1
|
Reyes-López M, Piña-Vázquez C, Pérez-Salazar E, de la Garza M. Endocytosis, signal transduction and proteolytic cleaving of human holotransferrin in Entamoeba histolytica. Int J Parasitol 2020; 50:959-967. [PMID: 32822678 DOI: 10.1016/j.ijpara.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/03/2020] [Accepted: 05/08/2020] [Indexed: 01/15/2023]
Abstract
Amoebiasis is a parasitic infection of the human large intestine caused by Entamoeba histolytica; this disease mainly affects people from developing countries. To survive, this primitive protozoan has a high demand for iron, and it uses host iron proteins upon invasion. Transferrin (Tf) is a plasma iron-binding protein that transports and delivers iron to all cells. Iron-loaded Tf (holoTf) in humans can support the proliferation of amoebae in vitro by binding to an amoebic TfR (EhTfR), and amoebae endocytose it inside clathrin-coated vesicles. In this study, it was found that EhTfR phosphorylation is required for human holoTf endocytosis by E. histolytica. Once this complex is endocytosed, human holoTf could be degraded with a nutritional purpose by cysteine proteases. HoloTf endocytosis initiates the activation of the mitogen-activated protein kinases (MAPKs) and focal adhesion kinase (FAK) pathways, which induce cell proliferation with phosphoinositide 3-kinase (PI-3 K) and Ca2+ involvement. In the first minutes after holoTf is endocytosed, several proteins are phosphorylated including transketolase, enolase, L-myo-inositol-1-phosphate synthase and phosphoglucomutase, which control carbohydrate metabolism, and heat shock protein-70. The study of these proteins and their signal transduction pathways could be useful for developing future therapies.
Collapse
Affiliation(s)
- Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Eduardo Pérez-Salazar
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. IPN 2508, Col. Zacatenco, CdMx 07360, Mexico.
| |
Collapse
|
2
|
Baumel-Alterzon S, Weber C, Guillén N, Ankri S. Identification of dihydropyrimidine dehydrogenase as a virulence factor essential for the survival of Entamoeba histolytica in glucose-poor environments. Cell Microbiol 2012; 15:130-44. [PMID: 23016994 DOI: 10.1111/cmi.12036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/11/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Abstract
Adaptation to nutritional changes is a key feature for successful survival of a pathogen within its host. The protozoan parasite Entamoeba histolytica normally colonizes the human colon and in rare occasions, this parasite spread to distant organs, such as the liver. E. histolytica obtains most of its energy from the fermentation of glucose into ethanol. In this study, we were intrigued to know how this parasite reacts to changes in glucose availability and we addressed this issue by performing a DNA microarray analysis of gene expression. Results show that parasites that were adapted to growth in absence of glucose increased their virulence and altered the transcription of several genes. One of these genes is the dihydropyrimidine dehydrogenase (DPD), which is involved in degradation of pyrimidines. We showed that this gene is crucial for the parasite's growth when the availability of glucose is limited. These data contribute to our understanding of the parasite's ability to survive in glucose-poor environments and reveal a new role for the DPD enzyme.
Collapse
Affiliation(s)
- Sharon Baumel-Alterzon
- Department of Molecular Microbiology, Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
3
|
Anaya-Velázquez F. Virulence of Entamoeba histolytica is upregulated by short-term glucose starvation. Future Microbiol 2011; 6:1395-8. [PMID: 22122437 DOI: 10.2217/fmb.11.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Tovy A, Hertz R, Siman-Tov R et al. Glucose starvation boosts Entamoeba histolytica virulence. PLoS Negl. Trop. Dis. 5(8), e1247 (2011). Intestinal parasites of the large intestine interact with bacteria and cell debris, and potentially with intestinal epithelium. Entamoeba histolytica lives in the colon and because of unknown reasons, trophozoites become invasive and also differentiate into cysts. In this article, Tovy and colleagues studied the effect of glucose on amoeba starvation for 12 h. In addition, they performed a quantitative proteomic analysis of control and glucose-starved trophozoites and examined the in vitro virulence of some E. histolytica mutants. They found that resistance to heat shock at 42°C, or to oxidative stress with 2.5 mM hydrogen peroxide, is similar in control amoebas or under glucose starvation; however, trophozoite mobility, adhesion to cells, cytopathic activity and hemolytic activity are augmented after the treatment. URE3-BP, KRiP1 and Lgl1 proteins are upregulated while virulence factors amoebapore A and cysteine proteinase A5 are downregulated by glucose starvation. These results suggest that glucose starvation upregulates in vitro E. histolytica virulence but amoebapore A and cysteine proteinase A5 are not essential for the virulence boosting by such treatment. Host nutrients, such as glucose, could regulate parasite in vivo virulence and differentiation.
Collapse
|
4
|
Segovia-Gamboa NC, Chávez-Munguía B, Medina-Flores Y, Cázares-Raga FE, Hernández-Ramírez VI, Martínez-Palomo A, Talamás-Rohana P. Entamoeba invadens, encystation process and enolase. Exp Parasitol 2010; 125:63-9. [PMID: 20045689 DOI: 10.1016/j.exppara.2009.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 11/25/2022]
Abstract
The reptilian parasite Entamoeba invadens is accepted as a model for the study of the Entamoeba encystation process. Here we describe the production and characterization of a mAb (B4F2), generated against a component of the E. invadens cyst wall. This mAb specifically recognizes a 48-kDa protein present in cytoplasmic vesicles of cells encysting for 24 h. In mature cysts (96 h), the antigen was detected on the cyst surface. By two-dimensional electrophoresis and mass spectrometry analysis, the B4F2 specific antigen was identified as enolase. Levels of enolase mRNA were increased in encysting cells and the B4F2 mAb was found to inhibit cyst formation. Therefore, these results strongly suggest a new role for enolase in E. invadens encystation, and the B4F2 mAb will be useful tool to study its role in the differentiation process.
Collapse
Affiliation(s)
- Norma Cristina Segovia-Gamboa
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, Zacatenco, 07360 Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
5
|
BILIC I, LEBERL M, HESS M. Identification and molecular characterization of numerous Histomonas meleagridis proteins using a cDNA library. Parasitology 2009; 136:379-91. [PMID: 19154645 PMCID: PMC2957082 DOI: 10.1017/s0031182008005477] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYHistomonas meleagridis is a protozoan parasite of various galliform birds causing a type of enterohepatitis termed histomonosis or 'blackhead disease'. Due to the ban of chemotherapeutic substances and an increase in free-range poultry production, histomonosis is currently a re-emerging disease. So far limited molecular knowledge is available. In the present work, mRNAs coding for antigenic proteins of H. meleagridis were identified. For this purpose, a cDNA expression library was constructed from a mono-eukaryotic culture of H. meleagridis. The library was screened with polyclonal rabbit serum raised against purified H. meleagridis trophozoites. Polyclonal rabbit serum specifically recognized the same major H. meleagridis antigens as chicken and turkey sera originating from animal trials, but displayed a significantly lower bacteria-dependent background signal. After 2 rounds of screening, a total of 95 positive clones were sequenced. Bioinformatics analyses were performed on nucleotide and deduced amino acid sequences, identifying 37 unique clones. Based on the homology to other protozoan parasites, mostly Trichomonas vaginalis, the clones were grouped according to functional aspects: structural proteins, possible surface proteins, oxygen reducing proteins, ribosomal proteins, protein kinases and various other intracellular proteins.
Collapse
Affiliation(s)
- I. BILIC
- Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M. LEBERL
- Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| | - M. HESS
- Clinic for Avian, Reptile and Fish Medicine, University of Veterinary Medicine, Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
6
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Riahi Y, Siman-Tov R, Ankri S. Molecular cloning, expression and characterization of a serine proteinase inhibitor gene from Entamoeba histolytica. Mol Biochem Parasitol 2004; 133:153-62. [PMID: 14698428 DOI: 10.1016/j.molbiopara.2003.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Serine proteinase inhibitors (serpins) are irreversible suicide inhibitors of proteinases that regulate a wide range of biological processes, including pathogen evasion of the host defence system. We report the cloning and characterization of a gene encoding a serpin from the protozoan parasite Entamoeba histolytica (Ehserp) that may function in this manner. The protein encoded by Ehserp contains 371 amino acids with a predicted mass of 42.6 kDa. Antibodies to a 42 kDa recombinant Ehserp react specifically with two bands of 42 and 49 kDa in trophozoite extracts. Ehserp has a cytoplasmic localization and is secreted by trophozoites incubated in the presence of mammalian cells, but not by resting trophozoites. A panel of mammalian serine proteinases was screened, but none of them was inhibited by the recombinant Ehserp. In contrast, the 49 kDa Ehserp present in the secretion product (SP) of activated macrophages interacted with human neutrophil cathepsin G to form a complex resistant to sodium dodecyl sulphate. We discuss the nature of the 42 and 49 kDa Ehserp and the possible roles that Ehserp may play in the survival of the parasite inside the host.
Collapse
Affiliation(s)
- Yael Riahi
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, POB 9649, 31096 Haifa, Israel
| | | | | |
Collapse
|
8
|
Hidalgo ME, Sánchez R, Pérez DG, Rodríguez MA, García J, Orozco E. Molecular characterization of the Entamoeba histolytica enolase gene and modelling of the predicted protein. FEMS Microbiol Lett 1997; 148:123-9. [PMID: 9084139 DOI: 10.1111/j.1574-6968.1997.tb10277.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Entamoeba histolytica obtains its energy mainly from glucose fermentation. Enzymes involved in this pathway could be potential targets for antiparasite drugs. Here we report the molecular characterization of the E. histolytica enolase gene (Ehenl-I), which in a single copy is located on the 1.6 Mb chromosome. It is transcribed into a 1.4 kb mRNA which starts 13 nucleotides upstream of the ATG start codon. The sequence TATAAG, at -31, interacted with nuclear proteins suggesting that it has a TATA box function. Protein modelling allowed us to identify a putative specific region that differs from human enolase and could be a good target for the design of novel drugs against E. histolytica.
Collapse
Affiliation(s)
- M E Hidalgo
- Departamento de Parología Experimental, Instituto Politécnico Nacional, México, D.F., Mexico
| | | | | | | | | | | |
Collapse
|