1
|
Jawich D, Pfohl-Leszkowicz A, Lteif R, Strehaiano P. DNA adduct formation in Saccharomyces cerevisiae following exposure to environmental pollutants, as in vivo model for molecular toxicity studies. World J Microbiol Biotechnol 2024; 40:180. [PMID: 38668960 DOI: 10.1007/s11274-024-03989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.
Collapse
Affiliation(s)
- Dalal Jawich
- Fanar Laboratory, Lebanese Agricultural Research Institute (LARI), Beirut, Lebanon.
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France.
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon.
- Faculty of Agricultural Sciences, Department of Basic Sciences, Lebanese University, Dekwaneh, Beirut, Lebanon.
| | - Annie Pfohl-Leszkowicz
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| | - Roger Lteif
- Unité de Technologie et Valorisation Alimentaire, Faculté Des Sciences, Centre d'Analyses et de Recherche, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Dekwaneh, B.P. 17-5208, Mar Mikhaël, Beirut, 1104 2020, Lebanon
| | - Pierre Strehaiano
- Laboratoire de Génie Chimique, UMR-CNRS/INPT/UPS 5503, Département Bioprocédé-Système Microbien, Toulouse Cedex, France
| |
Collapse
|
2
|
Belew S, Suleman S, Wynendaele E, Duchateau L, De Spiegeleer B. Environmental risk assessment of the anthelmintic albendazole in Eastern Africa, based on a systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116106. [PMID: 33272795 DOI: 10.1016/j.envpol.2020.116106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
This study performs an environmental risk assessment (ERA) of the anthelmintic medicine albendazole (ABZ) in the eastern African region. A systematic literature search strategy was applied to obtain quantitative information on the physicochemical characteristics, the metabolization-fate, the ecotoxicity and the environmental occurrence in different countries worldwide serving as model regions. In addition, insilico tools were employed to obtain data on physicochemical characteristics and toxic hazards of ABZ and its metabolites. Moreover, ERA models were used to predict environmental concentrations in different compartments and compare them with the measured environmental concentrations. Finally, the environmental risk of ABZ in the eastern Africa was estimated by calculating the risk quotient (RQ), and its uncertainty estimated by Monte Carlo simulation. The predicted environmental concentrations of ABZ in surface water in the model region based on consumption (1.6-267 ng/L) were within the range of values obtained from the measured environmental concentrations of the same region (0.05-101,000 ng/L). Using these models with adapted input variables for eastern Africa, the predicted surface water concentration in that region was 19,600 ± 150 ng/L (95% CI). The calculated soil concentrations of ABZ in the model regions and the eastern Africa were found to be 0.057 ± 0.0 μg/kg and 0.022 ± 0.0 μg/kg, respectively. The environmental risk expressed as risk quotient of ABZ in eastern Africa estimated for the aquatic compartment (146 ± 1) indicated a significant environmental risk calling on appropriate actions from the competent authorities to reduce this risk in this region.
Collapse
Affiliation(s)
- Sileshi Belew
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia; Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, PO Box 378, Jimma, Ethiopia.
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
3
|
Choo KB, Mah WL, Lee SM, Lee WL, Cheow YL. Palladium complexes of bidentate pyridineN-heterocyclic carbenes: Optical resolution, antimicrobial and cytotoxicity studies. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kar Bee Choo
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Wee Li Mah
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Wai Leng Lee
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Yuen Lin Cheow
- School of Science, Monash University Malaysia; Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| |
Collapse
|
4
|
Mamedov VA. Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es. RSC Adv 2016. [DOI: 10.1039/c6ra03907c] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The review describes all the quinoxaline-benzimidazole rearrangements as a whole and the new quinoxalinone-benzimidazol(on)e rearrangements in particular when exposed to nucleophilic rearrangements which can be used for the synthesis of various biheterocyclic motifs.
Collapse
Affiliation(s)
- Vakhid A. Mamedov
- A. E. Arbuzov Institute of Organic and Physical Chemistry
- Kazan Scientific Center of the Russian Academy of Sciences
- Kazan
- Russian Federation
| |
Collapse
|
5
|
Strelciunaite V, Jonuskiene I, Anusevicius K, Tumosiene I, Siugzdaite J, Ramanauskaite I, Mickevicius V. Synthesis of Novel Benzimidazoles 2-Functionalized with Pyrrolidinone and γ-Amino Acid with a High Antibacterial Activity. HETEROCYCLES 2016. [DOI: 10.3987/com-15-13343] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Synthesis of some 1- and 2-carboxyalkyl substituted benzimidazoles and their derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1067-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Elzahabi HSA. Synthesis, characterization of some benzazoles bearing pyridine moiety: search for novel anticancer agents. Eur J Med Chem 2011; 46:4025-34. [PMID: 21704435 DOI: 10.1016/j.ejmech.2011.05.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 11/16/2022]
Abstract
Thirteen novel benzazole derivatives were synthesized as possible anticancer agents. The first intermediate 1,3-benzothiazol-2-ylacetonitrile (2) was synthesized via cyclodeamination reaction of o-aminothiophenol (1) with malononitrile. Also, the second intermediate 5,6-dimethyl-1H-benzimidazol-2-ylacetonitrile (10) was afforded via cyclocondensation reaction between 4,5-dimethyl-1,2-phenylenediamine (9) and ethylcyanoacetate. Nucleophilic reaction of benzimidazolyl NH of compound (10) with ethylcyanoacetate afforded benzimidazolyl-3-oxopropanenitrile (11). On the other hand, methylenation of CH(2) function of compound (10) with dimethylformamide/dimethylacetal afforded benzimidazolylprop-2-enenitrile 12. The synthesis of benzothiazoylpyridines 5a,b and 8a,b as well as benzimidazolylpyridines, 14a,b and 17a-d was carried out through Michael addition of compounds 2 or 10 with arylidenemalononitriles 3a,b and 4a-d. The combination of pharmacophoric anticancer moieties, pyridine and benzazoles was the base on which target compounds 5a,b, 8a,b, 14a,b and 17a-d were designed. Among the synthesized compounds, four derivatives 10 and 17b-d were selected by National Cancer Institute (NCI), USA to be screened for their anticancer activity at a single high dose (10(-5) M) against a panel of 60 cancer cell lines. Compound 17b 4-[p-chlorophenyl]pyridine and 17d 4-[p- methoxyphenyl] pyridine exhibited a broad and moderate antitumor activity against 41 tumor cell lines belonging to the nine subpanels employed and are selected for further evaluation at five dose level screening.
Collapse
Affiliation(s)
- Heba S A Elzahabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Girls, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
8
|
Cloning and biochemical characterization of a novel carbendazim (methyl-1H-benzimidazol-2-ylcarbamate)-hydrolyzing esterase from the newly isolated Nocardioides sp. strain SG-4G and its potential for use in enzymatic bioremediation. Appl Environ Microbiol 2010; 76:2940-5. [PMID: 20228105 DOI: 10.1128/aem.02990-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A highly efficient carbendazim (methyl-1H-benzimidazol-2-ylcarbamate, or MBC)-mineralizing bacterium was isolated from enrichment cultures originating from MBC-contaminated soil samples. This bacterium, Nocardioides sp. strain SG-4G, hydrolyzed MBC to 2-aminobenzimidazole, which in turn was converted to the previously unknown metabolite 2-hydroxybenzimidazole. The initial steps of this novel metabolic pathway were confirmed by growth and enzyme assays and liquid chromatography-mass spectrometry (LC-MS) studies. The enzyme responsible for carrying out the first step was purified and subjected to N-terminal and internal peptide sequencing. The cognate gene, named mheI (for MBC-hydrolyzing enzyme), was cloned using a reverse genetics approach. The MheI enzyme was found to be a serine hydrolase of 242 amino acid residues. Its nearest known relative is an uncharacterized hypothetical protein with only 40% amino acid identity to it. Codon optimized mheI was heterologously expressed in Escherichia coli, and the His-tagged enzyme was purified and biochemically characterized. The enzyme has a K(m) and k(cat) of 6.1 muM and 170 min(-1), respectively, for MBC. Radiation-killed, freeze-dried SG-4G cells showed strong and stable MBC detoxification activity suitable for use in enzymatic bioremediation applications.
Collapse
|
9
|
Mosley CN, Wang L, Gilley S, Wang S, Yu H. Light-induced cytotoxicity and genotoxicity of a sunscreen agent, 2-phenylbenzimidazole in Salmonella typhimurium TA 102 and HaCaT keratinocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2008; 4:126-31. [PMID: 17617675 PMCID: PMC3728577 DOI: 10.3390/ijerph2007040006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
2-Phenylbenzimidazole (PBI) is an ingredient found in sunscreen agents. PBI can absorb the UV portion of the solar light and undergo a series of light-induced reactions to cause adverse effects in humans. Therefore, chemical and photochemical toxicity of PBI were investigated in the bacteria Salmonella typhimurium TA 102 and human skin keratinocyte cells. There is no appreciable bacteria death due to the exposure to PBI alone, indicating that PBI is not chemically toxic to the bacteria at a dose as high as 625μM. However, exposure to PBI and a solar simulator light (300-W Xe/Hg lamp, 30 min, 18.6 J/cm2, equivalent to 30 min outdoor sunlight) causes significant bacteria death: 35% at 25μM and 55% at 625μM PBI. Exposure of the bacteria to light and PBI at doses 5–25μM causes the bacteria to revert, an indication of mutation. In the presence of PBI but without light irradiation, the number of revertant bacteria colonies is around 200 due to spontaneous mutation. Combination of light irradiation and PBI causes the number of revertant TA 102 colonies to increase in a dose dependent manner, reaching a maximum of around 1700 revertant colonies at 25 μM PBI. At higher PBI concentrations, the number of revertant colonies remains constant. This result clearly indicates that PBI is photomutagenic in TA 102. Exposure of the human skin HaCaT keratinocytes in aqueous solution in the presence of PBI causes the cell to lose its viability with or without light irradiation. There is no significant difference in cell viability for the light irradiated or non-irradiated groups, indication PBI is not photocytotoxic. However, exposure of the cells to both PBI and light irradiation causes cellular DNA damage, while exposure to PBI alone does not cause DNA damage.
Collapse
|
10
|
Sharma P, Kumar A, Sharma M. Synthesis and QSAR studies on 5-[2-(2-methylprop1-enyl)-1H benzimidazol-1yl]-4,6-diphenyl-pyrimidin-2-(5H)-thione derivatives as antibacterial agents. Eur J Med Chem 2006; 41:833-40. [PMID: 16730396 DOI: 10.1016/j.ejmech.2006.03.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 02/22/2006] [Accepted: 03/02/2006] [Indexed: 11/17/2022]
Abstract
A new series of 5-[2-(2-methylprop1-enyl)-1H benzimidazol-1yl]-4,6-diphenyl-pyrimidin-2-(5H)-thione derivatives [3a-q] has been synthesized and subjected to evaluate their antibacterial properties. All the synthesized compounds of the series displayed, remarkable activity in comparison to standard drug (ampicillin). A number of descriptors were tested to adjudge a quantitative correlation between activity and structural features. However, significant correlations have emerged between activity and physicochemical parameters viz. polarizability parameter (MR). Moreover, results are interpreted on the basis of multiple regression and cross-validation methodology.
Collapse
Affiliation(s)
- P Sharma
- School of chemical sciences, Devi-Ahilya university, Indore, India.
| | | | | |
Collapse
|
11
|
Gümüş F, Algül O, Eren G, Eroğlu H, Diril N, Gür S, Ozkul A. Synthesis, cytotoxic activity on MCF-7 cell line and mutagenic activity of platinum(II) complexes with 2-substituted benzimidazole ligands. Eur J Med Chem 2003; 38:473-80. [PMID: 12767597 DOI: 10.1016/s0223-5234(03)00058-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Four Pt(II) complexes with 2-H/or-methyl/or-aminomethylbenzimidazole or 1,2-dimethylbenzimidazole ligands as "non-leaving groups" were synthesized and their antiproliferative properties were tested against the human MCF-7 breast cancer cell line. The mutagenic potentials of the complexes were tested in Salmonella typhimurium strains TA 98 and TA 100 in the absence of S9 rat liver fraction. In general, Pt(II) complexes tested which were found to be less active than cisplatin, exhibited moderate in vitro cytotoxic activity on MCF-7 cell line. Among the complexes tested, Pt(II) complex with 2-aminomethylbenzimidazole ligand was found to be highly mutagenic in S. typhimurium TA 98 and low mutagenic in S. typhimurium TA 100. Pt(II) complex with 1,2-dimethylbenzimidazole was mutagenic only in S. typhimurium TA 98. The other two complexes were found to be non-mutagen in both strains.
Collapse
Affiliation(s)
- Fatma Gümüş
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Gazi, 06330 Etiler, Ankara, Turkey.
| | | | | | | | | | | | | |
Collapse
|
12
|
Gümüş F, Pamuk I, Ozden T, Yildiz S, Diril N, Oksüzoglu E, Gür S, Ozkul A. Synthesis, characterization and in vitro cytotoxic, mutagenic and antimicrobial activity of platinum(II) complexes with substituted benzimidazole ligands. J Inorg Biochem 2003; 94:255-62. [PMID: 12628705 DOI: 10.1016/s0162-0134(03)00005-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, six Pt(II) complexes bearing 5(6)-H or -CH(3)-2-phenyl or -(2'-pyridyl) or -mercaptomethylbenzimidazole ligands as 'carrier groups' were synthesized and characterized by elemental analysis, IR and (1)H-NMR spectra and evaluated for their preliminary in vitro cytotoxic activity to the human RD Rhabdomyosarcoma cell line and mutagenic properties in Salmonella typhimurium strains TA 98 and TA 100 in the absence of the S9 rat liver fraction. The preliminary test results showed that the complexes had slightly greater cytotoxic activity on the RD cell line at 1 microM concentration than cisplatin. Among the compounds tested for their mutagenicity, Pt(II) complexes of 2-(2'-pyridyl)- and 5(6)-methyl-2-(2'-pyridyl)benzimidazoles were found to be mutagenic. A comparative study of the MIC (minimum inhibitory concentration) values indicated that, in general, there were no differences between the poor antimicrobial activity values of the ligands and their Pt(II) complexes with respect to the tested microorganisms. These results suggest that the synthesized Pt(II) complexes should be considered for further antitumor activity studies.
Collapse
Affiliation(s)
- F Gümüş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gazi, 06330 Etiler-Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Praziquantel is a synthetic drug with a remarkable activity against parasites, particularly treamatodes and cestodes. Initial genotoxicity tests used a spectrum of endpoints including tests in bacteria, yeasts, mammalian cells and Drosophila and each one gave negative results. Effects on reproductive cells of mice were negative as well. However, host mediated studies in mice and humans were contradictory and a comutagenic effect with several mutagens and carcinogens was found. Later studies, including monitoring in humans and pigs have shown that Praziquantel induces a greater frequency of hyperploid lymphocytes as well as structural chromosomal aberrations, but not in all the individuals treated. In vitro studies have demonstrated that Praziquantel can induce micronuclei in syrian hamster embryonic (SHE) cells and in lymphocytes of some individuals. The same was found about structural chromosomal aberrations. Fetal death and fetal resorption were found when Praziquantel was administered in high doses to pregnant rats between the 6th and 10th day of gestation. Due to its efficiency as a parasiticide, Praziquantel is in use in Latin-American, Asiatic, African and East-European countries where infections by trematodes and cestodes are frequent. However, the extensive use of Praziquantel in multiple reinfections, in non-infected and non-diagnosed individuals for prevention, in higher doses or repeated doses for cysticercosis treatment and in individuals exposed to environmental mutagens, in conjunction with new findings about its metabolism and genotoxic properties, make it necessary to further evaluate the potential of this drug not only to be mutagenic per se, but to contribute in the development of neoplasm.
Collapse
Affiliation(s)
- R Montero
- Departamento de Genética y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico.
| | | |
Collapse
|