1
|
Kirkland D, Kovochich M, More SL, Murray FJ, Monnot AD, Miller JV, Jaeschke H, Jacobson-Kram D, Deore M, Pitchaiyan SK, Unice K, Eichenbaum G. A comprehensive weight of evidence assessment of published acetaminophen genotoxicity data: Implications for its carcinogenic hazard potential. Regul Toxicol Pharmacol 2021; 122:104892. [PMID: 33592196 DOI: 10.1016/j.yrtph.2021.104892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.
Collapse
|
2
|
van der Leede B, Weiner S, Van Doninck T, De Vlieger K, Schuermans A, Tekle F, Geys H, van Heerden M, De Jonghe S, Van Gompel J. Testing of acetaminophen in support of the international multilaboratory in vivo rat Pig-a assay validation trial. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:508-525. [PMID: 32187737 PMCID: PMC7317746 DOI: 10.1002/em.22368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Acetaminophen, a nonmutagenic compound as previously concluded from bacteria, in vitro mammalian cell, and in vivo transgenic rat assays, presented a good profile as a nonmutagenic reference compound for use in the international multilaboratory Pig-a assay validation. Acetaminophen was administered at 250, 500, 1,000, and 2,000 mg·kg-1 ·day-1 to male Sprague Dawley rats once daily in 3 studies (3 days, 2 weeks, and 1 month with a 1-month recovery group). The 3-Day and 1-Month Studies included assessments of the micronucleus endpoint in peripheral blood erythrocytes and the comet endpoint in liver cells and peripheral blood cells in addition to the Pig-a assay; appropriate positive controls were included for each assay. Within these studies, potential toxicity of acetaminophen was evaluated and confirmed by inclusion of liver damage biomarkers and histopathology. Blood was sampled pre-treatment and at multiple time points up to Day 57. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as CD59-negative RBC and CD59-negative RET frequencies, respectively. No increases in DNA damage as indicated through Pig-a, micronucleus, or comet endpoints were seen in treated rats. All positive controls responded as appropriate. Data from this series of studies demonstrate that acetaminophen is not mutagenic in the rat Pig-a model. These data are consistent with multiple studies in other nonclinical models, which have shown that acetaminophen is not mutagenic. At 1,000 mg·kg-1 ·day-1 , Cmax values of acetaminophen on Day 28 were 153,600 ng/ml and 131,500 ng/ml after single and repeat dosing, respectively, which were multiples over that of clinical therapeutic exposures (2.6-6.1 fold for single doses of 4,000 mg and 1,000 mg, respectively, and 11.5 fold for multiple dose of 4,000 mg) (FDA 2002). Data generated were of high quality and valid for contribution to the international multilaboratory validation of the in vivo Rat Pig-a Mutation Assay.
Collapse
Affiliation(s)
| | - Sandy Weiner
- Janssen Research & DevelopmentSpring House, PennsylvaniaUSA
| | | | | | | | - Fetene Tekle
- Janssen Research & DevelopmentBeerse, AntwerpBelgium
| | - Helena Geys
- Janssen Research & DevelopmentBeerse, AntwerpBelgium
| | | | | | | |
Collapse
|
3
|
Suzuki Y, Goto K, Nakayama Y, Saratani M, Takata T, Okamoto T, Okazaki S. Evaluation of a single-dose PIGRET assay for acetaminophen in rats compared with the RBC Pig-a assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 811:16-20. [PMID: 27931808 DOI: 10.1016/j.mrgentox.2016.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 11/25/2022]
Abstract
As a part of a collaborative study of the Pig-a assay by the Mammalian Mutagenicity Study Group of the Japanese Environmental Mutagen Society, a genotoxicity study on acetaminophen (APAP) was performed using the red blood cell (RBC) Pig-a and PIGRET assays. The dose levels were set at 0 (vehicle, 0.5% methylcellulose solution), 500, 1000, and 2000mg/kg, and APAP was administered once by oral gavage to male Sprague Dawley rats. For the positive control group, N-nitroso-N-ethylurea (ENU, 40mg/kg) was administered in the same way. The RBC Pig-a and PIGRET assays were performed using peripheral blood collected at pre-dosing and 1, 2 and 4 weeks after dosing. In both the RBC Pig-a and PIGRET assays, there were no changes in the Pig-a gene mutant frequency (MF) by the APAP treatment at any time point. The Pig-a MFs as measured by the RBC Pig-a assay for the ENU-treated group increased in a time-dependent manner with the maximum value at week 4; however, those using the PIGRET assay reached comparable values at week 1. Based on the above results, APAP was determined to have no mutagenicity under the conditions of this study, and the PIGRET assay could detect mutagenicity of ENU much earlier than the RBC Pig-a assay.
Collapse
Affiliation(s)
- Yuta Suzuki
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka 412-0039, Japan.
| | - Ken Goto
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka 412-0039, Japan
| | - Yoshihiro Nakayama
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka 412-0039, Japan
| | - Masatoshi Saratani
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka 412-0039, Japan
| | - Takuya Takata
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka 412-0039, Japan
| | - Takezo Okamoto
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka 412-0039, Japan
| | - Shuzo Okazaki
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba-shi, Shizuoka 412-0039, Japan
| |
Collapse
|
4
|
Klopčič I, Poberžnik M, Mavri J, Dolenc MS. A quantum chemical study of the reactivity of acetaminophen (paracetamol) toxic metabolite N-acetyl-p-benzoquinone imine with deoxyguanosine and glutathione. Chem Biol Interact 2015; 242:407-14. [DOI: 10.1016/j.cbi.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/16/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
|
5
|
Bomhard EM, Herbold BA. Genotoxic Activities of Aniline and its Metabolites and Their Relationship to the Carcinogenicity of Aniline in the Spleen of Rats. Crit Rev Toxicol 2008; 35:783-835. [PMID: 16468500 DOI: 10.1080/10408440500442384] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aniline (in the form of its hydrochloride) has been shown to induce a rather rare spectrum of tumors in the spleen of Fischer 344 rats. The dose levels necessary for this carcinogenic activity were in a range where also massive effects on the blood and non-neoplastic splenotoxicity as a consequence of methemoglobinemia were to be observed. This review aimed at clarifying if aniline itself or one of its metabolites has a genotoxic potential which would explain the occurrence of the spleen tumors in rats as a result of a primary genetic activity. The database for aniline and its metabolites is extremely heterogeneous. With validated assays it ranges from a few limited Ames tests (o- and m-hydroxyacetanilide, phenylhydroxylamine, nitrosobenzene) to a broad range of studies covering all genetic endpoints partly with several studies of the same or different test systems (aniline, p-aminophenol, p-hydroxyacetanilide). This makes a direct comparison rather difficult. In addition, a varying number of results with as yet not validated systems are available for aniline and its metabolites. Most results, especially those with validated and well performed/documented studies, did not indicate a potential of aniline to induce gene mutations. In five different mouse lymphoma tests, where colony sizing was performed only in one test, aniline was positive. If this indicates a peculiar feature of a point mutagenic potential or does represent a part of the clastogenic activity for which there is evidence in vitro as well as in vivo remains to be investigated. There is little evidence for a DNA damaging potential of aniline. The clastogenic activity in vivo is confined to dose levels, which are close to lethality essentially due to hematotoxic effects. The quantitatively most important metabolites for experimental animals as well as for humans (p-aminophenol, p-hydroxyacetanilide) seem to have a potential for inducing chromosomal damage in vitro and, at relatively high dose levels, also in vivo. This could be the explanation for the clastogenic effects that have been observed after high doses/concentrations with aniline. They do not induce gene mutations and there is little evidence for a DNA damaging potential. None of these metabolites revealed a splenotoxic potential comparable to that of aniline in studies with repeated or long-term administration to rats. The genotoxicity database on those metabolites with a demonstrated and marked splenotoxic potential, i.e. phenylhydroxylamine, nitrosobenzene, is unfortunately very limited and does not allow to exclude with certainty primary genotoxic events in the development of spleen tumors. But quite a number of considerations by analogy from other investigations support the conclusion that the effects in the spleen do not develop on a primary genotoxic basis. The weight of evidences suggests that the carcinogenic effects in the spleen of rats are the endstage of a chronic high-dose damage of the blood leading to a massive overload of the spleen with iron, which causes chronic oxidative stress. This conclusion, based essentially on pathomorphological observations, and analogy considerations thereof by previous authors, is herewith reconfirmed under consideration of the more recently reported studies on the genotoxicity of aniline and its metabolites, on biochemical measurements indicating oxidative stress, and on the metabolism of aniline. It is concluded that there is no relationship between the damage to the chromosomes at high, toxic doses of aniline and its major metabolites p-aminophenol/p-hydroxyacetanilide and the aniline-induced spleen tumors in the rat.
Collapse
Affiliation(s)
- Ernst M Bomhard
- Institute of Toxicology, Bayer Healthcare AG, D-42096 Wuppertal, Germany.
| | | |
Collapse
|
6
|
Antunes LMG, de Barros E Lima Bueno R, da Luz Dias F, de Lourdes Pires Bianchi M. Acetylsalicylic acid exhibits anticlastogenic effects on cultured human lymphocytes exposed to doxorubicin. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 626:155-61. [PMID: 17097912 DOI: 10.1016/j.mrgentox.2006.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/20/2006] [Accepted: 09/29/2006] [Indexed: 11/16/2022]
Abstract
Acetylsalicylic acid (ASA) is a non-steroidal anti-inflammatory drug (NSAID) with many pharmacological properties, such as anti-inflammatory, antipyretic and analgesic. Many studies have suggested the possible efficiency of ASA and other NSAIDs in preventing cancer. ASA could also have antimutagenic and antioxidant properties. The aim of this study was to investigate the possible clastogenic and anticlastogenic effects of different concentrations of ASA on doxorubicin-induced chromosomal aberrations in human lymphocytes. Human blood samples were obtained from six healthy, non-smoking volunteers; and the chromosomal aberration assay was carried out using conventional techniques. The parameters analyzed were mitotic index, total number of chromosomal aberrations and percentage of aberrant metaphases. The concentrations of ASA (25, 50 or 100 microg/mL) tested in combination with DXR (0.2 microg/mL) were established on the basis of the results of the mitotic index. The treatment with ASA alone was neither cytotoxic nor clastogenic (p>0.01). In lymphocyte cultures treated with different combinations of ASA and DXR, a significant decrease in the total number of chromosome aberrations was observed compared with DXR alone (p<0.01). This protective effect of ASA on DXR-induced chromosomal damage was obtained for all combinations, and it was most evident when ASA was at 25.0 microg/mL. In our experiments, ASA may have acted as an antioxidant and inhibited the chromosomal damage induced by the free radicals generated by DXR. The identification of compounds that could counteract the free radicals produced by doxorubicin could be of possible benefits against the potential harmful effects of anthracyclines. The results of this study show that there is a relevant need for more investigations in order to elucidate the mechanisms underlying the anticlastogenic effect of ASA.
Collapse
Affiliation(s)
- Lusânia Maria Greggi Antunes
- Depto de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
7
|
Markova E, Clemedson C, Kolman A. Use of the PFGE assay for studies of DNA breakage induced by toxic chemicals. Altern Lab Anim 2004; 31:283-8. [PMID: 15612872 DOI: 10.1177/026119290303100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relevance of the pulsed field gel electrophoresis (PFGE) assay for the estimation of the DNA damaging effects of chemicals was studied. Four chemicals were randomly chosen from the list of 50 Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) reference chemicals with known human acute systemic toxicity: acetylsalicylic acid, paracetamol, ethylene glycol and sodium chloride. Human fibroblasts (VH-10) were used as a model system. For the estimation of cytotoxic effect, cell monolayers were treated with chemicals for 24 hours. Cloning efficiency (colony-forming ability) at different concentrations of the test chemicals was estimated, and the 50% inhibitory concentration (IC50) was determined. The IC50 values obtained demonstrated a correlation with human lethal blood concentrations. The induction of DNA double-strand breaks, measured by PFGE as the fraction of activity released, was detected after treatment with paracetamol. However, the other three chemicals tested mainly induced DNA degradation.
Collapse
Affiliation(s)
- Eva Markova
- Department of Molecular Genetics, Cancer Research Institute, 833 91 Bratislava 37, Slovak Republic
| | | | | |
Collapse
|
8
|
Giri AK, Adhikari N, Khan KA. Comparative genotoxicity of six salicylic acid derivatives in bone marrow cells of mice. Mutat Res 1996; 370:1-9. [PMID: 8830801 DOI: 10.1016/s0165-1218(96)90121-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vivo sister chromatid exchange (SCE) and chromosome aberrations (CA) were carried out for six salicylic acid derivatives in bone marrow cells of mice. Six salicylic acid derivatives, namely acetyl salicylic acid (aspirin), salicylic acid, salicylamide, sodium salicylate, diflunisal and niclosamide, were used for these experiments. Drugs were administered both intraperitoneally (i.p.) and orally by gavage. Out of these six salicylic acid derivatives tested, only diflunisal and niclosamide showed genotoxicity as measured by both SCE and CA assays. Acetyl salicylic acid and sodium salicylate showed weak genotoxicity as measured by SCE and CA, respectively, only at the highest dose tested.
Collapse
Affiliation(s)
- A K Giri
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | | | | |
Collapse
|
9
|
Jensen KG, Poulsen HE, Doehmer J, Loft S. Paracetamol-induced spindle disturbances in V79 cells with and without expression of human CYP1A2. PHARMACOLOGY & TOXICOLOGY 1996; 78:224-8. [PMID: 8861779 DOI: 10.1111/j.1600-0773.1996.tb00209.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Spindle disturbing effects in terms of c-mitosis and cytotoxicity of paracetamol were investigated in two Chinese hamster V79 cell lines, one of which (V79MZh1A2) was transfected with human CYP1A2. This enzyme catalyses the oxidative formation of the reactive paracetamol metabolite, NAPQI, believed to initiate hepatoxicity by covalent binding to proteins after overdose. In the native V79 cell line paracetamol increased c-mitosis frequency in a concentration dependent manner from 8.7 + or - 3.5% (control) to 66 + or - 18% at 20 mM. A significant increase to 13.3 + or - 3.5% was first seen at 2.5 mM in the native cell line (P<0.05). In the V79MZh1A2 cells the concentration-effect curve was slightly shifted to the left (P<0.05) with c-mitosis frequency increased to 12.1 + or - 2.6% (P<0.05) at 1 mM paracetamol. At 5 mM paracetamol the c-mitosis frequency was 14.4 + or - 5.0% and 19.0 + or - 3.8% in the native and CYP1A2 expressing cell lines, respectively (P<0.05). At 20 mM paracetamol the c-mitosis frequency was 61 + or - 10% in the V79MZh1A2 cells. Cell survival was reduced to approximately 50% at 5-10 mM paracetamol in both cell lines. At 20 mM paracetamol survival was further decreased to 39 + or - 9% in V79MZh1A2 cells only (P<0.05). The present study demonstrated that paracetamol may disturb the spindle of dividing cells conveying a risk of aneuploidy. The spindle disturbing effect was only slightly enhanced by expression of CYP1A2, suggesting that metabolic activation plays only a minor role in this genotoxic effect. The reduction of survival mirrored the increase in c-mitosis frequency.
Collapse
Affiliation(s)
- K G Jensen
- Department of Pharmacology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
10
|
Bergman K, Müller L, Teigen SW. Series: current issues in mutagenesis and carcinogenesis, No. 65. The genotoxicity and carcinogenicity of paracetamol: a regulatory (re)view. Mutat Res 1996; 349:263-88. [PMID: 8600357 DOI: 10.1016/0027-5107(95)00185-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The publication of several studies reporting genotoxic effects of paracetamol, one of the world's most popular over-the-counter drugs, has raised the question of regulatory action. Paracetamol does not cause gene mutations, either in bacteria or in mammalian cells. There are, however, published data giving clear evidence that paracetamol causes chromosomal damage in vitro in mammalian cells at high concentrations and indicating that similar effects occur in vivo at high dosages. Available data point to three possible mechanisms of paracetamol-induced genotoxicity: (1) inhibition of ribonucleotide reductase; (2) increase in cytosolic and intranuclear Ca2+ levels; (3) DNA damage caused by NAPQI after glutathione depletion. All mechanisms involve dose thresholds. Studies of the relationship between genotoxicity and toxic effects in the rat (induction of micronuclei in rat bone marrow including dose-response relationship, biotransformation of paracetamol at different dosages, concomitant toxicity and biochemical markers) have recently been completed. These studies, which employed doses ranging from the dose resulting in human therapeutic peak plasma levels to highly toxic doses, give convincing evidence that genotoxic effects of paracetamol appear only at dosages inducing pronounced liver and bone marrow toxicity and that the threshold level for genotoxicity is not reached at therapeutic dosage. Reliable studies on the ability of paracetamol to affect germ cell DNA are not available. However, based on the amount of drug likely to reach germ cells and the evidence of thresholds, paracetamol is not expected to cause heritable damage in man. Various old and poorly designed long-term studies of paracetamol in the mouse and rat have given equivocal results. A few of these studies showed increased incidence of liver and bladder tumours at hepatotoxic doses. National Toxicology Program (U.S.A.) feeding studies have shown that paracetamol is non-carcinogenic when given at non-hepatotoxic doses up to 300 mg/kg/d to the rat and up to 1000 mg/kg/d to the mouse. Taking into account the knowledge of the hepatotoxicity and metabolism of paracetamol and the existence of thresholds for its genotoxicity, the animal studies do not indicate a carcinogenic potential at non-hepatotoxic dose levels. Based on this updated assessment of the genotoxicity and carcinogenicity of paracetamol, it is concluded that there is no need for regulatory action.
Collapse
Affiliation(s)
- K Bergman
- Medical Products Agency, Uppsala, Sweden
| | | | | |
Collapse
|
11
|
Müller-Tegethoff K, Kasper P, Müller L. Evaluation studies on the in vitro rat hepatocyte micronucleus assay. Mutat Res 1995; 335:293-307. [PMID: 8524345 DOI: 10.1016/0165-1161(95)00033-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Based on a previous study with 8 chemicals (Müller et al., 1993) the applicability of the in vitro rat hepatocyte micronucleus assay was evaluated by testing a further 21 compounds of different chemical classes. The obtained results are in good agreement with the known genotoxic profiles of about 90% of the in total tested compounds. Several known mutagens and carcinogens, i.e., alkylating agents, aromatic amines, nitrosamines, nitro compounds, cross-linking agents, and pyrrolizidine alkaloids gave clear positive results in this assay, whereas all of the tested non-carcinogens were negative. The hepatocyte micronucleus assay was shown to distinguish between carcinogenic/non-carcinogenic isomers, such as 2- and 4-acetylaminofluorene (AAF) and 2- and 1-nitropropane (NP). Furthermore, the non-genotoxic nature of several hepatocarcinogens, i.e., the peroxisome proliferating agents fenofibrate, nafenopin, Wy-14,643, diethyl(hexyl)phthalate (DEHP), and the sedative phenobarbital, could be confirmed in this assay. The hepatocarcinogen coumarin exerted mitogenic but no mutagenic properties in the rat hepatocyte micronucleus assay. This compound may act as a liver tumor promoter. Benzo[a]pyrene (B[a]P) and 7,12-dimethylbenzanthacene (DMBA), both belonging to the group of known carcinogenic and mutagenic polycyclic aromatic hydrocarbons, failed to induce micronucleus formation in rat hepatocytes. The high susceptibility of in vitro proliferating hepatocytes to mitotic inhibition, exerted by the strong cytotoxic actions of these compounds, seems to be responsible for these negative results. A strongly reduced mitotic activity can prevent the formation of micronuclei, even when clastogenic effects may have occurred. In the present stage, the in vitro rat hepatocyte micronucleus assay cannot be recommended for screening genotoxicity testing. It should rather be used for special purposes, e.g., when liver-specific mutagenic effects are expected.
Collapse
|
12
|
Abstract
Paracetamol blocks DNA replication by inhibiting deoxyribonucleotide (dNTP) synthesis and may therefore also interfere with DNA repair. In the present work various mammalian cell types were treated with genotoxic agents and allowed to repair in the presence or absence of paracetamol. Alkaline elution was used to assay DNA single-strand breaks plus alkali-labile sites (= SSBs). Resting human mononuclear blood cells (MNC) exposed to 4-nitroquinoline N-oxide (NQO, 3 microM) plus 0.3 mM paracetamol contained twice as many DNA SSBs compared to MNC exposed to NQO alone, and the level of SSBs decreased more slowly during repair in the presence of paracetamol. Deoxyribonucleosides reversed the effects of paracetamol. SSBs induced by MMS or X-rays (2.6 Gy) were not increased by paracetamol. Resting and growth-stimulated MNC, HL-60 cells, rat hepatocytes and human fibroblasts exposed to UV-C (3-12 J/m2) showed varying levels of transient SSBs formed during repair but these were consistently higher in the presence of paracetamol (0.3-1 mM). In rat testicular cells SSBs were induced by NQO and the levels were further increased in the presence of paracetamol, whereas after UV almost no SSBs were detected during repair. The cell-type specific levels of transient SSBs after UV did not correlate with the rate of incision of DNA lesions, measured as the rate of SSB accumulation in the presence of repair inhibitors Ara C plus hydroxyurea. Transient SSBs were present in resting MNC for at least 24 h after UV and paracetamol increased these breaks 4-fold however the overall rate of removal of excisable photodamage during repair did not appear to be reduced by the presence of paracetamol. The present data indicate that paracetamol interferes with nucleotide excision repair in several mammalian cell types. This constitutes a mechanism by which paracetamol may contribute to genotoxicity in humans.
Collapse
Affiliation(s)
- G Brunborg
- Department of Environmental Medicine, National Institute of Public Health, Oslo, Norway
| | | | | |
Collapse
|
13
|
Rannug U, Holme JA, Hongslo JK, Srám R. International Commission for Protection against Environmental Mutagens and Carcinogens. An evaluation of the genetic toxicity of paracetamol. Mutat Res 1995; 327:179-200. [PMID: 7870087 DOI: 10.1016/0027-5107(94)00184-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the last years, several reports have indicated genotoxic effects of paracetamol, a widely used non-prescription analgesic and antipyretic drug. Thus, a careful evaluation of a possible genotoxic effect related to paracetamol use is warranted. Studies in vitro and in vivo indicate that the reactive metabolite of paracetamol can bind irreversibly to DNA and cause DNA strand breaks. Paracetamol inhibits both replicative DNA synthesis and DNA repair synthesis in vitro and in experimental animals. Paracetamol does not cause gene mutations, either in bacteria or in mammalian cells. On the other hand, a co-mutagenic effect of paracetamol has been reported. Furthermore, paracetamol increases the frequency of chromosomal damage in mammalian cell lines, isolated human lymphocytes and experimental animals. Two independent studies have shown an increase in chromosomal damage in lymphocytes of human volunteers after intake of therapeutic doses of paracetamol, whereas a third study was negative. Paracetamol-induced chromosomal damage appears to be caused by an inhibition of ribonucleotide reductase. This indicates that a threshold level for the paracetamol-induced chromosomal damage may exist. Genotoxic effects of paracetamol have, however, been demonstrated both in vitro and in vivo at or near therapeutic concentrations. The data indicate that the use of paracetamol may contribute to an increase in the total burden of genotoxic damage in man. Thus, there may be a need to evaluate the therapeutic benefit of paracetamol, taking into consideration not only its potential to induce acute and chronic organ damage, but also genotoxic effects.
Collapse
Affiliation(s)
- U Rannug
- Department of Genetic and Cellular Toxicology, Stockholm University, Sweden
| | | | | | | |
Collapse
|
14
|
Müller L, Kasper P. OTC pharmaceuticals and genotoxicity testing: the paracetamol, anthraquinone, and griseofulvin cases. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1995; 17:312-25. [PMID: 7786168 DOI: 10.1007/978-3-642-79451-3_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Genotoxic effects are hardly assessable in an exposed population but are generally considered to be serious due to their unpredictable effects on subsequent generations and to the link between genotoxicity and cancer. Lack of knowledge about a genotoxic/carcinogenic potential has to be stated for numerous compounds which are often in pharmaceutical use known for a long time. A thorough testing programme like it is done for new compounds is essential for such compounds that are not completely unsuspicious with respect to being reactive with macromolecules or that have the potential to generate reactive metabolites in the body. Paracetamol, anthraquinone-containing preparations, and griseofulvin are examples for pharmaceuticals that have been in use for a long time but for which genotoxicity testing revealed a possible deleterious potential only recently. The Federal Health Office/Federal Institute for Drugs and Medical Devices therefore imposed new studies upon companies marketing these compounds in the last years. These studies in part led to a more thorough description of possible adverse effects or even restrictions for use. Paracetamol exhibits a genotoxic potential in vitro and in vivo probably via indirect, cytotoxicity or enzyme inhibition-mediated effects. Further studies will have to clarify whether a threshold could be established and whether effects do not occur at therapeutic dose levels. Genotoxicity data on the mixed group of anthraquinones reveal positive and negative findings. Compounds such as lucidin, danthron, emodin supposedly have a genotoxic and carcinogenic potential. Further studies with anthraquinone-containing plant preparations will have to clarify the content and genotoxic activity of the preparations and the active ingredients. Lucidin- and danthron-containing preparations are currently no longer in use now whereas restrictions apply for other anthraquinone-containing laxatives. Griseofulvin is acknowledged in the meantime as an aneugen for somatic and germ cells. It is in vitro effective in concentrations that correspond to therapeutic plasma levels.
Collapse
Affiliation(s)
- L Müller
- Federal Institute for Drugs and Medical Devices, Berlin, Germany
| | | |
Collapse
|
15
|
Abstract
Paracetamol and aspirin are the two most widely used analgesics available for human use without prescription in several parts of the world. Paracetamol has an antipyretic activity, and aspirin has both antipyretic and anti-inflammatory activities. Characterization of the mutagenicity and clastogenicity of these drugs is essential for their overall safety assessment. In the present review, an attempt is made to evaluate the genotoxic effects of these two widely used analgesics based on available literature.
Collapse
Affiliation(s)
- A K Giri
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| |
Collapse
|
16
|
Kirkland DJ, Dresp JH, Marshall RR, Baumeister M, Gerloff C, Gocke E. Normal chromosomal aberration frequencies in peripheral lymphocytes of healthy human volunteers exposed to a maximum daily dose of paracetamol in a double blind trial. Mutat Res 1992; 279:181-94. [PMID: 1377333 DOI: 10.1016/0165-1218(92)90065-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Paracetamol (acetaminophen) has been examined for mutagenic potential in numerous studies: gene mutation tests consistently gave negative results while in vitro chromosomal aberration tests showed equally consistently positive effects. In vivo studies for chromosome breaking activity gave clearly negative, equivocal or weakly positive results. In particular two reports have indicated that human volunteers taking a maximum daily dose of paracetamol (3 x 1000 mg over 8 h) exhibited significantly elevated frequencies of chromatid breaks in their peripheral lymphocytes 24 h later. In the one study evaluating the time course, levels returned to normal between 3 and 7 days later. We performed a carefully controlled double-blind study in which volunteers were pre-screened for normal liver function, they all were non-smoking and their diet and environmental exposures were controlled during the study. Cell-cycle kinetics were monitored and paralleled and a placebo group was included. Although a larger number of cells than in the other studies was analysed we were unable to reproduce their findings. No significant increases in structural chromosome aberrations (CA) were found either when the paracetamol group (male, female or both) post-dosing values were compared with pre-dosing values, or when treated groups at any sampling time were compared with the placebo groups. There was not even any evidence that individuals responded to the clastogenic potential of paracetamol or that a group response may have been masked by non-responders. In conjunction with the recently published results of the NTP bioassay, showing no carcinogenic activity in mice and no carcinogenic activity in rats except an increase of mononuclear cell leukaemia in female rats which is of doubtful relevance, the study presented here argues that paracetamol does not pose an unacceptable (if any) genotoxic/carcinogenic risk to man.
Collapse
Affiliation(s)
- D J Kirkland
- Hazleton Microtest, Heslington, York, Great Britain
| | | | | | | | | | | |
Collapse
|