1
|
Duffy MJ, Crown J. Drugging "undruggable" genes for cancer treatment: Are we making progress? Int J Cancer 2020; 148:8-17. [PMID: 32638380 DOI: 10.1002/ijc.33197] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
RAS, TP53 (p53) and MYC are among the most frequently altered driver genes in cancer. Thus, RAS is the most frequently mutated oncogene, MYC the most frequently amplified gene and TP53 the most frequently mutated tumor suppressor gene and overall the most frequently mutated gene in cancer. Theoretically, therefore, these genes are highly attractive targets for cancer treatment. However, as the protein products of each of these genes lack an accessible hydrophobic pocket into which low molecular weight compounds might bind with high affinity, they have proved difficult to target and have traditionally been referred to as "undruggable." Despite this branding, several low molecular weight compounds targeting each of these proteins have recently been reported to have anticancer activity in preclinical models. Indeed, several drugs inhibiting mutant KRAS, MYC overexpression or reactivating mutant p53 have undergone or are currently undergoing clinical trials. For targeting mutant KRAS and reactivating mutant p53, trials have progressed to a Phase III stage, that is, the mutant-p53 reactivating drug, APR-246 is currently being investigated in patients with myelodysplastic syndrome (MDS) and the RAS inhibitor, rigosertib is also undergoing evaluation in patients with MDS. Although there appears to be no directly acting MYC inhibitor currently being tested in a clinical trial, an anti-MYC compound, known as OmoMYC has been extensively validated in multiple preclinical models and is being developed for clinical evaluation. Based on current evidence, the traditional perception of RAS, p53 and MYC as being "undruggable" would appear to be coming to an end.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.,UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland
| |
Collapse
|
2
|
Jia Y, Chen L, Jia Q, Dou X, Xu N, Liao DJ. The well-accepted notion that gene amplification contributes to increased expression still remains, after all these years, a reasonable but unproven assumption. J Carcinog 2016; 15:3. [PMID: 27298590 PMCID: PMC4895059 DOI: 10.4103/1477-3163.182809] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/25/2016] [Indexed: 02/06/2023] Open
Abstract
“Gene amplification causes overexpression” is a longstanding and well-accepted concept in cancer genetics. However, raking the whole literature, we find only statistical analyses showing a positive correlation between gene copy number and expression level, but do not find convincing experimental corroboration for this notion, for most of the amplified oncogenes in cancers. Since an association does not need to be an actual causal relation, in our opinion, this widespread notion still remains a reasonable but unproven assumption awaiting experimental verification.
Collapse
Affiliation(s)
- Yuping Jia
- Animal Facilities, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, USA
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Qingwen Jia
- Animal Facilities, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, USA
| | - Xixi Dou
- Animal Facilities, Shandong Academy of Pharmaceutical Sciences, Ji'nan, Shandong 250101, USA
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, China
| | - Dezhong Joshua Liao
- Department of Pathology, Guizhou Medical University Hospital, Guizhou, Guiyang 550004, P.R. China
| |
Collapse
|
3
|
Spinola M, Falvella FS, Galvan A, Pignatiello C, Leoni VP, Pastorino U, Paroni R, Chen S, Skaug V, Haugen A, Dragani TA. Ethnic differences in frequencies of gene polymorphisms in the MYCL1 region and modulation of lung cancer patients' survival. Lung Cancer 2006; 55:271-7. [PMID: 17145094 DOI: 10.1016/j.lungcan.2006.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 01/07/2023]
Abstract
Linkage disequilibrium (LD) analysis to refine a region associated with lung cancer progression on chromosome 1p34 identified a 106 kb LD block that includes MYCL1, TRIT1 (tRNA isopentenyltransferase 1) and MFSD2 (major facilitator superfamily domain-containing 2). Case-only association study on SNPs mapping in TRIT1 and MFSD2 indicated that the rare Leu allele (frequency: 0.04) of the TRIT1 Phe202Leu variation predicts short survival as compared to the common Phe/Phe genotype (hazard ratio (HR)=1.7; 95% CI, 1.03-2.86; P=0.039) in 335 Italian lung adenocarcinoma samples. A replication study in an independent population of 246 Norwegian lung cancer patients confirmed the significant association of the Phe202Leu polymorphism with patients' survival, but the rare allele was associated with better survival rate (HR=0.5; 95% CI, 0.26-0.91; P=0.023). The rare allele of TRIT1 Phe202Leu SNP was approximately seven-fold more frequent in Asian than in Caucasian subjects and three additional SNPs in the TRIT1 and MFSD2 genes showed ethnic differences in allelic frequencies. These results suggest that polymorphisms in the MYCL1 LD region affect lung cancer survival but that the functional element(s) may show population-specific patterns.
Collapse
Affiliation(s)
- Monica Spinola
- Department of Experimental Oncology and Laboratories, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Spinola M, Pedotti P, Dragani TA, Taioli E. Meta-Analysis Suggests Association of L-myc EcoRI Polymorphism with Cancer Prognosis. Clin Cancer Res 2004; 10:4769-75. [PMID: 15269151 DOI: 10.1158/1078-0432.ccr-04-0055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The L-myc EcoRI polymorphism is a noncoding variation in the second intron of the L-myc gene, resulting in S and L alleles. Individuals carrying the S allele tend to have poor prognosis and increased risk of several tumor types, although controversial results have been reported. A meta-analysis of 36 studies on L-myc EcoRI genotyping, including 3563 patients with different types of cancer and 2953 controls, was performed. In lung cancer patients the S/S genotype was significantly associated with lymph node metastasis [odds ratio (OR), 2.8; 95% confidence interval (CI), 1.8-4.3], distant metastasis (OR, 4.7; 95% CI, 2.4-9.2), and stage (OR, 2.3; 95% CI, 1.2-4.4). No association was observed between the S/S genotype and cancer (OR, 1.1; 95% CI, 0.8-1.4). In patients with other cancers, the S/S genotype was significantly associated with tumor recurrence (OR, 2.8; 95% CI, 1.4-6.0), whereas no significant association was seen for the other prognostic parameters. When all types of cancer were examined together, the S/S genotype was associated with lymph node metastasis (OR, 2.3; 95% CI, 1.6-3.3), distant metastasis (OR, 2.9; 95% CI, 1.8-4.6), clinical stage (OR, 1.8; 95% CI, 1.2-2.9), and cancer risk (OR, 1.25; 95% CI, 1.07-1.45). The meta-analysis suggests that the L-myc EcoRI polymorphism is a marker of tumor prognosis in lung cancer and possibly in other types of cancer.
Collapse
Affiliation(s)
- Monica Spinola
- Department of Experimental Oncology, Istituto Nazionale Tumori, and Molecular and Genetic Epidemiology Unit, Ospedale Policlinico IRCCS, Milan, Italy
| | | | | | | |
Collapse
|
5
|
Hurlin PJ, Dezfouli S. Functions of myc:max in the control of cell proliferation and tumorigenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:183-226. [PMID: 15364199 DOI: 10.1016/s0074-7696(04)38004-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deregulation and elevated expression of members of the Myc family of bHLHZip transcription factors are observed in a high percentage of tumors. This close association with human cancers has led to a tremendous effort to define their biological and biochemical activities. Although Myc family proteins have the capacity to elicit a wide range of cell behaviors, their principal function appears to be to drive cells into the cell cycle and to keep them there. However, forced expression of Myc profoundly sensitizes normal cells to apoptosis. Therefore, tumor formation caused by deregulated Myc expression requires cooperating events that disrupt pathways that mediate apoptosis. Myc-dependent tumor formation may also be impeded by a set of related bHLHZip proteins with the demonstrated potential to act as Myc antagonists in cell culture experiments. In this review, we examine the complex activities of Myc family proteins and how their actions might be regulated in the context of a network of bHLHZip proteins.
Collapse
Affiliation(s)
- Peter J Hurlin
- Portland Shriners Hospitals for Children and Department of Cell and Developmental Biology Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
6
|
Wu R, Lin L, Beer DG, Ellenson LH, Lamb BJ, Rouillard JM, Kuick R, Hanash S, Schwartz DR, Fearon ER, Cho KR. Amplification and overexpression of the L-MYC proto-oncogene in ovarian carcinomas. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1603-10. [PMID: 12707044 PMCID: PMC1851191 DOI: 10.1016/s0002-9440(10)64294-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gene amplification is an important mechanism of oncogene activation in various human cancers, including ovarian carcinomas (OvCas). We used restriction landmark genomic scanning (RLGS) to detect amplified DNA fragments in the genomes of 47 primary OvCas. Visual analysis of the RLGS gel images revealed several OvCa samples with spots of greater intensity than corresponding spots from normal tissues, indicating possible DNA amplification in specific tumors. Two primary tumors (E1 and S12) shared four high-intensity spots. A recently developed informatics tool termed Virtual Genome Scans was used to compare the RLGS patterns in these tumors with patterns predicted from the human genome sequence. Virtual Genome Scans determined that three of the four fragments localized to chromosome 1p34-35, a region containing the proto-oncogene L-MYC. Sixty-eight primary OvCas, including 40 analyzed by RLGS, were screened by quantitative polymerase chain reaction (PCR) for possible amplification of L-MYC. Ten tumors with increased L-MYC copy number were identified, including tumor E1, which showed an approximately 24-fold increase in copy number compared to normal DNA. Southern analysis of several tumors confirmed the quantitative PCR results. Using sequence tagged site (STS) markers flanking L-MYC, increased DNA copy number in tumor E1 was found to span the region flanking L-MYC between D1S432 and D1S463 ( approximately 3.1 Mb). Other tumors showed amplification only at the L-MYC locus. Using oligonucleotide microarrays, L-MYC was found to be more frequently overexpressed in OvCas than either c-MYC or N-MYC relative to ovarian surface epithelium. Quantitative reverse transcriptase-PCR analysis confirmed elevated L-MYC expression in a substantial fraction of OvCas, including nine of nine tumors with increased L-MYC copy number. The data implicate L-MYC gene amplification and/or overexpression in human OvCa pathogenesis.
Collapse
Affiliation(s)
- Rong Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Demopoulos K, Arvanitis DA, Vassilakis DA, Siafakas NM, Spandidos DA. MYCL1, FHIT, SPARC, p16(INK4) and TP53 genes associated to lung cancer in idiopathic pulmonary fibrosis. J Cell Mol Med 2002; 6:215-22. [PMID: 12169206 PMCID: PMC6740283 DOI: 10.1111/j.1582-4934.2002.tb00188.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a specific form of chronic interstitial pneumonia limited to the lung and characterized by a fibroproliferative response with only minor signs of inflammation, which almost always causes rapid fibrotic destruction of the lung. In this study, we investigated genomic instability in IPF, using microsatellite DNA analysis, aiming to detect any specific genetic alterations for this disease. We used 40 highly polymorphic microsatellite DNA markers, in multiplex PCR assays, to examine 52 sputum specimens from IPF patients versus correspondent venous blood. Loss of heterozygosity (LOH) was found in 20 (38.5%) patients in at least one locus. These alterations were found on markers previously associated with lung cancer located on 1p34.3, 3p21.32-p21.1, 5q32-q33.1, 9p21 and 17p13.1 where MYCL1, FHIT, SPARC, p16(Ink4) and TP53 genes have been mapped respectively. These data provide new insights into IPF pathogenesis and a new perspective for its correlation with lung cancer.
Collapse
Affiliation(s)
- K Demopoulos
- Department of Virology, Medical School, University of Crete, P.O. Box 1393, Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
8
|
Abstract
c-myc, N-myc and L-myc are the three members of the myc oncoprotein family whose role in the pathogenesis of many human neoplastic diseases has received wide empirical support. In this review, we first summarize data, derived mainly from non-clinical studies, indicating that these oncoproteins actually serve quite different roles in vivo. This concept necessarily lies at the heart of the basis for the observation that the deregulated expression of each MYC gene is reproducibly associated with only certain naturally occurring malignancies in humans and that these genes are not interchangeable with respect to their aberrant functional consequences. We also review evidence implicating each of the above MYC genes in specific neoplastic diseases and have attempted to identify unresolved questions which deserve further basic or clinical investigation. We have made every attempt to review those diseases for which significant and confirmatory evidence, based on studies with primary tumor material, exists to implicate MYC members in their causation and/or progression.
Collapse
Affiliation(s)
- C E Nesbit
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
9
|
Abstract
Auger-emitting radionuclides have potential for the therapy of cancer due to their high level of cytotoxicity and short-range biological effectiveness. Biological effects are critically dependent on the sub-cellular (and sub-nuclear) localization of Auger emitters. Mathematical modelling studies suggest that there are theoretical advantages in the use of radionuclides with short half-lives (such as 123I) in preference to those (such as 125I) with long half-lives. In addition, heterogeneity of radionuclide uptake is predicted to be a serious limitation on the ultimate therapeutic effect of targeted Auger therapy. Possible methods of targeting include the use of analogues of DNA precursors such as iodo-deoxyuridine and molecules which bind DNA such as steroid hormones or growth factors. A longer term possibility may be the use of molecules such as oligonucleotides which can discriminate at the level of DNA sequence. It seems likely that the optimal clinical role of targeted Auger therapy will be as one component of a multi-modality therapeutic strategy for the treatment of selected malignant diseases.
Collapse
Affiliation(s)
- J A O'Donoghue
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
10
|
Kristensen CA, Jensen PB, Poulsen HS, Hansen HH. Small cell lung cancer: biological and therapeutic aspects. Crit Rev Oncol Hematol 1996; 22:27-60. [PMID: 8672251 DOI: 10.1016/1040-8428(94)00170-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- C A Kristensen
- Department of Oncology, National University Hospital/Finsen Centre, Copenhagen, Denmark
| | | | | | | |
Collapse
|
11
|
Abstract
Genetic recombination systems are present in all living cells and viruses and generally contribute to their hosts' flexibility with respect to changing environmental conditions. Recombination systems not only help highly developed organisms to protect themselves from microbial attack via an elaborate immune system, but conversely, recombination systems also enable microorganisms to escape from such an immune system. Recombination enzymes act with a high specificity on DNA sequences that either exhibit extended stretches of homology or contain characteristic signal sequences. However, recombination enzymes may rarely act on incorrect alternative target sequences, which may result in the formation of chromosomal deletions, inversions, translocations, or amplifications of defined DNA regions. This review describes the characteristics of several recombination systems and focuses on the implication of aberrant recombination in carcinogenesis. The consequences of mitotic recombination on the inappropriate activation of protooncogenes and on the loss of tumor suppressor genes is discussed. Cases are reported where mitotic recombination clearly has been associated with carcinogenesis in rodents as well as humans. Several test systems able to detect recombinagenic activities of chemical compounds are described.
Collapse
Affiliation(s)
- C Sengstag
- Institute of Toxicology, Swiss Federal Institute of Technology, Schwerzenbach
| |
Collapse
|
12
|
Abstract
This article reviews geriatric oncology and assesses options for treatment and care of the elderly patient with cancer. The size of the population over 65 years old is defined, with particular reference to the continuing growth of this subsection of the community. The high incidence of many cancers and their associated mortality rates in the elderly are identified and the epidemiology of such diseases in the geriatric population is addressed. Given the discrepancies in incidence and survival rates between patients younger and older than 65 years, the association between tumorigenesis and the aging process is explored. Specific aspects of tumor growth in the elderly are considered. General considerations of therapy for elderly patients with cancer are discussed, including the pharmacokinetics and pharmacodynamics of chemotherapy in those over 65 years old, surgical options, the use of radiotherapy, and overall patient assessment. Next, treatment options for individual cancer states are reviewed, with particular emphasis on newer treatment options designed specifically for the elderly. Sections on cancer screening and supportive care are also included, the latter dealing with aspects of symptom control, quality of life assessment, and the physical and psychologic rehabilitation of the elderly patient with cancer who is undergoing treatment. Conclusions are then drawn as to the extent of the oncological process in those over 65 years old, with particular emphasis on the underdiagnosis and undertreatment of many malignancies in the past. The challenge created by the growing elderly population is underscored and necessary plans of action for oncologists in the future are defined. Such proposals are necessary if inroads are to be made into the unacceptable morbidity and mortality rates borne by our elderly patients with cancer.
Collapse
Affiliation(s)
- A Byrne
- Department of Medical Oncology, Mater Misericordiae Hospital Dublin, Ireland
| | | |
Collapse
|