1
|
Stone E, Coote JH, Allard J, Lovick TA. GABAergic control of micturition within the periaqueductal grey matter of the male rat. J Physiol 2011; 589:2065-78. [PMID: 21486804 PMCID: PMC3090604 DOI: 10.1113/jphysiol.2010.202614] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/16/2010] [Accepted: 02/15/2011] [Indexed: 01/23/2023] Open
Abstract
In urethane-anaesthetised rats continuous infusion of saline into the bladder (6 ml h⁻¹) evoked periodic sharp rises in intravesicular pressure accompanied by rhythmic bursting of external urethral sphincter (EUS) EMG and expulsion of urine from the urethral meatus. Microinjection of the GABA agonist muscimol (250 pmol) into the caudal ventrolateral periaqueductal grey (PAG), but not at other sites in the PAG, either depressed reflex voiding frequency (-60%, n = 7) and tonic EUS EMG activity (-38%, n = 6) or completely inhibited voiding (four sites). Microinjection of the GABA antagonist bicuculline (BIC; 1 nmol) into the same region, to reduce ongoing GABA tone, increased reflex voiding frequency (+467%, n = 16) and tonic activity in the EUS (+56%, n = 7) whilst bursting activity in the EUS became desynchronised. Although muscimol failed to change reflex micturition when microinjected into the dorsal caudal PAG, microinjection of BIC at these sites evoked pronounced autonomic arousal and increased reflex voiding frequency (+237%, n = 34). The results demonstrate that the functional integrity of synapses in the caudal ventrolateral PAG is essential to permit micturition. Transmission through the region is normally regulated by a tonic GABAergic inhibitory influence. In contrast, the functional integrity of the dorsal caudal PAG is not essential for reflex micturition. However, micturition may be initiated from this region via projections to the caudal ventrolateral PAG, as part of the behavioural response to psychological threat or other stressful stimuli.
Collapse
Affiliation(s)
- E Stone
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
2
|
Zaretskaia MV, Zaretsky DV, Sarkar S, Shekhar A, DiMicco JA. Induction of Fos-immunoreactivity in the rat brain following disinhibition of the dorsomedial hypothalamus. Brain Res 2008; 1200:39-50. [PMID: 18282559 DOI: 10.1016/j.brainres.2008.01.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 12/18/2022]
Abstract
Activation of neurons in the dorsomedial hypothalamus (DMH) appears to play an important role in signaling the excitation of brain regions responsible for experimental fever and for many of the physiological and behavioral changes seen in experimental stress or anxiety in rats. Here, we examined the effect of disinhibition of the DMH by unilateral microinjection of bicuculline methiodide (BMI) on Fos expression in selected regions of the brain that have been implicated in anxiety and responses to stress and fever in rats. Disinhibition of the DMH resulted in dramatic increases in local Fos expression and also increased the numbers of Fos-positive neurons in the lateral septal nucleus and in both the parvocellular and magnocellular subdivisions of the paraventricular nucleus, with greater increases ipsilateral to the injection site in the DMH. However, microinjection of BMI had no significant effect on Fos expression in the bed nucleus of the stria terminalis, another forebrain area implicated in stress and anxiety. In the brainstem, disinhibition of the DMH increased Fos expression in the nucleus tractus solitarius and the ventrolateral medulla bilaterally with greater increases again ipsilateral to the site of the microinjection, and also in the midline rostral raphe pallidus. Thus, disinhibition of neurons in the DMH in conscious rats results in increases in Fos expression in selected forebrain and brainstem regions that have been implicated in stress-induced physiological changes, anxiety, and experimental fever.
Collapse
Affiliation(s)
- Maria V Zaretskaia
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | |
Collapse
|
3
|
Hayward LF. Midbrain modulation of the cardiac baroreflex involves excitation of lateral parabrachial neurons in the rat. Brain Res 2007; 1145:117-27. [PMID: 17355874 PMCID: PMC1904493 DOI: 10.1016/j.brainres.2007.01.140] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 01/26/2007] [Accepted: 01/27/2007] [Indexed: 02/06/2023]
Abstract
Activation of the dorsal periaqueductal gray (PAG) evokes defense-like behavior including a marked increase in sympathetic drive and resetting of baroreflex function. The goal of this study was to investigate the role of the lateral parabrachial nucleus (LPBN) in mediating dorsal PAG modulation of the arterial baroreflex. Reflex responses were elicited by electrical stimulation of the aortic depressor nerve (ADN) at 5 Hz or 15 Hz in urethane anesthetized rats (n=18). Electrical stimulation of the dorsal PAG at 10 Hz did not alter baseline mean arterial pressure (MAP) but did significantly attenuate baroreflex control of heart rate (HR) evoked by low frequency ADN stimulation. Alternatively, 40 Hz dorsal PAG stimulation increased baseline MAP (43+/-3 mm Hg) and HR (33+/-3 bpm) and attenuated baroreflex control of HR at both ADN stimulation frequencies. Reflex control of MAP was generally unchanged by dorsal PAG stimulation. Bilateral inhibition of neurons in LPBN area (n=6) with muscimol (0.45 nmol per side) reduced dorsal PAG-evoked increases in MAP and HR by 50+/-4% and 95+/-4%, respectively, and significantly reduced, but did not completely eliminate dorsal PAG attenuation of the cardiac baroreflex. Bilateral blockade of glutamate receptors in the LPBN area (n=6) with kynurenic acid (1.8 nmol) had a similar effect on dorsal PAG-evoked increases in MAP, HR and cardiac baroreflex function. Reflex control of MAP was unchanged with either treatment. These findings suggest that the LPBN area is one of several brainstem regions involved in descending modulation of the cardiac baroreflex function during defensive behavior.
Collapse
Affiliation(s)
- Linda F Hayward
- University of Florida, College of Veterinary Medicine, Department of Physiological Sciences and McKnight Brain Institute, PO 100144 Gainesville, FL 32610-1044, USA.
| |
Collapse
|
4
|
Furlong T, Carrive P. Neurotoxic lesions centered on the perifornical hypothalamus abolish the cardiovascular and behavioral responses of conditioned fear to context but not of restraint. Brain Res 2006; 1128:107-19. [PMID: 17126820 DOI: 10.1016/j.brainres.2006.10.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to test the role of the perifornical hypothalamus and adjacent areas in the behavioral and cardiovascular responses to two forms of stress, conditioned fear to context and restraint. Of particular interest was the role of the hypocretin (orexin) containing neurons in these responses. Rats implanted with radio-telemetric probes and fear conditioned to a context received bilateral injections of the neurotoxin hypocretin-2-saporin centered on the perifornical area. One week later, the animals were tested for conditioned fear to context and restraint while recording freezing, 22 kHz ultrasonic vocalizations, activity, mean arterial pressure and heart rate. Histological verification revealed that the lesions were not specific since virtually all the neurons within the injection area were lost. Nevertheless, these lesions, which were centered on the perifornical area, markedly reduced all recorded components of the contextual fear response (by 70%) but had no effect on the response to restraint. The lesions also caused a reduction in body weight and reduced the circadian rhythm of the recorded parameters. The results show (i) that hypocretin-2-saporin was not specific enough to produce lesions restricted to the hypocretin system, (ii) that neurons of the perifornical area are necessary for the expression of both the cardiovascular and behavioral components of conditioned fear to context, and (iii) that the same neurons are not necessary for the cardiovascular response to restraint. Thus, the perifornical hypothalamus is critical for some forms of stress but not others. We propose that it is a necessary relay for emotional responses in which the psychological component is stronger than the sensory component.
Collapse
Affiliation(s)
- Teri Furlong
- Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW 2035 Australia
| | | |
Collapse
|
5
|
de Menezes RCA, Zaretsky DV, Fontes MAP, DiMicco JA. Microinjection of muscimol into caudal periaqueductal gray lowers body temperature and attenuates increases in temperature and activity evoked from the dorsomedial hypothalamus. Brain Res 2006; 1092:129-37. [PMID: 16677620 DOI: 10.1016/j.brainres.2006.03.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 03/23/2006] [Accepted: 03/23/2006] [Indexed: 11/29/2022]
Abstract
Microinjection of the neuronal inhibitor muscimol into the midbrain lateral/dorsolateral periaqueductal gray (l/dlPAG) suppresses increases in heart rate (HR) and mean arterial pressure (MAP) evoked by microinjection of the GABA(A) receptor antagonist bicuculline methiodide (BMI) into the dorsomedial hypothalamus (DMH) in rats. Injection of BMI into the DMH also increases body temperature (Tco) and motor activity. Here, our goal was to extend previous findings by examining the effect of microinjection of muscimol into the PAG on these thermogenic and behavioral responses in conscious freely moving rats. Microinjection of muscimol (300 pmol and 1 nmol) alone into the l/dlPAG reduced baseline Tco without affecting activity, HR, or MAP. Similar injection of a dose that failed to alter baseline Tco (100 pmol) suppressed the increases in Tco evoked from the DMH and significantly attenuated DMH-induced increases in locomotor activity. Whereas microinjection of 1 nmol muscimol into the ldlPAG abolished the increases in Tco evoked from the DMH and in fact lowered body temperature to a degree similar to that seen after this dose of muscimol alone, 1 nmol muscimol at adjacent sites outside the targeted region of the PAG had no significant effect on DMH-induced increases in Tco or any other parameter. These results indicate a role for neuronal activity in the l/dlPAG in (1) the temperature and behavioral responses to disinhibition of neurons in the DMH, and (2) the maintenance of basal body temperature in conscious freely moving rats.
Collapse
|
6
|
Veening JG, Coolen LM, de Jong TR, Joosten HW, de Boer SF, Koolhaas JM, Olivier B. Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. Eur J Pharmacol 2005; 526:226-39. [PMID: 16263109 DOI: 10.1016/j.ejphar.2005.09.041] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 09/23/2005] [Indexed: 11/15/2022]
Abstract
It is a common belief that male aggressive and sexual behaviour share many of the underlying neurobiological, neurological, pharmacological and neuroendocrine mechanisms. Therefore, we studied brain activation patterns in male rat after performance of aggressive and sexual behaviour and compared serotonergic pharmacology in the same paradigms to delineate possible similarities and differences. Patterns of Fos-immunoreactivity induced by aggressive and sexual encounters of Wild-type male Brown Norway rats were studied to localise the commonly activated (functionally shared) parts of the circuitry, and the specific (functionally different) parts of the neuronal circuitry. Some brain areas (caudal medial preoptic area and medial amygdala) were commonly activated, but other areas (e.g. posterodorsal parts of the medial amygdala, rostral preoptic and premammillary hypothalamus) showed remarkably specific differences in neural activation. 5-HT(1A) receptor agonists inhibit aggressive, but stimulate male sexual behaviour, whereas 5-HT(1B) receptor agonists inhibit both types of behaviour. Selective serotonin reuptake inhibitors share comparable inhibitory effects in aggression and sexual behaviour, although only at relatively high doses. We propose that separate hard-wired neural systems exist in the brain for aggressive and sexual behaviours, modulated via hierarchically 'higher-level' brain areas that are involved in the integration (gating) of the behavioural outcome of an organism.
Collapse
Affiliation(s)
- Jan G Veening
- Department of Anatomy, University Medical Center St Radboud, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Morato GS, Ortiga RM, Ferreira VMM. Involvement of nitric oxide-dependent pathways of dorsolateral periaqueductal gray in the effects of ethanol in rats submitted to the elevated plus-maze test. Behav Brain Res 2004; 153:341-9. [PMID: 15265628 DOI: 10.1016/j.bbr.2003.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Revised: 12/10/2003] [Accepted: 12/12/2003] [Indexed: 11/18/2022]
Abstract
Our previous study showed the microinjection of drugs that influence the nitric oxide (NO)-mediated neurotransmission in the hippocampus impacts upon the anxiolytic-like effect of ethanol. In this study, we examined whether NO-dependent pathways of the dorsolateral periaqueductal gray (dlPAG) participate in the anxiolytic effect of ethanol in rats submitted to the elevated plus-maze test. We evaluated the impact on ethanol effects of the nitric oxide synthase (NOS) inhibitor 7-nitroindazole, the soluble guanylate cyclase inhibitor 1H-(1,2,4)-oxodiazolo (4,3-a) quinoxalin-1-one (ODQ), the cyclic guanylate monophosphate (cGMP) analogue 8-bromo-cGMP and the NO donor sodium nitroprusside. The results showed that ODQ and 7-nitroindazole increased the percentage of open arm entries and of time spent on open arms in the elevated plus maze in rats injected with ethanol at 1.0g/kg, a dose that did not produce anxiolysis per se. Conversely, 8-bromo-cGMP and sodium nitroprusside blocked the increased exploration of open arms exhibited by rats treated with a higher dose of ethanol (1.2g/kg). Taken together, the results suggest that the inhibition of NO-dependent pathways of the dlPAG enhances the anxiolytic effect of ethanol, whereas the activation of these pathways results in an opposite effect.
Collapse
Affiliation(s)
- Gina Struffaldi Morato
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil.
| | | | | |
Collapse
|
8
|
Rueter LE, Meyer MD, Decker MW. Spinal mechanisms underlying A-85380-induced effects on acute thermal pain. Brain Res 2000; 872:93-101. [PMID: 10924680 DOI: 10.1016/s0006-8993(00)02472-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Systemic administration of nicotinic receptor (nAChR) agonists is antinociceptive in models of acute pain whereas their intrathecal (i. t.) administration has been reported to be antinociceptive, nociceptive or without effect. It has been hypothesized that the action induced is dependent upon the subtype and location of the nAChR activated. In addition, there is considerable evidence that nAChR ligand-induced antinociception is mediated by other neurotransmitter systems via descending pathways from the brainstem to the spinal cord. The present study investigated the effects of i. t. and systemic administration of A-85380, a novel nAChR agonist, in the paw withdrawal model of acute thermal pain in the rat. Given i.t. , A-85380 (1 and 10 nmol/rat) decreased the latency to paw withdrawal by 2-4 s. This pronociception was accompanied by a spontaneous flinching behavior. Both of these effects were differentially blocked by i.t. pretreatment with the nAChR antagonists mecamylamine (10 nmol)>MLA (100 nmol)>DHbetaE (50% with 1000 nmol) but not by alpha-bungarotoxin (0% at 0.63 nmol). Given systemically, A-85380 (0.56 micromol/kg, i.p.) induced antinociception as indicated by an increased latency to paw withdrawal, an effect differentially altered by i.t. pretreatment with monoaminergic antagonists (100 nmol/rat). While mecamylamine and prazosin had no effect, scopolamine, methysergide and MDL 72222 partially antagonized and idazoxan completely antagonized A-85380-induced antinociception. Finally, as measured by in vivo microdialysis, levels of 5-HT, but not NE, in the i.t. space of the lumber region of the spinal cord were significantly increased following the systemic administration of A-85380. Together these data suggest that the nociceptive properties of spinally administered nAChR agents are not mediated by either an alpha(4)beta(2) or an alpha(7) subtype nAChR, whereas the antinociceptive properties of systemically-administered nAChR agents are mediated by descending noradrenergic, serotonergic and muscarinic inhibitory pathways.
Collapse
Affiliation(s)
- L E Rueter
- Abbott Laboratories, D47W, AP9A, 100 Abbott Park Road, Abbott Park, IL 60064-6115, USA.
| | | | | |
Collapse
|
9
|
Schenberg LC, Marçal LP, Seeberger F, Barros MR, Sudré EC. L-type calcium channels selectively control the defensive behaviors induced by electrical stimulation of dorsal periaqueductal gray and overlying collicular layers. Behav Brain Res 2000; 111:175-85. [PMID: 10840143 DOI: 10.1016/s0166-4328(00)00154-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study reports the involvement of L-type calcium channels in the control of defensive behaviors produced by electrical stimulation of dorsal periaqueductal gray and overlying collicular layers. Rats that had chemitrodes in the dorsal midbrain and which stimulation produced freezing or flight behaviors with less than 55 microA were selected for drug experiments. Stimulation was repeated the day after the screening session 20 min following the microinjection into the dorsal periaqueductal gray of 15 nmol of either verapamil, a selective L-type calcium channel antagonist, or cobalt chloride (CoCl(2)), a calcium-specific channel modulator. Post-drug sessions were performed 48 h after. Threshold functions were obtained by logistic fitting of accumulated response frequencies. Verapamil and CoCl(2) significantly attenuated the output of immobility, exophthalmus, running and jumping. Although to a lesser degree, verapamil also attenuated defecation. Because CoCl(2) had no effect on defecation, the attenuation of this response by verapamil suggests a non-specific action of this drug. Neither verapamil nor CoCl(2) changed the output of micturition. Finally, whereas there was a complete recovery of defensive thresholds following the microinjection of verapamil, the attenuating effects of CoCl(2) were still present 48 h after. These results support an important role of L-type calcium channels in the neurogenesis of dorsal periaqueductal gray-evoked immobility, exophthalmus, running and jumping, but not defecation and micturition responses.
Collapse
Affiliation(s)
- L C Schenberg
- Department of Physiological Sciences, Biomedical Center, Laboratory of Neurobiology, Federal University of Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29040-090, ES, Vitória, Brazil.
| | | | | | | | | |
Collapse
|
10
|
De Souza MM, Schenberg LC, de Pádua Carobrez A. NMDA-coupled periaqueductal gray glycine receptors modulate anxioselective drug effects on plus-maze performance. Behav Brain Res 1998; 90:157-65. [PMID: 9521547 DOI: 10.1016/s0166-4328(97)00093-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study was carried out to investigate a possible interaction between the effects of anxiety modulating drugs which act at the GABA-A receptor complex and selective N-methyl-D-aspartic acid (NMDA) coupled glycine receptor (GLY-B receptor) ligands within the dorsal periaqueductal gray (DPAG). The plus-maze performance of rats pretreated with diazepam (0.37 and 0.75 mg/kg, i.p.) or pentylenetetrazole (15 and 30 mg/kg, i.p.), standard anxiolytic and anxiogenic drugs respectively, was assessed following intra-periaqueductal injections of either glycine (0.2 M, 0.4 microl/30 s, i.c.) or its competitive antagonist, 7-chlorokynurenic acid (7ClKYN, 0.02 M, 0.4 microl/30 s, i.c.). Whilst diazepam produced a typical anxiolytic effect in intracranially-injected CSF rats, increasing open arm exploration, pentylenetetrazole displayed an opposite anxiogenic profile. Either anxiogenic or anxiolytic effects were seen in peripherally-injected vehicle rats following intra-periaqueductal injections of glycine or 7ClKYN, respectively. Intra-periaqueductal injection of glycine markedly attenuated the anxiolytic effect of diazepam. Moreover, while the anxiogenic effects of pentylenetetrazole were barely changed by glycine, they were markedly attenuated by intra-periaqueductal injection of 7ClKYN. Interaction of diazepam and 7ClKYN produced non-selective sedative-like effects which masked any possible anxiolytic action. Accordingly, the present results suggest that the NMDA-coupled glycine receptors located in the DPAG interfere with anxioselective effects of GABA-A acting drugs on the elevated plus-maze. In spite of the prevailing notion that the NMDA coupled glycine receptor is saturated at in vivo brain concentrations of glycine, our results also suggest that either unoccupied or low-affinity GLY-B receptors are likely to be activated by glycine injection into DPAG.
Collapse
Affiliation(s)
- M M De Souza
- Departamento de Farmacologia/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
11
|
Strzelczuk M, Romaniuk A. Fear induced by the blockade of GABAA-ergic transmission in the hypothalamus of the cat: behavioral and neurochemical study. Behav Brain Res 1995; 72:63-71. [PMID: 8788858 DOI: 10.1016/0166-4328(96)00054-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intrahypothalamic injections of d-Tubocurarine (DT) and bicuculline (BM) in the cat produced a fear reaction characterized by terrific mewing, increased locomotor activity, jumps and attempt to escape from the chamber, pupillary dilatation, increased respiratory rate, and sometimes urination and defecation. HPLC analysis showed a significant increase in the noradrenergic system activity in the emotional brain areas (hypothalamus, midbrain, amygdala) and frontal cortex at the time of the fear drive. No changes in the cat's behavior and in the monoaminergic systems activity occurred after muscimol+d-Tubocurarine injections into the hypothalamus. Similar behavioral and neurochemical effects evoked by DT and BM suggest that the fear response evoked by DT does not result from the blockade of N-cholinergic transmission but rather from their action on GABAA receptor complex. The results obtained indicate that the central triggering mechanism for fear drive depends on the blockade of GABAA-ergic transmission.
Collapse
Affiliation(s)
- M Strzelczuk
- Department of Neurophysiology, University of Lódź, Poland
| | | |
Collapse
|
12
|
Lu CL, Jürgens U. Effects of chemical stimulation in the periaqueductal gray on vocalization in the squirrel monkey. Brain Res Bull 1993; 32:143-51. [PMID: 8102315 DOI: 10.1016/0361-9230(93)90068-m] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Twenty-nine agonists and 32 antagonists of more than 10 transmitters known to be present in the periaqueductal gray (PAG) have been injected into the squirrel monkey's PAG in order to test their effects on spontaneous vocalization at sites yielding vocalization with electrical stimulation. Vocalization could be elicited with the glutamate agonists sodium-L-glutamate, L-aspartic acid, L-homocysteic acid, N-methyl-D-aspartic acid, quisqualic acid, and kainic acid, the cholinergic agonists acetylcholine, carbachol, and muscarine, the monoaminergic agonist histamine, and the GABA antagonists bicuculline and picrotoxin. No vocalizations could be obtained with agonists of dopamine, noradrenaline, adrenaline, serotonin, GABA, glycine, nicotinic receptors, and endogenous opioids, as well as with antagonists of glutamate, acetylcholine, dopamine, noradrenaline, adrenaline, serotonin, histamine, glycine, GABA-B, delta- and mu-receptors. Blocking of spontaneous vocalization was obtained with the nonspecific glutamate antagonist kynurenic acid and the GABA-A receptor agonist muscimol. The results indicate that the production of vocalization depends upon the activation of glutamatergic synapses in the PAG. GABAergic afferents seem to have a tonic inhibitory control on the periaqueductal vocalization mechanism, while acetylcholine and histamine seem to exert only a transient modulatory control.
Collapse
Affiliation(s)
- C L Lu
- Second Military Medical College, Shanghai, P.R. China
| | | |
Collapse
|
13
|
Weiner S, Shaikh MB, Shaikh AB, Siegel A. Enkephalinergic involvement in periaqueductal gray control of hypothalamically elicited predatory attack in the cat. Physiol Behav 1991; 49:1099-105. [PMID: 1654570 DOI: 10.1016/0031-9384(91)90337-n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of central infusion of naloxone into the midbrain periaqueductal gray (PAG) upon predatory attack behavior in the cat were studied in 12 cats. Initially, quiet biting attack was elicited by electrical stimulation of sites within the lateral hypothalamus using monopolar electrodes. Then cannula-electrodes were implanted into sites within the PAG from which electrical stimulation facilitated or suppressed the attack response. Following identification of modulatory sites within the PAG, naloxone (1.0 micrograms/0.5 microliter) was microinjected into those sites and the effects upon hypothalamically elicited attack were assessed. At nine of twelve sites in the PAG where suppression was obtained, administration of naloxone served to block those effects. Similarly, at six of eight facilitatory sites within the PAG, naloxone also blocked the modulatory effects of PAG stimulation. However, vehicle (isotonic saline) alone did not alter the modulatory effects of PAG stimulation. Administration of DAME (250 ng/0.3 microliter) into PAG modulatory sites in four cats, two which facilitated and two that suppressed the attack response, reversed the effects of naloxone at these sites. These results demonstrate that opioid peptides within the PAG play a complex role in the expression of predatory attack behavior in the cat.
Collapse
Affiliation(s)
- S Weiner
- Department of Prosthodontics, University of Medicine and Dentistry of New Jersey, Newark
| | | | | | | |
Collapse
|
14
|
Shaikh MB, Siegel A. GABA-mediated regulation of feline aggression elicited from midbrain periaqueductal gray. Brain Res 1990; 507:51-6. [PMID: 2302579 DOI: 10.1016/0006-8993(90)90521-c] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The midbrain periaqueductal gray (PAG) is now recognized as a critical structure for the initiation and regulation of aggressive behavior in the cat. The PAG is also known to be rich in gamma-aminobutyric acid (GABA) receptors. In the present study, we sought to examine the possible role of this putative neurotransmitter in the modulation of affective defense and quiet biting attack behavior elicited by electrical stimulation of the PAG. Cannula-electrodes were employed for electrical stimulation as well as for microinjections of a GABA agonist (muscimol: 3, 12 and 22 pmol/0.25 microliters) and GABA antagonist (bicuculline: 22 and 68 pmol/0.25 microliters). After establishing predrug response threshold values for affective defense and quiet biting attack, these drugs were microinjected into the PAG sites from which these responses were elicited. Microinjections of muscimol (12 and 22 pmol) significantly suppressed the affective defense response in a dose- and time-dependent manner. Pretreatment with bicuculline (68 pmol) blocked the suppressive effects of muscimol (12 pmol) upon affective defense behavior. In contrast, this dose of muscimol failed to alter the response threshold for quiet biting attack behavior. Microinjections of vehicle alone (0.25 microliter of saline, pH = 7.4) did not modify the thresholds for either of these responses. These results indicate that, at the level of the PAG, GABA-ergic mechanisms are selectively involved in the regulation of affective defense behavior in the cat.
Collapse
Affiliation(s)
- M B Shaikh
- Department of Neurosciences, New Jersey Medical School, Newark 07103
| | | |
Collapse
|
15
|
Jacquet YF, Squires RF. Excitatory amino acids: role in morphine excitation in rat periaqueductal gray. Behav Brain Res 1988; 31:85-8. [PMID: 2852493 DOI: 10.1016/0166-4328(88)90161-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Morphine was previously found to elicit an explosive excitatory behavior following its injection at a high dose in the rat periaqueductal gray (PAG). This non-naloxone reversible excitatory action of morphine was mimicked by the GABAA receptor antagonist, bicuculline, suggesting that morphine excitation was due in part to GABAA receptor blockade. In this paper, we report that injections of the excitatory amino acid (EAA) analogues, N-methyl-D-aspartate (NMDA), quisqualate (Q) or kainate (K) in the rat PAG resulted in similar (but not identical) behaviors. The excitatory actions of morphine or of NMDA (but not Q or K) were blocked or attenuated by the NMDA receptor antagonist, 2-amino-7-phosphonoheptanoate. These results show that both GABAA receptors as well as receptors for the EAAs may contribute to the excitatory actions of morphine in the PAG, and suggest that GABA may normally function to counterbalance a tonic excitatory influence of the EAAs.
Collapse
Affiliation(s)
- Y F Jacquet
- Nathan Kline Institute, Orangeburg, NY 10962
| | | |
Collapse
|
16
|
Shaikh MB, Shaikh AB, Siegel A. Opioid peptides within the midbrain periaqueductal gray suppress affective defense behavior in the cat. Peptides 1988; 9:999-1004. [PMID: 3244568 DOI: 10.1016/0196-9781(88)90080-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of the methionine-enkephalin analog [D-Ala2-Met5]-enkephalinamide (DAME) upon the threshold for affective defense behavior were determined following microinjections placed into midbrain periaqueductal gray sites from which this response was elicited. Affective defense behavior was elicited by electrical stimulation through a cannula electrode situated in the dorsal aspect of the midbrain periaqueductal gray. Dose-response curves characterizing the effects of DAME upon affective defense behavior were determined utilizing the following doses: 0.25, 0.5 and 1.0 microgram in 0.5 microliter saline, pH = 7.4 or vehicle control (saline). Response thresholds were tested 10-30, 30-60, 60-90, 120-150, 180-210, 1440-1470 and 2880-2910 min postinjection. The results obtained indicated that injections of DAME at a dose of 1.0 microgram/0.5 microliter produced significant, long duration elevations in affective defense thresholds, lasting up to 1440-1470 min postinjection. Lower doses of DAME (0.25 and 0.5 microgram/0.5 microliter) also resulted in significant increases in affective defense thresholds, but these effects were of shorter durations (60-90 and 120-150 min) postinjection, respectively. The suppressive effects of DAME were blocked when animals were pretreated with naloxone (10 micrograms/0.5 microliter) microinjected into the same midbrain periaqueductal gray site into which 0.25 microgram DAME was injected and affective defense behavior was elicited.
Collapse
Affiliation(s)
- M B Shaikh
- Department of Neurosciences, New Jersey Medical School, Newark 07103
| | | | | |
Collapse
|