phase does not consist of solid tetracaine alone. Location of the new phase in the membrane would require a change in partition coefficient, while its location outside would imply a mechanism whereby the anesthetic would come off the membrane as an aggregate containing spin probe and phospholipid. Charged tetracaine forms micelles which disrupt-unilamellar egg PC vesicles (Fernandez, M.S. (1981) Biochim. Biophys. Acta 646, 27-30). Micellar tetracaine added to bilayers containing a PC spin probe changes the spectrum from one typical of a bilayer into one typical of micelles, indicating the formation of a tetracaine-egg PC mixed micelle. The effect is reversible upon dilution to concentrations below the critical micelle concentration of tetracaine. When membranes are prepared in the presence of a water-soluble spin label, TEMPOcholine, ascorbate destroys the signal of untrapped label; when mixed phospholipid-tetracaine are formed by addition of micellar tetracaine, this leads to a complete loss of the ESR signal. High drug concentrations are often used for anesthesia and could be related to morphological nerve damage caused by large doses of anesthetics.
Collapse
|
10
|
Debenham PG, Webb MB. The effect of X-rays and ultraviolet light on DNA-mediated gene transfer in mammalian cells. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY AND RELATED STUDIES IN PHYSICS, CHEMISTRY, AND MEDICINE 1984; 46:555-68. [PMID: 6394531 DOI: 10.1080/09553008414551761] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The uptake, expression and genomic integration of exogenous DNA during DNA-mediated gene transfer are poorly understood in mammalian cells. We studied the effects of ionizing radiation and u.v. light treatments on recipient cells during gene transfer experiments. We found that both X-rays and u.v. light stimulate pSV2-gpt DNA transfer into V79 Chinese hamster cells and they are equally effective for an equi-cytotoxic dose. This result was observed with irradiation both before and after the period of DNA precipitate overlay of the recipient cells. The stimulation of DNA transfer was approximately proportional to dose for both types of radiation. The effect was significantly enhanced using chronic, rather than acute, radiation treatments. The optimal expression time to observe stimulation of DNA transfer, however, differs for the two radiation types. A possible model for DNA-mediated gene transfer, incorporating this result, is discussed.
Collapse
|
11
|
Surewicz WK. Membrane actions of water-soluble fusogens: Effect of dimethyl sulfoxide, glycerol and sucrose on lipid bilayer order and fluidity. Chem Phys Lipids 1984. [DOI: 10.1016/0009-3084(84)90010-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Fluidity, permeability and antioxidant behaviour of model membranes incorporated with α-tocopherol and vitamin E acetate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1983. [DOI: 10.1016/0005-2736(83)90135-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Aracava Y, Schreier S, Phadke R, Deslauriers R, Smith IC. Effects of amphotericin B on membrane permeability--kinetics of spin probe reduction. Biophys Chem 1981; 14:325-32. [PMID: 6279197 DOI: 10.1016/0301-4622(81)85034-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of the polyene antibiotic amphotericin B on the permeability of both unilamellar and multilamellar model membranes is investigated. The method measures the loss of the electron paramagnetic resonance signal of a spin probe, trapped in the aqueous compartment of a lipid dispersion, upon addition of ascorbate ions to the bulk aqueous phase. Amphotericin B causes large increases in the permeability of cholesterol-containing egg phosphatidylcholine membranes, whereas the effects are small in the absence of sterol and do not depend on surface charge. The effect of amphotericin depends upon the antibiotic:sterol mole ratio. The antibiotic appears to be unable to cross the membrane, acting only on the outermost bilayer of a multibilayer dispersion. When a phospholipid in the gel phase is used, amphotericin B causes large increases in permeability, independently of the presence or absence of sterol. It is suggested that the mechanism of action of amphotericin B is different for lipids in the liquid crystalline or gel states.
Collapse
|