1
|
Bauernfeind AL, Babbitt CC. The appropriation of glucose through primate neurodevelopment. J Hum Evol 2014; 77:132-40. [DOI: 10.1016/j.jhevol.2014.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/22/2014] [Accepted: 05/02/2014] [Indexed: 12/25/2022]
|
2
|
Goncharov NV, Jenkins RO, Radilov AS. Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol 2006; 26:148-61. [PMID: 16252258 DOI: 10.1002/jat.1118] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fluoroacetate (FA; CH2FCOOR) is highly toxic towards humans and other mammals through inhibition of the enzyme aconitase in the tricarboxylic acid cycle, caused by 'lethal synthesis' of an isomer of fluorocitrate (FC). FA is found in a range of plant species and their ingestion can cause the death of ruminant animals. Some fluorinated compounds -- used as anticancer agents, narcotic analgesics, pesticides or industrial chemicals -- metabolize to FA as intermediate products. The chemical characteristics of FA and the clinical signs of intoxication warrant the re-evaluation of the toxic danger of FA and renewed efforts in the search for effective therapeutic means. Antidotal therapy for FA intoxication has been aimed at preventing fluorocitrate synthesis and aconitase blockade in mitochondria, and at providing citrate outflow from this organelle. Despite a greatly improved understanding of the biochemical mechanism of FA toxicity, ethanol, if taken immediately after the poisoning, has been the most acceptable antidote for the past six decades. This review deals with the clinical signs and physiological and biochemical mechanisms of FA intoxication to provide an explanation of why, even after decades of investigation, has no effective therapy to FA intoxication been elaborated. An apparent lack of integrated toxicological studies is viewed as a limiter of progress in this regard. Two principal ways of developing effective therapies for FA intoxication are considered. Firstly, competitive inhibition of FA interaction with CoA and of FC interaction with aconitase. Secondly, channeling the alternative metabolic pathways by orienting the fate of citrate via cytosolic aconitase, and by maintaining the flux of reducing equivalents into the TCA cycle via glutamate dehydrogenase.
Collapse
Affiliation(s)
- Nikolay V Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint-Petersburg, Russia
| | | | | |
Collapse
|
3
|
Scott ME, Dare OK, Tu T, Koski KG. Mild energy restriction alters mouse–nematode transmission dynamics in free-running indoor arenas. CAN J ZOOL 2005. [DOI: 10.1139/z05-046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Energy restriction reduces Heligmosomoides polygyrus (Dujardin, 1845) (Nematoda) infection by reducing transmission-related behaviours but prolongs parasite survival by suppressing immune responses in individually housed mice. To determine the relative importance of these two processes in accumulation of worms in mouse populations, 10 female CD1 mice were housed in each of eight indoor arenas with ad libitum access to either an energy-sufficient (ES) diet or an energy-restricted (ER) diet with 20% less metabolizable energy (four arenas per diet). After 3 weeks, H. polygyrus transmission was initiated by introducing larvae onto damp peat trays. Mice adapted to the ER diet through increased food intake and nesting and reduced overall activity; after 6 weeks, nutritional and immunological measures were comparable between diet groups. With continuing exposure to parasite larvae, mice in both ER and ES arenas developed resistance to the incoming larvae; however, mice in the ER arenas accumulated lower worm burdens than mice in the ES arenas despite their increased contact with peat. We suggest that the comparable immunocompetence of mice in the ER and ES arenas enabled the ER mice exposed to higher transmission rates to more rapidly reject the parasites, leading to lower final worm numbers, a pattern frequently observed in other helminth infections.
Collapse
|
4
|
Nehlig A. Brain uptake and metabolism of ketone bodies in animal models. Prostaglandins Leukot Essent Fatty Acids 2004; 70:265-75. [PMID: 14769485 DOI: 10.1016/j.plefa.2003.07.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 07/01/2003] [Indexed: 11/20/2022]
Abstract
As a consequence of the high fat content of maternal milk, the brain metabolism of the suckling rat represents a model of naturally occurring ketosis. During the period of lactation, the rate of uptake and metabolism of the two ketone bodies, beta-hydroxybutyrate and acetoacetate is high. The ketone bodies enter the brain via monocarboxylate transporters whose expression and activity is much higher in the brain of the suckling than the mature rat. beta-Hydroxybutyrate and acetoacetate taken up by the brain are efficiently used as substrates for energy metabolism, and for amino acid and lipid biosynthesis, two pathways that are important for this period of active brain growth. Ketone bodies can represent about 30-70% of the total energy metabolism balance of the immature rat brain. The active metabolism of ketone bodies in the immature brain is related to the high activity of the enzymes of ketone body metabolism. Thus, the use of ketone bodies by the immature rodent brain serves to spare glucose for metabolic pathways that cannot be fulfilled by ketones such as the pentose phosphate pathway mainly. The latter pathway leads to the biosynthesis of ribose mandatory for DNA synthesis and NADPH which is not formed during ketone body metabolism and is a key cofactor in lipid biosynthesis. Finally, ketone bodies by serving mainly biosynthetic purposes spare glucose for the emergence of various functions such as audition, vision as well as more integrated and adapted behaviors whose appearance during brain maturation seems to critically relate upon active glucose supply and specific regional increased use.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 405, Faculty of Medicine, 11, rue Humann, 67085 Strasbourg Cedex, France.
| |
Collapse
|
5
|
Aureli T, Di Cocco ME, Puccetti C, Ricciolini R, Scalibastri M, Miccheli A, Manetti C, Conti F. Acetyl-L-carnitine modulates glucose metabolism and stimulates glycogen synthesis in rat brain. Brain Res 1998; 796:75-81. [PMID: 9689456 DOI: 10.1016/s0006-8993(98)00319-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of acetyl-L-carnitine on cerebral glucose metabolism were investigated in rats injected with differently 14C- and 13C-labelled glucose and sacrificed after 15, 30, 45, and 60 min. Acetyl-L-carnitine was found to reduce total 14CO2 release from [U-14C]glucose along with the decrease in [1-13C]glucose incorporation into cerebral amino acids and tricarboxylic acid cycle intermediates. However the 13C labelling pattern within different carbon positions of glutamate, glutamine, GABA, and aspartate was unaffected by acetyl-L-carnitine administration. Furthermore, the cerebral levels of newly-synthesized proglycogen were higher in rats treated with acetyl-L-carnitine than in untreated ones. These results suggest that acetyl-L-carnitine was able to modulate cerebral glucose utilization and provide new insights on the mechanisms of action of this molecule in the central nervous system.
Collapse
Affiliation(s)
- T Aureli
- Department of Biochemistry, Sigma-Tau Research Labs, Pomezia (RM), Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Loubinoux I, Volk A, Borredon J, Guirimand S, Tiffon B, Seylaz J, Méric P. The effects of a butanediol treatment on acute focal cerebral ischemia assessed by quantitative diffusion and T2 MR imaging. Magn Reson Imaging 1997; 15:1045-55. [PMID: 9364951 DOI: 10.1016/s0730-725x(97)00141-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increased water T2 values indicates the presence of vasogenic edema. Decreased apparent diffusion coefficient (ADC) maps reveal ischemic areas displaying cytotoxic edema. ADC and T2 abnormalities spread through the middle cerebral artery (MCA) territory up to 24 h after middle cerebral artery occlusion (MCAO). Also, it was found that ADC and T2 contours closely match at 3.5 and 24 h. Since butanediol reduces vasogenic edema and improves energy status in various models of ischemia, we used these two techniques to investigate putative improvements in cytotoxic and vasogenic edema after permanent MCAO performed on rats. Rats were given no treatment (n = 8), or a treatment with 25 mmol/kg intraperitoneal (i.p.) butanediol (n = 5), 30 min before and 2.5 h after MCAO. Quantitative ADC and T2 maps of brain water were obtained, from which the volumes presenting abnormalities were calculated at various time points up to 24 h. Effects of butanediol on the ADC and T2 values in these areas were determined. Butanediol reduced neither the ADC volume nor the initial ADC decline. However, it reduced T2 volumes by 32% at 3.5 h and 15% at 24 h (p < 0.05), and reduced T2 increase in the striatum at 3.5 h post-MCAO. Therefore, our results show for the first time that a pharmacological agent such as butanediol can delay the development of vasogenic edema but does not limit the development of vasogenic edema but does not limit the development of cytotoxic edema. ADC imaging detects areas of severe metabolic disturbance but not moderately ischemic peripheral areas where butanediol is presumed to be more efficacious.
Collapse
Affiliation(s)
- I Loubinoux
- Laboratoire de Recherches Cérébrovasculaires, CNRS URA 641, Université Paris VII, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Gueldry S, Bralet J. Effect of D- and L-1,3-butanediol isomers on glycolytic and citric acid cycle intermediates in the rat brain. Metab Brain Dis 1995; 10:293-301. [PMID: 8847993 DOI: 10.1007/bf02109360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
DL-1,3-butanediol (DL-BD) is an ethanol dimer which affords cerebral protection in various experimental models of hypoxia and ischemia but its mechanism of action is unknown. DL-BD is a ketogenic alcohol and it has been proposed that its protective effect was accomplished through cerebral utilization of ketone bodies. Since DL-BD is a racemic, its metabolic effects could be due to D, L or both isomers. The effects of equimolar doses of DL-, D- and L-BD (25 mmol/Kg) on cerebral metabolism were studied by measuring the cortical levels of the main glycolytic (glycogen, glucose, glucose 6-phosphate, fructose 1,6-diphosphate, pyruvate and lactate) and citric acid cycle (citrate, alpha-ketoglutarate and L-malate) intermediates. The two BD isomers exerted different effects on cerebral metabolism. Unlike L-BD, D- and DL-BD treatments resulted in a slight (+10%) but significant increase in citrate level whereas L-BD treatment led to significant reduction in pyruvate (-12%) and lactate (-24%) levels. These effects were apparently not linked to hyperketonemia, since DL-BHB treatment, which mimicked hyperketonemia induced by DL-BD, had no effect on cerebral metabolites but might be due to intracerebral metabolism of BD.
Collapse
Affiliation(s)
- S Gueldry
- Laboratoire de Pharmacodynamie, Faculté de Pharmacie, Dijon, France
| | | |
Collapse
|
8
|
Gueldry S, Bralet J. Effect of 1,3-butanediol on cerebral energy metabolism. Comparison with beta-hydroxybutyrate. Metab Brain Dis 1994; 9:171-81. [PMID: 8072465 DOI: 10.1007/bf01999770] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have shown that 1,3-butanediol (BD) has beneficial effects in experimental models of hypoxia or ischemia but the mechanism by which it exerts its protective effects remains unknown. BD is converted in the body to beta-hydroxybutyrate (BHB) and it has been proposed that its effects were linked to its ketogenic effect. The effects of BD (25 and 50 mmol/kg) on cerebral energy metabolism of rats were studied by measuring the cerebral level of energy metabolites and by evaluating the cerebral metabolic rate according to the Lowry's method. BD induced an increase in [cortical glucose]/[plasma glucose] ratio which was associated with a decrease in lactate level and an increase in glucose and glycogen stores. In contrast, BHB treatment which mimicked hyperketonemia equivalent to BD did not modify cerebral glycolysis metabolites. Calculation of the energy reserve flux after decapitation showed that BD did not reduce the cerebral metabolic rate excluding a protective effect due to a depressant, barbiturate-like, action. These results suggest that BD induces a reduction of cerebral glycolytic rate. However, the effect is not linked to hyperketonemia but might be due to intracerebral conversion of BD to BHB.
Collapse
Affiliation(s)
- S Gueldry
- Laboratoire de Pharmacodynamie, Faculté de Pharmacie, Dijon, France
| | | |
Collapse
|
9
|
Vannucci RC, Yager JY, Vannucci SJ. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab 1994; 14:279-88. [PMID: 8113323 DOI: 10.1038/jcbfm.1994.35] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The cerebral metabolic rate for glucose (CMRg1) and cerebral energy utilization (CEU) were assessed in immature rats during recovery from cerebral hypoxia-ischemia. CMRg1 was determined using a modification of the Sokoloff technique with 2-deoxy-[14C]glucose (2-DG) as the radioactive tracer. CEU was determined using the Lowry decapitation technique. Seven-day postnatal rats underwent unilateral common carotid artery ligation, followed 4 h thereafter by exposure to 8% oxygen at 37 degrees C for 3 h. At 1, 4, or 24 h of recovery, the rat pups underwent those procedures necessary for the measurement of either CMRg1 or CEU. At 1 h of recovery, the CMRg1 of the cerebral hemisphere ipsilateral to the carotid artery occlusion was 97% of the control rate (8.7 mumol 100 g-1 min-1) but was only 48% of the control in the contralateral hemisphere. At 4 h of recovery, the CMRg1 was increased 49% above baseline in the ipsilateral hemisphere, decreasing thereafter to 84% of the control at 24 h. The CMRg1 of the contralateral hemisphere normalized by 4 h of recovery. An inverse correlation between endogenous concentrations of ATP or phosphocreatine and CMRg1 in the ipsilateral hemisphere was apparent at 4 h of recovery. CEU in the ipsilateral cerebral hemisphere was 64 and 46% of the control (3.47 mmol approximately P/kg/min) at 1 and 24 h, respectively (p < 0.05) and 77% of the control at 4 h of recovery. CEU in the contralateral hemisphere was unchanged from the control at all measured intervals. Correlation of the alterations in CMRg1 with those in CEU at the same intervals indicated that substrate supply exceeds energy utilization during early recovery from hypoxia-ischemia. The discrepancy combined with a persistent disruption of the cerebral energy state implies the existence of an uncoupling of mitochondrial oxidative phosphorylation as one mechanism for the occurrence of perinatal hypoxic-ischemic brain damage.
Collapse
Affiliation(s)
- R C Vannucci
- Department of Pediatrics (Pediatric Neurology), Pennsylvania State University School of Medicine, Milton S. Hershey Medical Center, Hershey 17033
| | | | | |
Collapse
|
10
|
Nehlig A, Pereira de Vasconcelos A. Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 1993; 40:163-221. [PMID: 8430212 DOI: 10.1016/0301-0082(93)90022-k] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A Nehlig
- INSERM U 272, Pathologie et Biologie du Développement Humain, Université de Nancy I, France
| | | |
Collapse
|
11
|
Abstract
The metabolism of lactate in isolated cells from early neonatal rat brain has been studied. In these circumstances, lactate was mainly oxidized to CO2, although a significant portion was incorporated into lipids (78% sterols, 4% phosphatidylcholine, 2% phosphatidylethanolamine, and 1% phosphatidylserine). The rate of lactate incorporation into CO2 and lipids was higher than those found for glucose and 3-hydroxybutyrate. Lactate strongly inhibited glucose oxidation through the pyruvate dehydrogenase-catalyzed reaction and the tricarboxylic acid cycle while scarcely affecting glucose utilization by the pentose phosphate pathway. Lipogenesis from glucose was strongly inhibited by lactate without relevant changes in the rate of glycerol phosphate synthesis. These results suggest that lactate inhibits glucose utilization at the level of the pyruvate dehydrogenase-catalyzed reaction, which may be a mechanism to spare glucose for glycerol and NADPH synthesis. The effect of 3-hydroxybutyrate inhibiting lactate utilization only at high concentrations of 3-hydroxybutyrate suggests that before ketogenesis becomes active, lactate may be the major fuel for the neonatal brain. (-)-Hydroxycitrate and aminooxyacetate markedly inhibited lipogenesis from lactate, suggesting that the transfer of lactate carbons through the mitochondrial membrane is accomplished by the translocation of both citrate and N-acetylaspartate.
Collapse
Affiliation(s)
- C Vicario
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | |
Collapse
|
12
|
Lundgren J, Smith ML, Mans AM, Siesjö BK. Ischemic brain damage is not ameliorated by 1,3-butanediol in hyperglycemic rats. Stroke 1992; 23:719-24. [PMID: 1579970 DOI: 10.1161/01.str.23.5.719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Treatment with the ketone body precursor 1,3-butanediol has been suggested to ameliorate hypoxic/ischemic brain damage. Butanediol could provide an alternative energy substrate for the brain, thereby decreasing the amount of glycolytically produced lactate. Hyperglycemia aggravates brain damage after brain ischemia and causes fatal postischemic seizures, probably by increasing the production of lactate and decreasing the pH. We studied whether butanediol treatment altered the adverse consequences following ischemia complicated by hyperglycemia. METHODS Hyperglycemic adult male rats were given 25 or 50 mmol.kg-1 body wt butanediol intravenously 30 minutes before 10 minutes of transient forebrain ischemia. Morphological evaluation was performed following perfusion-fixation after 15 hours of recovery. Blood concentrations of beta-hydroxybutyrate, acetoacetate, glucose, and lactate and brain tissue concentrations of energy metabolites were measured before and after ischemia. RESULTS Blood levels of ketone bodies increased in the butanediol-treated rats. Ischemia decreased the blood levels of acetoacetate but increased the levels of beta-hydroxybutyrate by a similar amount, resulting in unchanged high levels of total ketone bodies in the animals that received butanediol. Brain tissue levels of glucose, energy metabolites, and lactate showed no difference between butanediol- and saline-treated rats. Furthermore, compared with saline-treated animals butanediol-treated rats showed no decrease in brain damage and no attenuation in the development of postischemic seizures. CONCLUSIONS The ketone body precursor 1,3-butanediol offers no protective effect in transient forebrain ischemia complicated by hyperglycemia.
Collapse
Affiliation(s)
- J Lundgren
- Department of Neurobiology, University of Lund, Sweden
| | | | | | | |
Collapse
|
13
|
Dutra JC, Wajner M, Wannmacher CF, Dutra-Filho CS, Wannmacher CM. Effects of methylmalonate and propionate on uptake of glucose and ketone bodies in vitro by brain of developing rats. BIOCHEMICAL MEDICINE AND METABOLIC BIOLOGY 1991; 45:56-64. [PMID: 2015109 DOI: 10.1016/0885-4505(91)90008-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methylmalonate (MMA) and propionate effects on glucose and ketone body uptake in vitro by brain of fed and 30-hour-fasted 15-day-old rats were studied. In some experiments cerebrum prisms were incubated in the presence of glucose and either MMA or propionate in Krebs-Ringer bicarbonate buffer, pH 7.0. In others, the incubation medium contained beta-hydroxybutyrate (HBA) or acetoacetate (AcAc) instead of glucose. We verified that MMA increased glucose uptake by brain of fasting animals, whereas propionate had no effect. In addition, MMA diminished HBA but not AcAc incorporation into brain prisms, whereas propionate provoked a diminished utilization of both ketone bodies by brain. The in vitro effect of MMA and propionate on brain and liver beta-hydroxybutyrate dehydrogenase activity was also investigated. It was shown that MMA but not propionate significantly inhibited this activity. Rats were also injected subcutaneously three times with a MMA buffered solution, and the in vivo effects of MMA on the above-mentioned parameters assessed. Results from these experiments confirmed the previously found in vitro MMA effects. Methylmalonic acidemic patients accumulate primarily methylmalonate and secondarily propionate and other metabolites in their tissues at levels comparable to those we used in our assays. Most patients who survive early stages of the disease show a variable degree of neuromotor delay. Since glucose and sometimes ketones are the vital substrates for brain metabolism, it is possible that our findings may contribute to a certain extent to an understanding of the biochemical basis of mental retardation in these patients.
Collapse
Affiliation(s)
- J C Dutra
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
14
|
Gueldry S, Marie C, Rochette L, Bralet J. Beneficial effect of 1,3-butanediol on cerebral energy metabolism and edema following brain embolization in rats. Stroke 1990; 21:1458-63. [PMID: 2219211 DOI: 10.1161/01.str.21.10.1458] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We assessed the effect of 1,3-butanediol on cerebral energy metabolism and edema after inducing multifocal brain infarcts in 108 rats by the intracarotid injection of 50-microns carbonized microspheres. An ethanol dimer that induces systemic ketosis, 25 mmol/kg i.p. butanediol was injected every 3 hours to produce a sustained increase in the plasma level of beta-hydroxybutyrate. Treatment significantly attenuated ischemia-induced metabolic changes by increasing the concentrations of phosphocreatine, adenosine triphosphate, and glycogen and by reducing the concentrations of pyruvate and lactate. Lactate concentration 2, 6, and 12 hours after embolization decreased by 13%, 44%, and 46%, respectively. Brain water content increased from 78.63% in six unembolized rats to 80.93% in 12 saline-treated and 79.57% in seven butanediol-treated rats 12 hours after embolization. (p less than 0.05). The decrease in water content was associated with significant decreases in the concentrations of sodium and chloride. The antiedema effect of butanediol could not be explained by an osmotic mechanism since equimolar doses of urea or ethanol were ineffective. Our results support the hypothesis that the beneficial effect of butanediol is mediated through cerebral utilization of ketone bodies arising from butanediol metabolism, reducing the rate of glycolysis and the deleterious accumulation of lactic acid during ischemia.
Collapse
Affiliation(s)
- S Gueldry
- Laboratoire de Pharmacodynamie et Physiologie Pharmaceutique, Faculté de Pharmacie, Dijon, France
| | | | | | | |
Collapse
|
15
|
Marie C, Bralet AM, Gueldry S, Bralet J. Fasting prior to transient cerebral ischemia reduces delayed neuronal necrosis. Metab Brain Dis 1990; 5:65-75. [PMID: 2385215 DOI: 10.1007/bf01001047] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A transient brain ischemia of 30-min duration was induced by the four-vessel occlusion technique in normally fed and in 48-hr-fasted rats. Evaluation of brain damage 72 hr after ischemia showed that fasting reduced neuronal necrosis in the striatum, the neocortex, and the lateral part of the CA1 sector of hippocampus. Signs of status spongiosis in the pars reticulata of the substantia nigra were seen in 75% of fed rats and in only 19% of fasted rats. The protective effect was associated with reduction in mortality and in postischemic seizure incidence. The metabolic changes induced by fasting were evaluated before and during ischemia. After 30 min of four-vessel occlusion, fasted rats showed a marked decrease in brain lactate level (14.7 vs 22.5 mumol/g in fed rats; P less than 0.001). The decrease in brain lactate concentration might explain the beneficial effect of fasting by minimizing the neuropathological consequences of lactic acidosis. Several factors may account for lower lactate production during ischemia in fasted rats: hypoglycemia, reduction in preischemic stores of glucose and glycogen, or increased utilization of ketone bodies aiming at reducing the glycolytic rate.
Collapse
Affiliation(s)
- C Marie
- Laboratoire de Pharmacodynamie et Physiologie Pharmaceutique, Faculté de Pharmacie, Université de Bourgogne, Dijon, France
| | | | | | | |
Collapse
|
16
|
Miller AL. Brain autoradiographic images from rats injected with both [18F]-fluorodeoxyglucose (FDG) and [14C]-glucose. J Cereb Blood Flow Metab 1989; 9:426-7. [PMID: 2715213 DOI: 10.1038/jcbfm.1989.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Marie C, Bralet AM, Bralet J. Protective action of 1,3-butanediol in cerebral ischemia. A neurologic, histologic, and metabolic study. J Cereb Blood Flow Metab 1987; 7:794-800. [PMID: 3693436 DOI: 10.1038/jcbfm.1987.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1,3-Butanediol (BD) is converted in the body to beta-hydroxybutyrate, and previous studies have shown that hyperketonemia had beneficial effects in experimental models of generalized hypoxia. The aim of this study was to determine if BD would reduce brain damage following cerebral ischemia. A transient forebrain ischemia of 30-min duration was induced by the four-vessel occlusion technique in control and BD-treated rats (25 mmol/kg, i.p.; 30 min prior to ischemia). BD treatment led to significant improvement of neurologic deficit during the 72-h recovery period and reduced neuronal damage in the striatum and cortex but not in the CA1 sector of the hippocampus. Evaluation of cerebral energy metabolism before and at the end of the ischemic period showed that the treatment did not change the preischemic glycolytic and energy metabolite levels but attenuated the ischemia-induced metabolic alterations. It increased energy charge, phosphocreatine, and glucose levels, and reduced lactate accumulation. The decrease in brain lactate concentration might account for the beneficial effects of BD by minimizing the neuropathological consequences of lactic acidosis.
Collapse
Affiliation(s)
- C Marie
- Laboratoire de Pharmacodynamie et Physiologie Pharmaceutique, Faculté de Pharmacie, Université de Dijon, France
| | | | | |
Collapse
|
18
|
Thurston JH, Hauhart RE, Schiro JA. Beta-hydroxybutyrate reverses insulin-induced hypoglycemic coma in suckling-weanling mice despite low blood and brain glucose levels. Metab Brain Dis 1986; 1:63-82. [PMID: 3334063 DOI: 10.1007/bf00998478] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In normal suckling-weanling mice, DL-beta-hydroxybutyrate (30 mmol/kg ip) stimulated insulin secretion and reduced plasma glucose levels. In the brains of these animals, glucose levels were tripled due to a reduced rate of glucose utilization (determined by deoxyglucose phosphorylation). Other metabolite changes were compatible with inhibition of hexokinase, phosphofructokinase, glyceraldehyde-P-dehydrogenase, and pyruvate dehydrogenase activities. In contrast to the decrease in cerebral glycolysis, metabolite changes were compatible with an increase in the Krebs citric acid metabolic flux. The brain energy charge was also elevated. While it is generally believed that ketone bodies cannot sustain normal brain metabolism and function in the absence of glucose, DL-beta-hydroxybutyrate (20 or 30 mmol/kg ip) reversed insulin (100 U/kg sc)-induced hypoglycemia despite the persistence of a critically reduced plasma glucose concentration and near-zero brain glucose levels. Metabolic correlates of possible significance in the behavioral recovery from coma were reductions of the elevated levels of brain aspartate to below normal and ammonia levels to normal. Levels of acetyl CoA were unchanged both before and after treatment with beta-hydroxybutyrate.
Collapse
Affiliation(s)
- J H Thurston
- Washington University School of Medicine, Department of Pediatrics, Children's Hospital, St. Louis, Missouri 63110
| | | | | |
Collapse
|
19
|
Abstract
Rates of glucose and D-beta-hydroxybutyrate use were determined in five brain regions of 20-day-old rats. The regions studied were cerebral cortex, thalamus, striatum, cerebellum, and brain stem. The tracers for determining rates of substrate use were [3H]fluorodeoxyglucose and [3-14C]-D-beta-hydroxybutyrate. Two or five minutes after isotope administration the animals were sacrificed in a 6-kW, 2450-MHz focused microwave device. Ten minutes prior to isotope administration the animals were injected intraperitoneally with normal saline or DL-beta-hydroxybutyrate (10 mmol/kg). Blood D-beta-hydroxybutyrate levels averaged 0.21 mumol/ml in saline-injected and 3.13 mumol/ml in hyperketonemic rats. Rates of glucose utilization were significantly heterogeneous between regions in both groups: thalamus greater than cerebral cortex greater than or equal to striatum greater than brain stem greater than cerebellum. These rates were 20-35% lower in hyperketonemic rats. Rates of D-beta-hydroxybutyrate use varied significantly between regions only in the saline group, with the brain stem rate being significantly lower than that in cortex or cerebellum. Regional rates of D-beta-hydroxybutyrate use did not correlate significantly with regional rates of glucose use in either the saline or the hyperketonemic groups. Regional rates of glucose use were strongly and positively correlated between conditions, as were regional rates of D-beta-hydroxybutyrate use. Thus, in 20-day-old rats, the regional heterogeneity of brain glucose use is similar to that in adult rats. D-beta-Hydroxybutyrate use is much less regionally heterogeneous.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A L Miller
- Department of Psychiatry, University of Texas Health Science Center, San Antonio 78284
| |
Collapse
|
20
|
Abstract
The effects of hyperlactatemia on cerebral glucose metabolism of normoglycemic 20-day-old rats were studied in animals breathing air or 20% CO2:21% O2:59% N2. Sodium lactate or sodium bicarbonate were given intraperitoneally, together with a mixture of [3H]deoxyglucose and [2-14C]glucose. Animals were sacrificed in a freeze-blowing apparatus at intervals of 2-15 min after injection. Blood lactate levels in the lactate-injected rats were 4-6 mM. Hyperlactatemia caused a gradual decline in the brain rate of glucose utilization in air-breathing animals to 50-70% of control rates. Results with both tracers were similar. Concentrations of Krebs cycle intermediates and glutamate did not decrease. These findings indicate that lactate can partially replace glucose as an oxidative fuel for developing rat brain. Hypercapnia depressed the rate of glucose utilization by developing brain and rates were 30-40% lower still in lactate-injected hypercapnic rats. Decreases in levels of Krebs cycle intermediates and glutamate were similar in both groups. Thus, lactate and CO2 are additive in their depressant effects on brain glucose utilization. The observation that lactate did not prevent the decreases in Krebs cycle intermediates and glutamate caused by hypercapnic acidosis suggests an inhibition of flux through pyruvate dehydrogenase during hypercapnia. The data from this study, coupled with data on lactate transport across the blood-brain barrier, indicate that the direction of movement of lactate and its rate of utilization by developing brain are functions of its concentration on blood relative to brain. Physiological and pathological conditions which elevate blood lactate levels above those in brain will, then, have a sparing effect upon brain glucose utilization.
Collapse
|