1
|
Rømer TB, Jeppesen R, Christensen RHB, Benros ME. Biomarkers in the cerebrospinal fluid of patients with psychotic disorders compared to healthy controls: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:2277-2290. [PMID: 37169812 DOI: 10.1038/s41380-023-02059-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Psychotic disorders are severe mental disorders with poorly understood etiology. Biomarkers in the cerebrospinal fluid (CSF) could provide etiological clues and diagnostic tools for psychosis; however, an unbiased overview of CSF alterations in individuals with psychotic disorders is lacking. The objective of this study was to summarize all quantifiable findings in CSF from individuals with psychotic disorders compared to healthy controls (HC). Studies published before January 25th, 2023 were identified searching PubMed, EMBASE, Cochrane Library, Web of Science, ClinicalTrials.gov, and PsycINFO. Screening, full-text review, data extraction, and risk of bias assessments were performed by two independent reviewers following PRISMA guidelines. Findings in patients and healthy controls were compared and summarized using random-effects analyses and assessment of publication bias, subgroup and sensitivity analyses were performed. 145 studies, covering 197 biomarkers, were included, of which 163 biomarkers have not previously been investigated in meta-analyses. All studies showed some degree of bias. 55 biomarkers measured in CSF were associated with psychosis and of these were 15 biomarkers measured in ≥2 studies. Patients showed increased levels of noradrenaline (standardized mean difference/SMD, 0.53; 95% confidence interval/CI, 0.16 to 0.90) and its metabolite 3-methoxy-4-hydroxyphenylglycol (SMD, 0.30; 95% CI: 0.05 to 0.55), the serotonin metabolite 5-hydroxyindoleacetic acid (SMD, 0.11; 95% CI: 0.01 to 0.21), the pro-inflammatory neurotransmitter kynurenic acid (SMD, 1.58; 95% CI: 0.34 to 2.81), its precursor kynurenine (SMD,0.99; 95% CI: 0.60 to 1.38), the cytokines interleukin-6 (SMD, 0.58; 95% CI: 0.39 to 0.77) and interleukin-8 (SMD, 0.43; 95% CI: 0.24 to 0.62), the endocannabinoid anandamide (SMD, 0.78; 95% CI: 0.53 to 1.02), albumin ratio (SMD, 0.40; 95% CI: 0.08 to 0.72), total protein (SMD, 0.29; 95% CI: 0.16 to 0.43), immunoglobulin ratio (SMD, 0.45; 95% CI: 0.06 to 0.85) and glucose (SMD, 0.48; 95% CI: 0.01 to 0.94). Neurotensin (SMD, -0.67; 95% CI: -0.89 to -0.46) and γ-aminobutyric acid (SMD, -0.29; 95% CI: -0.50 to -0.09) were decreased. Most biomarkers showed no significant differences, including the dopamine metabolites homovanillic acid and 3,4-dihydroxyphenylacetic acid. These findings suggest that dysregulation of the immune and adrenergic system as well as blood-brain barrier dysfunction are implicated in the pathophysiology of psychotic disorders.
Collapse
Affiliation(s)
- Troels Boldt Rømer
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rose Jeppesen
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rune Haubo Bojesen Christensen
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Center for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Tryptophan Challenge in Healthy Controls and People with Schizophrenia: Acute Effects on Plasma Levels of Kynurenine, Kynurenic Acid and 5-Hydroxyindoleacetic Acid. Pharmaceuticals (Basel) 2022; 15:ph15081003. [PMID: 36015151 PMCID: PMC9416551 DOI: 10.3390/ph15081003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
The pivotal tryptophan (TRP) metabolite kynurenine is converted to several neuroactive compounds, including kynurenic acid (KYNA), which is elevated in the brain and cerebrospinal fluid of people with schizophrenia (SZ) and may contribute to cognitive abnormalities in patients. A small proportion of TRP is metabolized to serotonin and further to 5-hydroxyindoleacetic acid (5-HIAA). Notably, KP metabolism is readily affected by immune stimulation. Here, we assessed the acute effects of an oral TRP challenge (6 g) on peripheral concentrations of kynurenine, KYNA and 5-HIAA, as well as the cytokines interferon-γ, TNF-α and interleukin-6, in 22 participants with SZ and 16 healthy controls (HCs) using a double-blind, placebo-controlled, crossover design. TRP raised the levels of kynurenine, KYNA and 5-HIAA in a time-dependent manner, causing >20-fold, >130-fold and 1.5-fold increases in kynurenine, KYNA and 5-HIAA concentrations, respectively, after 240 min. According to multivariate analyses, neither baseline levels nor the stimulating effects of TRP differed between participants with SZ and HC. Basal cytokine levels did not vary between groups, and remained unaffected by TRP. Although unlikely to be useful diagnostically, measurements of circulating metabolites following an acute TRP challenge may be informative for assessing the in vivo efficacy of drugs that modulate the neosynthesis of KYNA and other products of TRP degradation.
Collapse
|
3
|
Identification of cerebrospinal fluid and serum metabolomic biomarkers in first episode psychosis patients. Transl Psychiatry 2022; 12:229. [PMID: 35665740 PMCID: PMC9166796 DOI: 10.1038/s41398-022-02000-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Psychotic disorders are currently diagnosed by examining the patient's mental state and medical history. Identifying reliable diagnostic, monitoring, predictive, or prognostic biomarkers would be useful in clinical settings and help to understand the pathophysiology of schizophrenia. Here, we performed an untargeted metabolomics analysis using ultra-high pressure liquid chromatography coupled with time-of-flight mass spectroscopy on cerebrospinal fluid (CSF) and serum samples of 25 patients at their first-episode psychosis (FEP) manifestation (baseline) and after 18 months (follow-up). CSF and serum samples of 21 healthy control (HC) subjects were also analyzed. By comparing FEP and HC groups at baseline, we found eight CSF and 32 serum psychosis-associated metabolites with non-redundant identifications. Most remarkable was the finding of increased CSF serotonin (5-HT) levels. Most metabolites identified at baseline did not differ between groups at 18-month follow-up with significant improvement of positive symptoms and cognitive functions. Comparing FEP patients at baseline and 18-month follow-up, we identified 20 CSF metabolites and 90 serum metabolites that changed at follow-up. We further utilized Ingenuity Pathway Analysis (IPA) and identified candidate signaling pathways involved in psychosis pathogenesis and progression. In an extended cohort, we validated that CSF 5-HT levels were higher in FEP patients than in HC at baseline by reversed-phase high-pressure liquid chromatography. To conclude, these findings provide insights into the pathophysiology of psychosis and identify potential psychosis-associated biomarkers.
Collapse
|
4
|
Candidate metabolic biomarkers for schizophrenia in CNS and periphery: Do any possible associations exist? Schizophr Res 2020; 226:95-110. [PMID: 30935700 DOI: 10.1016/j.schres.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Due to the limitations of analytical techniques and the complicity of schizophrenia, nowadays it is still a challenge to diagnose and stratify schizophrenia patients accurately. Many attempts have been made to identify and validate available biomarkers for schizophrenia from CSF and/or peripheral blood in clinical studies with consideration to disease stages, antipsychotic effects and even gender differences. However, conflicting results handicap the validation and application of biomarkers for schizophrenia. In view of availability and feasibility, peripheral biomarkers have superior advantages over biomarkers in CNS. Meanwhile, schizophrenia is considered to be a devastating neuropsychiatric disease mainly taking place in CNS featured by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to difficult to investigate. Evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions among relevant biochemical pathways. Taken these points together, it will be interesting to investigate possible associations of biomarkers between CNS and periphery. Numerous studies have suggested putative correlations within peripheral and CNS systems especially for dopaminergic and glutamatergic metabolic biomarkers. In addition, it has been demonstrated that blood concentrations of BDNF protein can also reflect its changes in the nervous system. In turn, BDNF also interacts with glutamatergic, dopaminergic and serotonergic systems. Therefore, this review will summarize metabolic biomarkers identified both in the CNS (brain tissues and CSF) and peripheral blood. Further, more attentions will be paid to discussing possible physical and functional associations between CNS and periphery, especially with respect to BDNF.
Collapse
|
5
|
Corcuff JB, Chardon L, El Hajji Ridah I, Brossaud J. Urinary sampling for 5HIAA and metanephrines determination: revisiting the recommendations. Endocr Connect 2017; 6:R87-R98. [PMID: 28566493 PMCID: PMC5527357 DOI: 10.1530/ec-17-0071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/30/2017] [Indexed: 01/01/2023]
Abstract
CONTEXT Biogenic amines such as 5-hydroxy-indole acetic acid (5HIAA) the main metabolite of serotonin or metanephrines (catecholamines metabolites) are used as biomarkers of neuroendocrine tumours. OBJECTIVE To re-evaluate the recommendations for urinary sampling (preservatives, diet, drugs, etc.) as many of the reported analytical interferences supporting these recommendations are related to obsolete assays. METHODS Bibliographic analysis of old and modern assays concerning preservation, extraction, assay and interferences. RESULTS 5HIAA may degrade as soon as urine is excreted. Thus, acids as preservatives (hydrochloric or acetic acid) have to be immediately added. Care should be taken not to decrease the pH under 2. Urine preservative for metanephrine assays is not mandatory. Diets including serotonin-, tryptophan- and dopamine-rich foods have to be avoided depending on the biomarkers investigated (bananas, plantain, nuts, etc.). Tryptophan-rich over-the-counter formulas have to be prohibited when 5HIAA has to be assayed. Acetaminophen may interfere with electrochemical detection depending on high-pressure liquid chromatography (HPLC) parameters. No interference is known with mass spectrometric assays but with the one described for metanephrines determination. Some drugs interfere however with serotonin and catecholamines secretion and/or metabolism (monoamine oxidase inhibitors, serotonin or dopamine recapture inhibitors, etc.). CONCLUSION Revisited recommendations are provided for the diet, the drugs and the preservatives before HPLC coupled with electrochemical and mass spectrometry assays.
Collapse
Affiliation(s)
- Jean-Benoît Corcuff
- Department of Nuclear MedicineHaut Lévêque Hospital, Pessac, France
- Nutrition et Neurobiologie intégréeUMR 1286, University of Bordeaux, Bordeaux, France
- Groupe de Biologie SpécialiséeSociété Française de Médecine Nucléaire, Paris, France
| | - Laurence Chardon
- Department of BiochemistryEdouard Herriot Hospital, Lyon, France
| | | | - Julie Brossaud
- Department of Nuclear MedicineHaut Lévêque Hospital, Pessac, France
- Nutrition et Neurobiologie intégréeUMR 1286, University of Bordeaux, Bordeaux, France
- Groupe de Biologie SpécialiséeSociété Française de Médecine Nucléaire, Paris, France
| |
Collapse
|
6
|
Yao JK, Dougherty GG, Reddy RD, Keshavan MS, Montrose DM, Matson WR, Rozen S, Krishnan RR, McEvoy J, Kaddurah-Daouk R. Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry 2010; 15:938-53. [PMID: 19401681 PMCID: PMC2953575 DOI: 10.1038/mp.2009.33] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizophrenia is characterized by complex and dynamically interacting perturbations in multiple neurochemical systems. In the past, evidence for these alterations has been collected piecemeal, limiting our understanding of the interactions among relevant biological systems. Earlier, both hyper- and hyposerotonemia were variously associated with the longitudinal course of schizophrenia, suggesting a disturbance in the central serotonin (5-hydroxytryptamine (5-HT)) function. Using a targeted electrochemistry-based metabolomics platform, we compared metabolic signatures consisting of 13 plasma tryptophan (Trp) metabolites simultaneously between first-episode neuroleptic-naive patients with schizophrenia (FENNS, n=25) and healthy controls (HC, n=30). We also compared these metabolites between FENNS at baseline (BL) and 4 weeks (4w) after antipsychotic treatment. N-acetylserotonin was increased in FENNS-BL compared with HC (P=0.0077, which remained nearly significant after Bonferroni correction). N-acetylserotonin/Trp and melatonin (Mel)/serotonin ratios were higher, and Mel/N-acetylserotonin ratio was lower in FENNS-BL (all P-values<0.0029), but not after treatment, compared with HC volunteers. All three groups had highly significant correlations between Trp and its metabolites, Mel, kynurenine, 3-hydroxykynurenine and tryptamine. However, in the HC, but in neither of the FENNS groups, serotonin was highly correlated with Trp, Mel, kynurenine or tryptamine, and 5-hydroxyindoleacetic acid (5HIAA) was highly correlated with Trp, Mel, kynurenine or 3-hydroxykynurenine. A significant difference between HC and FENNS-BL was further shown only for the Trp-5HIAA correlation. Thus, some metabolite interactions within the Trp pathway seem to be altered in the FENNS-BL patients. Conversion of serotonin to N-acetylserotonin by serotonin N-acetyltransferase may be upregulated in FENNS patients, possibly related to the observed alteration in Trp-5HIAA correlation. Considering N-acetylserotonin as a potent antioxidant, such increases in N-acetylserotonin might be a compensatory response to increased oxidative stress, implicated in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- JK Yao
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - GG Dougherty
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - RD Reddy
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA, Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - MS Keshavan
- Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA, Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard University, Boston, MA, USA
| | - DM Montrose
- Department of Psychiatry, Western Psychiatric Institute & Clinic, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - WR Matson
- Bedford VA Medical Center, Bedford, MA, USA
| | - S Rozen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - RR Krishnan
- Duke University Medical Center, Durham, NC, USA
| | - J McEvoy
- Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
7
|
Quednow BB, Geyer MA, Halberstadt AL. Serotonin and Schizophrenia. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1569-7339(10)70102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Friedman JI, Ocampo R, Elbaz Z, Parrella M, White L, Bowler S, Davis KL, Harvey PD. The effect of citalopram adjunctive treatment added to atypical antipsychotic medications for cognitive performance in patients with schizophrenia. J Clin Psychopharmacol 2005; 25:237-42. [PMID: 15876902 DOI: 10.1097/01.jcp.0000161499.58266.51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cognitive enhancement in patients with schizophrenia is a major treatment priority. Because serotonergic approaches have been suggested as a possible mechanism to enhance cognition and many patients with schizophrenia are treated with selective serotonin reuptake inhibitor antidepressants, we evaluated a serotonin reuptake inhibitor, citalopram, as adjunctive therapy to atypical antipsychotic treatment for its cognitive enhancing effects in schizophrenic patients. Nineteen schizophrenic patients were treated in a randomized, placebo-controlled, crossover-designed 24-week study. In phase 1, subjects were randomized equally to 40 mg of citalopram or placebo and were evaluated prior to initiation of pharmacotherapy and at the end of phase 1 (after 12 weeks of treatment with double-blind agent). At the beginning of phase 2, subjects were crossed over to the other treatment and subsequently assessed after 12 weeks of treatment for symptom severity and cognitive performance. There were no statistically significant differences between citalopram 40 mg/d and placebo treatment on any clinical or cognitive measures. These results indicate that citalopram adjunctive treatment to atypical antipsychotics produces no significant cognitive improvement in patients with schizophrenia. Because the subjects in this study were all treated with atypical antipsychotics, it is possible that the pharmacologic profiles of atypical antipsychotic medications at serotonin receptors may have complicated the effects of citalopram augmentation. Further research on alternative serotonergic approaches to cognitive enhancement in schizophrenia is warranted.
Collapse
Affiliation(s)
- Joseph I Friedman
- Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|