1
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
2
|
Nadel L. Some implications of postnatal hippocampal development. Hippocampus 2021; 32:98-107. [PMID: 34133050 DOI: 10.1002/hipo.23369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 11/09/2022]
Abstract
It is well established that in most species, the hippocampus shows extensive postnatal development. This delayed maturation has a number of implications, which can be thought of in three categories. First, the late maturation has the direct effect of depriving the developing organism of at least some of the functions of the hippocampus, in particular place learning, context coding and in humans, episodic memory. Second, such learning that does occur very early in life, prior to hippocampal maturation, will largely bear the imprint and properties of those brain systems that, unlike the hippocampus, are fully functional early in life. Third, the active state of development of hippocampus in the first weeks and months of life render this structure susceptible to disruption by environmental and/or chromosomal factors. In this article, I discuss my efforts, with many colleagues over the past 40 years, to understand each of these implications.
Collapse
Affiliation(s)
- Lynn Nadel
- Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
3
|
Zhou G, Olofsson JK, Koubeissi MZ, Menelaou G, Rosenow J, Schuele SU, Xu P, Voss JL, Lane G, Zelano C. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog Neurobiol 2021; 201:102027. [PMID: 33640412 DOI: 10.1016/j.pneurobio.2021.102027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden; Emotional Brain Institute, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China; Guangdong-Hong Kong-Macao Greater Bay Area Research Institute for Neuroscience and Neurotechnologies, Kwun Tong, Hong Kong, China
| | - Joel L Voss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Edgin JO, Liu Y, Hughes K, Spanò G, Clark CAC. The "eyes have it," but when in development?: The importance of a developmental perspective in our understanding of behavioral memory formation and the hippocampus. Hippocampus 2019; 30:815-828. [PMID: 31465140 DOI: 10.1002/hipo.23149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/11/2022]
Abstract
Lynn Nadel has been a trailblazer in memory research for decades. In just one example, Nadel and Zola-Morgan [Infantile amnesia, In Infant memory, Springer, Boston, MA, 1984, pp. 145-172] were the first to present the provocative notion that the extended development of the hippocampus may underlie the period of infantile amnesia. In this special issue of Hippocampus to honor Lynn Nadel, we review some of his major contributions to the field of memory development, with an emphasis on his observations that behavioral memory assessments follow an uneven, yet protracted developmental course. We present data emphasizing this point from memory-related eye movements [Hannula & Ranganath, Neuron, 2009, 63(5), 592-599]. Eye tracking is a sensitive behavioral measure, allowing for an indication of memory function even without overt responses, which is seemingly ideal for the investigation of memory in early childhood or in other nonverbal populations. However, the behavioral manifestation of these eye movements follows a U-shaped trajectory-and one that must be understood before these indictors could be broadly used as a marker of memory. We examine the change in preferential looking time to target stimuli in school-aged children and adults, and compare these eye movement responses to explicit recall measures. Our findings indicate change in the nature and timing of these eye movements in older children, causing us to question how 6-month-old infants may produce eye movements that initially appear to have the same properties as those measured in adulthood. We discuss these findings in the context of our current understanding of memory development, particularly the period of infantile amnesia.
Collapse
Affiliation(s)
- Jamie O Edgin
- Department of Psychology, University of Arizona, Tucson, Arizona
| | - Yating Liu
- Department of Psychology, University of Arizona, Tucson, Arizona
| | - Katharine Hughes
- Department of Psychology, University of Arizona, Tucson, Arizona
| | - Goffredina Spanò
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caron A C Clark
- Department of Educational Psychology, University of Nebraska, Lincoln, Nebraska
| |
Collapse
|
5
|
Orso R, Creutzberg KC, Wearick-Silva LE, Wendt Viola T, Tractenberg SG, Benetti F, Grassi-Oliveira R. How Early Life Stress Impact Maternal Care: A Systematic Review of Rodent Studies. Front Behav Neurosci 2019; 13:197. [PMID: 31555106 PMCID: PMC6724664 DOI: 10.3389/fnbeh.2019.00197] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Maternal care refers to the behavior performed by the dam to nourish and protect her litter during its early development. Frequent and high-quality performance of such maternal behaviors is critical for the neurodevelopment of the pups. Maternal exposure to stress during early development can impair maternal care and amplify the deleterious effects of poor maternal caregiving and neglect. As such, a thorough understanding of the effects caused by several models of early life stress on maternal care may yield more insights into the relationship between stress and maternal behavior. Methods: A systematic review was performed to identify and address the effects of early life stress on maternal behavior. The search was conducted using three online databases: PUBMED, Embase, and Web of Science. To provide clear evidence of the impact of stress on maternal care, in every study, the stress group was always compared to a control group. Outcomes were categorized into eight different behaviors: (1) licking/grooming; (2) arched-back nursing; (3) blanket-nursing/passive nursing; (4) nest building; (5) contact with pups; (6) harmful/adverse caregiving; (7) no contact; (8) nest exits. Additionally, the methodological quality of the studies was evaluated. Results: A total of 12 different early life stress protocols were identified from the 56 studies included in this systematic review. Our data demonstrate that different stress models can promote specific maternal patterns of behavior. Regarding the maternal separation protocol, we observed an overall increase in nursing and licking/grooming behaviors, which are essential for pup development. An increase in the number of nest exits, which represents a fragmentation of maternal care, was observed in the limited bedding protocol, but the total amount of maternal care appears to remain similar between groups. Conclusions: Each stress protocol has unique characteristics that increase the difficulty of rendering comparisons of maternal behavior. The increase in maternal care observed in the maternal separation protocol may be an attempt to overcompensate for the time off-nest. Fragmented maternal care is a key component of the limited bedding protocol. Moreover, the methodological approaches to evaluate maternal behavior, such as time, duration, and behavior type should be more homogeneous across studies.
Collapse
Affiliation(s)
- Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Brain Institute (Instituto do Cérebro), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Kerstin Camile Creutzberg
- Developmental Cognitive Neuroscience Lab (DCNL), School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Brain Institute (Instituto do Cérebro), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Brain Institute (Instituto do Cérebro), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab (DCNL), School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Brain Institute (Instituto do Cérebro), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Brain Institute (Instituto do Cérebro), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fernando Benetti
- Laboratório de Neurofisiologia Cognitiva e do Desenvolvimento, Department of Physiology, Instituto de Ciências Básicas da Saúde, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Brain Institute (Instituto do Cérebro), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
6
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
7
|
Río-Ȧlamos C, Oliveras I, Cañete T, Blázquez G, Martínez-Membrives E, Tobeña A, Fernández-Teruel A. Neonatal handling decreases unconditioned anxiety, conditioned fear, and improves two-way avoidance acquisition: a study with the inbred Roman high (RHA-I)- and low-avoidance (RLA-I) rats of both sexes. Front Behav Neurosci 2015. [PMID: 26217201 PMCID: PMC4498386 DOI: 10.3389/fnbeh.2015.00174] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The present study evaluated the long-lasting effects of neonatal handling (NH; administered during the first 21 days of life) on unlearned and learned anxiety-related responses in inbred Roman High- (RHA-I) and Low-avoidance (RLA-I) rats. To this aim, untreated and neonatally-handled RHA-I and RLA-I rats of both sexes were tested in the following tests/tasks: a novel object exploration (NOE) test, the elevated zero maze (ZM) test, a “baseline acoustic startle” (BAS) test, a “context-conditioned fear” (CCF) test and the acquisition of two-way active—shuttle box—avoidance (SHAV). RLA-I rats showed higher unconditioned (novel object exploration test -“NOE”-, elevated zero maze test -“ZM”-, BAS), and conditioned (CCF, SHAV) anxiety. NH increased exploration of the novel object in the NOE test as well as exploration of the open sections of the ZM test in both rat strains and sexes, although the effects were relatively more marked in the (high anxious) RLA-I strain and in females. NH did not affect BAS, but reduced CCF in both strains and sexes, and improved shuttle box avoidance acquisition especially in RLA-I (and particularly in females) and in female RHA-I rats. These are completely novel findings, which indicate that even some genetically-based anxiety/fear-related phenotypes can be significantly modulated by previous environmental experiences such as the NH manipulation.
Collapse
Affiliation(s)
- Cristóbal Río-Ȧlamos
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
| | - Ignasi Oliveras
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
| | - Gloria Blázquez
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
| | - Esther Martínez-Membrives
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, School of Medicine, Institute of Neurosciences, Autonomous University of Barcelona Barcelona, Spain
| |
Collapse
|
8
|
Salomon-Zimri S, Liraz O, Michaelson DM. Behavioral testing affects the phenotypic expression of APOE ε3 and APOE ε4 in targeted replacement mice and reduces the differences between them. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 1:127-35. [PMID: 27239500 PMCID: PMC4876887 DOI: 10.1016/j.dadm.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apolipoprotein E4 (APOE ε4) is the most prevalent genetic risk factor for Alzheimer's disease (AD). Targeted replacement mice that express either APOE ε4 or its AD benign isoform, APOE ε3, are used extensively in behavioral, biochemical, and physiological studies directed at assessing the phenotypic effects of APOE ε4 and at unraveling the mechanisms underlying them. Such experiments often involve pursuing biochemical and behavioral measurements on the same cohort of mice. In view of the possible cross-talk interactions between brain parameters and cognitive performance, we presently investigated the extent to which the phenotypic expression of APOE ε4 and APOE ε4 in targeted replacement mice is affected by behavioral testing. This was performed using young, naïve APOE ε4 and APOE ε3 mice in which the levels of distinct brain parameters are affected by the APOE genotype (e.g., elevated levels of amyloid beta [Aβ] and hyperphosphorylated tau and reduced levels of vesicular glutamate transporter (VGLUT) in hippocampal neurons of APOE ε4 mice). These mice were exposed to a fear-conditioning paradigm, and the resulting effects on the brain parameters were examined. The results obtained revealed that the levels of Aβ, hyperphosphorylated tau, VGluT, and doublecortin of the APOE ε4 and APOE ε3 mice were markedly affected following the exposure of APOE ε4 and APOE ε3 mice to the fear-conditioning paradigm such that the isoform-specific effects of APOE ε4 on these parameters were greatly diminished. The finding that behavioral testing affects the APOE ε3 and APOE ε4 phenotypes and masks the differences between them has important theoretical and practical implications and suggests that the assessment of brain and behavioral parameters should be performed using different cohorts.
Collapse
Affiliation(s)
- Shiran Salomon-Zimri
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Ori Liraz
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel-Aviv University, Israel
| | - Daniel M Michaelson
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, The Sagol School of Neuroscience, Tel-Aviv University, Israel
| |
Collapse
|
9
|
Melo AI. Role of sensory, social, and hormonal signals from the mother on the development of offspring. ADVANCES IN NEUROBIOLOGY 2014; 10:219-48. [PMID: 25287543 DOI: 10.1007/978-1-4939-1372-5_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
For mammals, sensory, social, and hormonal experience early in life is essential for the continuity of the infant's development. These experiences come from the mother through maternal care, and have enduring effects on the physiology and behavior of the adult organism. Disturbing the mother-offspring interaction by maternal deprivation (neglect) or exposure to adverse events as chronic stress, maltreatment, or sexual abuse has negative effects on the mental, psychological, physiological, and behavioral health. Indeed, these kinds of negative experiences can be the source of some neuropsychiatric diseases as depression, anxiety, impulsive aggression, and antisocial behavior. The purpose of this chapter is to review the most relevant evidence that supports the participation of cues from the mother and/or littermates during the postnatal preweaning period for the development of nervous system of the offspring. These findings come from the most frequently utilized experimental paradigms used in animal models, such as natural variations in maternal behavior, handling, partial maternal deprivation, and total maternal deprivation and artificial rearing. Through the use of these experimental procedures, it is possible to positively (handling paradigm), or negatively (maternal deprivation paradigms), affect the offspring's development. Finally, this chapter reviews the importance of the hormones that pups ingest through the maternal milk during early lactation on the development of several physiological systems, including the immune, endocrine systems, as well as on the adult behavior of the offspring.
Collapse
Affiliation(s)
- Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Laboratorio Tlaxcala, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico,
| |
Collapse
|
10
|
Hybrid vigour and maternal environment in mice. II. Water escape learning, open-field activity and spatial memory. Behav Processes 2014; 23:35-45. [PMID: 24923198 DOI: 10.1016/0376-6357(91)90104-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/1990] [Indexed: 11/22/2022]
Abstract
A combination of ovarian grafting and fostering was used to study the effects of pre- and postnatal maternal factors on adult behaviour. Inbred mice (BALB/c and C57BL/6) and F1 hybrids were compared to assess differential sensitivity to early maternal effects. In addition to the peculiar behavioural profile of BALB mice, results revealed the existence of a cognitive process in mice and confirmed the greater ability of F1 mice to adopt efficient escape strategies. Only postnatal maternal factors were shown to exert long lasting effects on behaviour, appearing to affect the general ability to react to a new situation rather than specific psychological functions. F1 hybrids proved less sensitive to such effects than inbred mice.
Collapse
|
11
|
Sale A, Berardi N, Maffei L. Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy. Physiol Rev 2014; 94:189-234. [DOI: 10.1152/physrev.00036.2012] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.
Collapse
Affiliation(s)
- Alessandro Sale
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Lamberto Maffei
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
12
|
Abstract
Fully-fledged affective systems in mature animals are in part the result of the impact of infantile experience on brain development. The present experimental series examines whether tactile stimulation in infancy (early handling) influences rough-and-tumble play (R&T) throughout the juvenile period, using a testing regime of 17 days divided into five parts where handled (H) and nonhandled (NH) Wistar rats are assessed daily. In Parts 1 and 2 (age range at the start: 30-33 days) the objective is to study the amount of R&T that the rats are capable of exhibiting under varying lengths of social deprivation. In Part 3 (37-40 days) the objective is to determine whether familiarity with the experimental situation has independent or interactive effects with early handling. In Part 4 (40-43 days) the objective is to obtain evidence of the suppressing effects of an unexpected contextual change. In Part 5 (56-59 days) the objective is to study whether the effects of early handling can still be present at an age when R&T has practically vanished in NH rats. Results show that early handling invigorates R&T affecting pins (i.e., the most rewarding component) at the expense of dorsal contacts by enhancing play motivation in a specific manner, and that it is able to dilate the inverted-U developmental curve of this behavior, thereby providing strong evidence for a direct effect on the neuropsychological systems for play motivation.
Collapse
Affiliation(s)
- Raúl Aguilar
- Facultad de Psicología, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
13
|
|
14
|
|
15
|
How does the physiology change with symptom exacerbation and remission in schizophrenia? Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
A cardinal principle for neuropsychology, with implications for schizophrenia and mania. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
|
26
|
|
27
|
|
28
|
|
29
|
|
30
|
Abstract
AbstractA model is proposed for integrating the neural and cognitive aspects of the positive symptoms of acute schizophrenia, using evidence from postmortem neuropathology and neurochemistry, clinical and preclinical studies of dopaminergic neurotransmission, anatomical connections between the limbic system and basal ganglia, attentional and other cognitive abnormalities underlying the positive symptoms of schizophrenia, specific animal models of some of these abnormalities, and previous attempts to model the cognitive functions of the septohippocampal system and the motor functions of the basal ganglia. Anatomically, the model emphasises the projections from the septohippocampal system, via the subiculum, and the amygdala to nucleus accumbens, and their interaction with the ascending dopaminergic projection to the accumbens. Psychologically, the model emphasises a failure in acute schizophrenia to integrate stored memories of past regularities of perceptual input with ongoing motor programs in the control of current perception. A number of recent experiments that offer support for the model are briefly described, including anatomical studies of limbic-striatal connections, studies in the rat of the effects of damage to these connections, and of the effects of amphetamine and neuroleptics, on the partial reinforcement extinction effect, latent inhibition and the Kamin blocking effect; and studies of the latter two phenomena in acute and chronic schizophrenics.
Collapse
|
31
|
|
32
|
|
33
|
|
34
|
A realistic model will be much more complex and will consider longitudinal neuropsychodevelopment. Behav Brain Sci 2011. [DOI: 10.1017/s0140525x00065286] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
|
36
|
|
37
|
|
38
|
McGowan PO, Suderman M, Sasaki A, Huang TCT, Hallett M, Meaney MJ, Szyf M. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 2011; 6:e14739. [PMID: 21386994 PMCID: PMC3046141 DOI: 10.1371/journal.pone.0014739] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/02/2011] [Indexed: 01/02/2023] Open
Abstract
Background Maternal care is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. In the rat, these effects are reversed by cross-fostering, demonstrating that they are defined by epigenetic rather than genetic processes. However, epigenetic changes at a single gene promoter are unlikely to account for the range of outcomes and the persistent change in expression of hundreds of additional genes in adult rats in response to differences in maternal care. Methodology/Principal Findings We examine here using high-density oligonucleotide array the state of DNA methylation, histone acetylation and gene expression in a 7 million base pair region of chromosome 18 containing the NR3C1 gene in the hippocampus of adult rats. Natural variations in maternal care are associated with coordinate epigenetic changes spanning over a hundred kilobase pairs. The adult offspring of high compared to low maternal care mothers show epigenetic changes in promoters, exons, and gene ends associated with higher transcriptional activity across many genes within the locus examined. Other genes in this region remain unchanged, indicating a clustered yet specific and patterned response. Interestingly, the chromosomal region containing the protocadherin-α, -β, and -γ (Pcdh) gene families implicated in synaptogenesis show the highest differential response to maternal care. Conclusions/Significance The results suggest for the first time that the epigenetic response to maternal care is coordinated in clusters across broad genomic areas. The data indicate that the epigenetic response to maternal care involves not only single candidate gene promoters but includes transcriptional and intragenic sequences, as well as those residing distantly from transcription start sites. These epigenetic and transcriptional profiles constitute the first tiling microarray data set exploring the relationship between epigenetic modifications and RNA expression in both protein coding and non-coding regions across a chromosomal locus in the mammalian brain.
Collapse
Affiliation(s)
- Patrick O. McGowan
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Centre for the Neurobiology of Stress, University of Toronto, Scarborough, Toronto, Ontario, Canada
- * E-mail: (PM) (PM); (MS) (MS)
| | - Matthew Suderman
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Aya Sasaki
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Centre for the Neurobiology of Stress, University of Toronto, Scarborough, Toronto, Ontario, Canada
| | - Tony C. T. Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Michael Hallett
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| | - Michael J. Meaney
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
- Experience-Based Brain and Biological Development Program of the Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Moshe Szyf
- Sackler Program for Epigenetics and Developmental Psychobiology at McGill University, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Experience-Based Brain and Biological Development Program of the Canadian Institute for Advanced Research, Toronto, Ontario, Canada
- * E-mail: (PM) (PM); (MS) (MS)
| |
Collapse
|
39
|
Walker C, Anand K, Plotsky PAULM. Development of the Hypothalamic‐Pituitary‐Adrenal Axis and the Stress Response. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
McCrory E, De Brito SA, Viding E. Research review: the neurobiology and genetics of maltreatment and adversity. J Child Psychol Psychiatry 2010; 51:1079-95. [PMID: 20546078 DOI: 10.1111/j.1469-7610.2010.02271.x] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The neurobiological mechanisms by which childhood maltreatment heightens vulnerability to psychopathology remain poorly understood. It is likely that a complex interaction between environmental experiences (including poor caregiving) and an individual's genetic make-up influence neurobiological development across infancy and childhood, which in turn sets the stage for a child's psychological and emotional development. This review provides a concise synopsis of those studies investigating the neurobiological and genetic factors associated with childhood maltreatment and adversity. We first provide an overview of the neuroendocrine findings, drawing from animal and human studies. These studies indicate an association between early adversity and atypical development of the hypothalamic-pituitary-adrenal (HPA) axis stress response, which can predispose to psychiatric vulnerability in adulthood. We then review the neuroimaging findings of structural and functional brain differences in children and adults who have experienced childhood maltreatment. These studies offer evidence of several structural differences associated with early stress, most notably in the corpus callosum in children and the hippocampus in adults; functional studies have reported atypical activation of several brain regions, including decreased activity of the prefrontal cortex. Next we consider studies that suggest that the effect of environmental adversity may be conditional on an individual's genotype. We also briefly consider the possible role that epigenetic mechanisms might play in mediating the impact of early adversity. Finally we consider several ways in which the neurobiological and genetic research may be relevant to clinical practice and intervention.
Collapse
Affiliation(s)
- Eamon McCrory
- University College London (UCL), London, UK The Anna Freud Centre, London, UK
| | | | | |
Collapse
|
41
|
Raineki C, Holman PJ, Debiec J, Bugg M, Beasley A, Sullivan RM. Functional emergence of the hippocampus in context fear learning in infant rats. Hippocampus 2010; 20:1037-46. [PMID: 19739248 PMCID: PMC2891848 DOI: 10.1002/hipo.20702] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hippocampus is a part of the limbic system and is important for the formation of associative memories, such as acquiring information about the context (e.g., the place where an experience occurred) during emotional learning (e.g., fear conditioning). Here, we assess whether the hippocampus is responsible for pups' newly emerging context learning. In all experiments, postnatal day (PN) 21 and PN24 rat pups received 10 pairings of odor-0.5 mA shock or control unpaired odor-shock, odor only, or shock only. Some pups were used for context, cue or odor avoidance tests, while the remaining pups were used for c-Fos immunohistochemistry to assess hippocampal activity during acquisition. Our results show that cue and odor avoidance learning were similar at both ages, while contextual fear learning and learning-associated hippocampal (CA1, CA3, and dentate gyrus) activity (c-Fos) only occurred in PN24 paired pups. To assess a causal relationship between the hippocampus and context conditioning, we infused muscimol into the hippocampus, which blocked acquisition of context fear learning in the PN24 pups. Muscimol or vehicle infusions did not affect cue learning or aversion to the odor at PN21 or PN24. The results suggest that the newly emerging contextual learning exhibited by PN24 pups is supported by the hippocampus.
Collapse
Affiliation(s)
- Charlis Raineki
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Early life influences on emotional reactivity: Evidence that social enrichment has greater effects than handling on anxiety-like behaviors, neuroendocrine responses to stress and central BDNF levels. Neurosci Biobehav Rev 2010; 34:808-20. [DOI: 10.1016/j.neubiorev.2010.02.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
|
43
|
Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J Neurosci 2008; 28:6037-45. [PMID: 18524909 DOI: 10.1523/jneurosci.0526-08.2008] [Citation(s) in RCA: 472] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Maternal licking and grooming (LG) in infancy influences stress responsiveness and cognitive performance in the offspring. We examined the effects of variation in the frequency of pup LG on morphological, electrophysiological, and behavioral aspects of hippocampal synaptic plasticity under basal and stress-like conditions. We found shorter dendritic branch length and lower spine density in CA1 cells from the adult offspring of low compared with high LG offspring. We also observed dramatic effects on long-term potentiation (LTP) depending on corticosterone treatment. Low LG offspring, in contrast to those of high LG mothers, displayed significantly impaired LTP under basal conditions but surprisingly a significantly enhanced LTP in response to high corticosterone in vitro. This enhanced plasticity under conditions that mimic those of a stressful event was apparent in vivo. Adult low LG offspring displayed enhanced memory relative to high LG offspring when tested in a hippocampal-dependent, contextual fear-conditioning paradigm. Hippocampal levels of glucocorticoid and mineralocorticoid receptors were reduced in low compared with high LG offspring. Such effects, as well as the differences in dendritic morphology, likely contribute to LTP differences under resting conditions, as well as to the maternal effects on synaptic plasticity and behavior in response to elevated corticosterone levels. These results suggest that maternal effects may modulate optimal cognitive functioning in environments varying in demand in later life, with offspring of high and low LG mothers showing enhanced learning under contexts of low and high stress, respectively.
Collapse
|
44
|
Hernandez PJ, Abel T. The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol Learn Mem 2008; 89:293-311. [PMID: 18053752 PMCID: PMC2745628 DOI: 10.1016/j.nlm.2007.09.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 09/30/2007] [Indexed: 12/30/2022]
Abstract
A major component of consolidation theory holds that protein synthesis is required to produce the synaptic modification needed for long-term memory storage. Protein synthesis inhibitors have played a pivotal role in the development of this theory. However, these commonly used drugs have unintended effects that have prompted some to reevaluate the role of protein synthesis in memory consolidation. Here we review the role of protein synthesis in memory formation as proposed by consolidation theory calling special attention to the controversy involving the non-specific effects of a group of protein synthesis inhibitors commonly used to study memory formation in vivo. We argue that molecular and genetic approaches that were subsequently applied to the problem of memory formation confirm the results of less selective pharmacological studies. Thus, to a certain extent, the debate over the role of protein synthesis in memory based on interpretational difficulties inherent to the use of protein synthesis inhibitors may be somewhat moot. We conclude by presenting avenues of research we believe will best provide answers to both long-standing and more recent questions facing field of learning and memory.
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Biology, University of Pennsylvania, 433 S. University Avenue, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
45
|
Zhang M, Cai JX. Neonatal tactile stimulation enhances spatial working memory, prefrontal long-term potentiation, and D1 receptor activation in adult rats. Neurobiol Learn Mem 2008; 89:397-406. [PMID: 18077190 DOI: 10.1016/j.nlm.2007.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 10/08/2007] [Accepted: 10/31/2007] [Indexed: 11/26/2022]
Abstract
Environmental stimuli during neonatal periods play an important role in the development of cognitive function. In this study, we examined the long-term effects of neonatal tactile stimulation (TS) on spatial working memory (SWM) and related mechanisms. We also investigated whether TS-induced effects could be counteracted by repeated short periods of maternal separation (MS). Wistar rat pups submitted to TS were handled and marked transiently per day during postnatal days 2-9 or 10-17. TS/MS pups were stimulated in the same way as TS pups and then individually separated from their mother for 1h/day. Their nontactile stimulated (NTS) siblings served as controls. In adulthood, TS and TS/MS rats showed better performance in two versions of the delayed alternation task and superior in vivo long-term potentiation of the hippocampo-prefrontal cortical pathway when compared with controls. Furthermore, there were more doses of A77636 (a selective dopamine D1 agonist) to significantly improve SWM performance in TS and TS/MS rats than in NTS rats, suggesting that activation of prefrontal D1 receptors in TS and TS/MS rats is more optimal for SWM function than in NTS rats. MS did not counteract TS-induced effects because no significant difference was found between TS/MS and TS animals. These data indicate that in early life, external tactile stimulation leads to long-term facilitative effects in SWM-related neural function.
Collapse
Affiliation(s)
- Ming Zhang
- Division of Brain and Behavior, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang East Road, Kunming, Yunnan 650223, China
| | | |
Collapse
|
46
|
Garoflos E, Stamatakis A, Pondiki S, Apostolou A, Philippidis H, Stylianopoulou F. Cellular mechanisms underlying the effect of a single exposure to neonatal handling on neurotrophin-3 in the brain of 1-day-old rats. Neuroscience 2007; 148:349-58. [PMID: 17683871 DOI: 10.1016/j.neuroscience.2007.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 06/13/2007] [Accepted: 06/18/2007] [Indexed: 11/16/2022]
Abstract
Neurotrophin-3 (NT-3) has an important role in brain development and is thus a good candidate molecule to be involved in the cellular mechanisms mediating the effects of early experiences on the brain. In the present work we employed the model of neonatal handling, which is known to affect the ability of the adult organism to respond to stressful stimuli, and determined its effects on NT-3 levels in the rat hippocampus and cortex 2, 4 and 8 h after handling on postnatal day 1. We also recorded maternal behavior during the 8 h following handling. At both the 4 and 8 h time-points there was an increase in NT-3 positive cells in field 1 of Ammon's horn (CA1 area of the hippocampus) and parietal cortex of the handled animals. In the parietal cortex NT-3 levels increased with time following handling: at 8 h there were more NT-3 positive cells than at 4 h. During the 4 h following the end of handling, handled pups were subject to more maternal licking, indicating that the more intense maternal care could underlie the handling-induced increase in NT-3. In the hippocampus, the handling induced increase in NT-3 was cancelled by inhibition of N-methyl-D-aspartate (NMDA), AMPA/kainate, or GABA-A receptors, as well as L-type voltage-gated Ca(2+) channels. It thus appears that neonatal handling activates these neurotransmitter receptors and channels, leading to increased intracellular Ca(2+) and increased NT-3 expression. NT-3 can then activate downstream effectors and exert its morphogenetic actions and thus imprint the effects of handling on the brain.
Collapse
Affiliation(s)
- E Garoflos
- Laboratory of Biology-Biochemistry, School of Health Sciences, University of Athens, Papadiamantopoulou 123, GR-11527, Athens, Greece
| | | | | | | | | | | |
Collapse
|
47
|
Verga M, Luzi F, Carenzi C. Effects of husbandry and management systems on physiology and behaviour of farmed and laboratory rabbits. Horm Behav 2007; 52:122-9. [PMID: 17482618 DOI: 10.1016/j.yhbeh.2007.03.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
The major issues regarding the welfare of both farmed and laboratory rabbits are reviewed, according to husbandry and management systems. The main stressors that can affect welfare and homeostatic responses in rabbits are also reviewed. An overview of the most widespread housing systems for both farmed and laboratory rabbits is presented. The main problems related to housing and management are identified, in particular those related to individual and group housing, space requirements and group size, as well as human-animal interaction. The effects of psychological and physical stressors on physiology and behaviour are illustrated through examples in various rearing conditions. Psychological stressors include social stress and fear, while physical stressors include environmental variables such as housing system and climatic factors, i.e. heat. Welfare indicators are identified that can be monitored to determine the effects of individual and environmental variables on the animals' possible coping strategies. Physiological indicators include the neuro-endocrine and psycho-neuro-immuno-endocrine measurements, while behavioural indicators include the behavioural repertoire and responses to behavioural tests. Some possible ways to enhance welfare are indicated, such as enrichment of the environment and improved handling procedures.
Collapse
Affiliation(s)
- Marina Verga
- Istituto di Zootecnica, Facoltà di Medicina Veterinaria, Università degli Studi di Milano, Via G. Celoria, 10, I 20133 Milano, Italy.
| | | | | |
Collapse
|
48
|
Pondiki S, Stamatakis A, Fragkouli A, Philippidis H, Stylianopoulou F. Effects of neonatal handling on the basal forebrain cholinergic system of adult male and female rats. Neuroscience 2006; 142:305-14. [PMID: 16905266 DOI: 10.1016/j.neuroscience.2006.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/14/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
Neonatal handling is an early experience which results in improved function of the hypothalamic-pituitary-adrenal axis, increased adaptability and coping as a response to stress, as well as better cognitive abilities. In the present study, we investigated the effect of neonatal handling on the basal forebrain cholinergic system, since this system is known to play an important role in cognitive processes. We report that neonatal handling results in increased number of choline-acetyl transferase immunopositive cells in the septum/diagonal band, in both sexes, while no such effect was observed in the other cholinergic nuclei, such as the magnocellular preoptic nucleus and the nucleus basalis of Meynert. In addition, neonatal handling resulted in increased M1 and M2 muscarinic receptor binding sites in the cingulate and piriform cortex of both male and female rats. A handling-induced increase in M1 muscarinic receptor binding sites was also observed in the CA3 and CA4 (fields 3 and 4 of Ammon's horn) areas of the hippocampus. Furthermore, a handling-induced increase in acetylcholinesterase staining was found only in the hippocampus of females. Our results thus show that neonatal handling acts in a sexually dimorphic manner on one of the cholinergic parameters, and has a beneficial effect on BFCS function, which could be related to the more efficient and adaptive stress response and the superior cognitive abilities of handled animals.
Collapse
Affiliation(s)
- S Pondiki
- Laboratory of Biology-Biochemistry, Faculty of Nursing, School of Health Sciences, University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
49
|
Ikeda T, Mishima K, Aoo N, Harada K, Liu AX, Egashira N, Iwasaki K, Fujiwara M, Ikenoue T. Rehabilitative training tasks improve spatial learning impairment in the water maze following hypoxic-ischemic insult in neonatal rats. Pediatr Res 2006; 59:61-5. [PMID: 16326986 DOI: 10.1203/01.pdr.0000190582.49589.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We recently reported that hypoxic-ischemic (HI) insult to the brain of 7-d-old rats resulted in a slowly progressive learning and memory disability, which started at around 5 wk after HI, a time frame that is representative of human adolescence. The purpose of the present study was to examine whether physical or mental exercises can prevent this late-onset, slowly progressing disability. Wistar rats were subjected to left carotid ligation followed by 2 h of hypoxic stress (8% O2 and 92% N(2) at 33 degrees C). Sham-control rats were subjected to the same procedure without ligation and hypoxic stress. Six weeks after the HI, the animals were divided into four groups: pretraining control, no training control, pretraining HI, and no training HI groups. We used the plus maze, eight-arm radial maze, and choice reaction time task as the rehabilitative training. Sixteen weeks after the HI, the water maze task was performed over 5 d to evaluate spatial learning ability; thereafter, cerebral morphology of the animals was examined. There were no differences in swimming length and latency between the pretraining control and no training control groups. Swimming length and latency in the pretraining HI group were significantly shorter and swifter than those in the no training HI group. The infarct areas on the left cerebral hemisphere were equivalent between pretraining HI and no training HI groups at each sectional slice. Rehabilitative training tasks prevented the neonatal HI-induced late-onset slowly progressive learning and memory disability.
Collapse
Affiliation(s)
- Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Miyazaki Medical College, University of Miyazaki, Kihara, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Garoflos E, Stamatakis A, Mantelas A, Philippidis H, Stylianopoulou F. Cellular mechanisms underlying an effect of “early handling” on pCREB and BDNF in the neonatal rat hippocampus. Brain Res 2005; 1052:187-95. [PMID: 16024004 DOI: 10.1016/j.brainres.2005.06.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 01/19/2023]
Abstract
Early experiences have long-term effects on brain function and behavior. However, the precise mechanisms involved still remain elusive. In an effort to address this issue, we employed the model of "early handling", which is known to affect the ability of the adult organism to respond to stressful stimuli, and determined its effects on hippocampal pCREB and BDNF 2, 4, and 8 h later. 8 h following "handling" on postnatal day 1, there was an increase in pCREB and BDNF positive cells in the hippocampus, a brain area which is a specific target of "handling". On the other hand, vehicle injection resulted in decreased pCREB and BDNF in both handled and non-handled animals 2 and 4 h later. The "handling"-induced increase of pCREB and BDNF was cancelled by inhibition of NMDA, AMPA/kainate, GABA-A, 5-HT1A or 5-HT2A/C receptors, as well as L-type voltage-gated Ca(2+) channels. It thus appears that "early handling" activates these neurotransmitter receptors, leading to increased intracellular Ca(2+), phosphorylation of the transcription factor CREB, and increased BDNF expression. BDNF can then exert its morphogenetic effects and thus "imprint" the effects of "handling" on the brain.
Collapse
Affiliation(s)
- Efstathios Garoflos
- Laboratory of Biology-Biochemistry, School of Health Sciences, University of Athens, Greece
| | | | | | | | | |
Collapse
|