1
|
Patel KB, Bergmeier W, Fogelson AL. Modeling platelet P2Y 1/12 pathway to integrin activation. Biophys J 2025; 124:1618-1630. [PMID: 40200578 DOI: 10.1016/j.bpj.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/26/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025] Open
Abstract
Through experimental studies, many details of the pathway of integrin αIIbβ3 activation by ADP during the platelet aggregation process have been mapped out. ADP binds to two separate G protein-coupled receptors on platelet surfaces, leading to alterations in the regulation of the small GTPase RAP1. We seek to 1) gain insights into the relative contributions of both pathways to RAP1-mediated integrin activation and to 2) predict wild-type and mutated cell behavior in response to a continuous range of external agonist concentrations. To this end, we develop a dynamical systems model detailing the action of each protein in the two pathways up to the regulation of RAP1. We perform a parameter estimation using flow-cytometry data to determine a number of unknown rate constants. We then validate with already-published data; in particular, the model confirmed the effect of impaired P2Y1 receptor desensitization or reduced RASA3 expression on RAP1 activation. We then predict the effect of protein expression levels on integrin activation and show that components of the P2Y12 pathway are critical to the regulation of integrin. This model aids in our understanding of interindividual variability in platelet response to ADP and therapeutic P2Y12 inhibition. It also provides a more detailed view of platelet activation in the ongoing mathematical study of platelet aggregation.
Collapse
Affiliation(s)
- Keshav B Patel
- Department of Mathematics, University of Utah, Salt Lake City, Utah
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aaron L Fogelson
- Department of Mathematics, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
2
|
Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A. Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 2009; 48:307-43. [PMID: 19580826 DOI: 10.1016/j.plipres.2009.06.001] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phosphoinositides are lipids that are present in the cytoplasmic leaflet of a cell's plasma and internal membranes and play pivotal roles in the regulation of a wide variety of cellular processes. Phosphoinositides are molecularly diverse due to variable phosphorylation of the hydroxyl groups of their inositol rings. The rapid and reversible configuration of the seven known phosphoinositide species is controlled by a battery of phosphoinositide kinases and phosphoinositide phosphatases, which are thus critical for phosphoinositide isomer-specific localization and functions. Significantly, a given phosphoinositide generated by different isozymes of these phosphoinositide kinases and phosphatases can have different biological effects. In mammals, close to 50 genes encode the phosphoinositide kinases and phosphoinositide phosphatases that regulate phosphoinositide metabolism and thus allow cells to respond rapidly and effectively to ever-changing environmental cues. Understanding the distinct and overlapping functions of these phosphoinositide-metabolizing enzymes is important for our knowledge of both normal human physiology and the growing list of human diseases whose etiologies involve these proteins. This review summarizes the structural and biological properties of all the known mammalian phosphoinositide kinases and phosphoinositide phosphatases, as well as their associations with human disorders.
Collapse
Affiliation(s)
- Takehiko Sasaki
- Department of Pathology and Immunology, Akita University, Graduate School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | |
Collapse
|
3
|
Stace C, Manifava M, Delon C, Coadwell J, Cockcroft S, Ktistakis NT. PA binding of phosphatidylinositol 4-phosphate 5-kinase. ACTA ACUST UNITED AC 2007; 48:55-72. [PMID: 18167315 DOI: 10.1016/j.advenzreg.2007.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Catherine Stace
- Signalling Programme, Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | | | | | | | |
Collapse
|
4
|
Hsuan JJ, Minogue S, dos Santos M. Phosphoinositide 4- and 5-kinases and the cellular roles of phosphatidylinositol 4,5-bisphosphate. Adv Cancer Res 1998; 74:167-216. [PMID: 9561269 DOI: 10.1016/s0065-230x(08)60767-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J J Hsuan
- Ludwig Institute for Cancer Research, University College London Medical School, London, United Kingdom
| | | | | |
Collapse
|
5
|
Loijens JC, Boronenkov IV, Parker GJ, Anderson RA. The phosphatidylinositol 4-phosphate 5-kinase family. ADVANCES IN ENZYME REGULATION 1996; 36:115-40. [PMID: 8869744 DOI: 10.1016/0065-2571(95)00005-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The existence of a PIP5K family of enzymes has been suggested by Western blotting and purification of numerous PIP5Ks from various tissues and cell types. The erythrocyte has at least two PIP5Ks, named PIP5KI and PIP5KII, while the brain appears to have even more isoforms. The cloning of the first PIP5K, the PIP5KII alpha, is just the beginning of the molecular classification of this protein family. The PIP5KII alpha sequence has shown that these enzymes lack obvious homology to protein, sugar and other lipid kinases. The identification of two S. cerevisiae homologues, Mss4p and Fab1p, confirms that this family of kinases is widely distributed in eukaryotes. Not surprisingly, cloning experiments have identified additional isoforms. By cloning additional isoforms, insights into the structure and functions of this family of enzymes will be gained. One reason for a large family of PIP5Ks is that many forms of regulation and cellular functions have been ascribed to PIP5Ks, as summarized in Figure 10. Some of these functional links result from PtdIns[4,5]P2 being required for a given process, but the direct involvement of specific PIP5Ks is not well defined. Which PIP5K isoforms are regulated by a specific mechanism or are involved in a cellular process often is not clear. For example, which PIP5Ks produce PtdIns[4,5]P2 that is hydrolyzed by PLC or phosphorylated by the PI 3-kinase is not known. A few exceptions are PIP5KII not being able to phosphorylate PtdIns[4,5]P2 in native membranes, and PIP5KIs being stimulated by PtdA, required for secretion, and possibly regulated by G proteins of the Rho subfamily. The multiplicity of regulation and functions of each PIP5K isoform remains to be elucidated. Another factor governing the number of isoforms may be presence of multiple pools of polyphosphoinositides and the localizing of PIP5K function within cells. The polyphosphoinositides appear to be compartmentalized within cells and each pool appears to be sensitive to specific signals. These polyphosphoinositide pools may include those in the plasma membrane that are used by PLC, nuclear pools that appear to turn over separately from cytoplasmic pools and a small pool at sites of vesicle fusion with the plasma membrane. Each pool may be controlled by a specific PIP5K isoform. This would explain the diversity of PIP5K cellular roles. Another possibility is that the PIP5Ks are localized to certain areas of the cell by being part of a protein or proteolipid complex. Furthermore, the presence of PITP or PLC in the complex would potentially impart specificity and speed on the use of PtdIns[4]P and PtdIns[4,5]P2 because these lipids could be channeled quickly from one enzyme to the next. The concept of localized complexes containing particular PIP5K isoforms that control the composition of different polyphosphoinositide pools will likely be important as the family of PIP5K isoforms grows.
Collapse
Affiliation(s)
- J C Loijens
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | |
Collapse
|
6
|
Zhou K, Takegawa K, Emr SD, Firtel RA. A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development. Mol Cell Biol 1995; 15:5645-56. [PMID: 7565716 PMCID: PMC230815 DOI: 10.1128/mcb.15.10.5645] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Three groups of phosphatidylinositol (PI) kinases convert PI into PI(3)phosphate, PI(4)phosphate, PI(4,5) bisphosphate, and PI(3,4,5)trisphosphate. These phosphoinositides have been shown to function in vesicle-mediated protein sorting, and they serve as second-messenger signaling molecules for regulating cell growth. To further elucidate the mechanism of regulation and function of phosphoinositides, we cloned genes encoding five putative PI kinases from Dictyostelium discoideum. Database analysis indicates that D. discoideum PIK1 (DdPIK1), -2, and -3 are most closely related to the mammalian p110 PI 3-kinase, DdPIK5 is closest to the yeast Vps34p PI 3-kinase, and DdPIK4 is most homologous to PI 4-kinases. Together with other known PI kinases, a superfamily of PI kinase genes has been defined, with all of the encoded proteins sharing a common highly conserved catalytic core domain. DdPIK1, -2, and -3 may have redundant functions because disruption of any single gene had no effect on D. discoideum growth or development. However, strains in which both of the two most highly related genes, DdPIK1 and DdPIK2, were disrupted showed both growth and developmental defects, while double knockouts of DdPIK1 and DdPIK3 and DdPIK2 and DdPIK3 appear to be lethal. The delta Ddpik1 delta Ddpik2 null cells were smaller than wild-type cells and grew slowly both in association with bacteria and in axenic medium when attached to petri plates but were unable to grow in suspension in axenic medium. When delta Ddpik1 delta Ddpik2 null cells were plated for multicellular development, they formed aggregates having multiple tips and produced abnormal fruiting bodies. Antisense expression of DdPIK5 (a putative homolog of the Saccharomyces cerevisiae VPS34) led to a defect in the growth of D. discoideum cells on bacterial lawns and abnormal development. DdPIK5 complemented the temperature-sensitive growth defect of a Schizosaccharomyces pombe delta Svps34 mutant strain, suggesting DdPIK5 encodes a functional homolog of yeast Vps34p. These observations indicate that in D. discoideum, different PI kinases regulate distinct cellular processes, including cell growth, development, and protein trafficking.
Collapse
Affiliation(s)
- K Zhou
- Department of Biology, Howard Hughes Medical Institute, University of California, San Diego, La Jolla 92093-0634, USA
| | | | | | | |
Collapse
|
7
|
Divecha N, Truong O, Hsuan JJ, Hinchliffe KA, Irvine RF. The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem J 1995; 309 ( Pt 3):715-9. [PMID: 7639683 PMCID: PMC1135690 DOI: 10.1042/bj3090715] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study we describe the purification and sequencing of the C isoform of platelet PtdIns4P 5-kinase. Subsequently a cDNA was isolated from a human circulating-leucocyte library, which when sequenced was shown to contain all of the peptides identified in the purified protein. In addition, expression of this cDNA in bacteria led to the production of a protein which was recognized by specific monoclonal antibodies raised to the bovine brain enzyme [Brooksbank, Hutchings, Butcher, Irvine and Divecha (1993) Biochem. J. 291, 77-82] and also led to the appearance of PtdIns4P 5-kinase activity in the bacterial lysates. Interestingly, the cDNA showed no similarity to any of the previously cloned inositide kinases. A search of the DNA databases showed that two proteins from Saccharomyces cerevisiae shared close similarity to this enzyme, one of which, the mss4 gene product, has been implicated in the yeast inositol lipid pathway. These data suggest that the PtdIns4P 5-kinases are a new family of inositide kinases unrelated to the previously cloned phosphoinositide 3/4-kinases.
Collapse
Affiliation(s)
- N Divecha
- Department of Cell Signalling and Development, Babraham Institute, Cambridge, U.K
| | | | | | | | | |
Collapse
|
8
|
Fisher SK. Homologous and heterologous regulation of receptor-stimulated phosphoinositide hydrolysis. Eur J Pharmacol 1995; 288:231-50. [PMID: 7774668 DOI: 10.1016/0922-4106(95)90035-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Signal transduction at a diverse range of pharmacologically distinct receptors is effected by the enhanced turnover of inositol phospholipids, with the attendant formation of inositol 1,4,5-trisphosphate and diacylglycerol. Although considerable progress has been made in recent years towards the identification and characterization of the individual components of this pathway, much less is known of mechanisms that may underlie its regulation. In this review, evidence is presented for the potential regulation of inositol lipid turnover at the level of receptor, phosphoinositide-specific phospholipase C and substrate availability in response to either homologous or heterologous stimuli. Available data indicate that the extent of receptor-stimulated inositol lipid hydrolysis is regulated by multiple mechanisms that operate at different levels of the signal transduction pathway.
Collapse
Affiliation(s)
- S K Fisher
- Neuroscience Laboratory, University of Michigan, Ann Arbor 48104-1687, USA
| |
Collapse
|
9
|
Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78159-9] [Citation(s) in RCA: 319] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
Stephens L, Jackson TR, Hawkins PT. Activation of phosphatidylinositol 4,5-bisphosphate supply by agonists and non-hydrolysable GTP analogues. Biochem J 1993; 296 ( Pt 2):481-8. [PMID: 8257441 PMCID: PMC1137720 DOI: 10.1042/bj2960481] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PtdIns(4,5)P2 serves as a precursor of a diverse family of signalling molecules, including diacylglycerol (and hence phosphatidic acid), Ins(1,4,5)P3 [and hence Ins(1,3,4,5)P4] and PtdIns(3,4,5)P3. The production of these messengers can be activated by agonists, and therefore the rate of utilization of PtdIns(4,5)P2 can vary dramatically. Although cells can only meet these large changes in demand for PtdIns(4,5)P2 by increasing its synthesis and/or by continuously cycling it at a rate that exceeds its potential consumption (avoiding the need for a co-ordinated activation mechanism), no satisfactory explanation for how this is achieved in agonist-stimulated cells has yet been provided. We show here that, in streptolysin-O-permeabilized neutrophils, N-formylmethionyl-leucyl-phenylalanine (FMLP), platelet-activating factor (PAF) and non-hydrolysable GTP analogues can cause large activations of PtdIns4P 5-kinase, suggesting that cells can accommodate agonist-activated rates of consumption of PtdIns(4,5)P2 without having to sustain continuous, comparably rapid and energetically expensive 'futile cycling' reactions.
Collapse
Affiliation(s)
- L Stephens
- Department of Development and Signalling, AFRC Babraham Institute, Cambridge, U.K
| | | | | |
Collapse
|
11
|
Racaud-Sultan C, Mauco G, Guinebault C, Plantavid M, Payrastre B, Breton M, Chap H. Rapid and transient thrombin stimulation of phosphatidylinositol 4,5-bisphosphate synthesis but not of phosphatidylinositol 3,4-bisphosphate independent of phospholipase C activation in platelets. FEBS Lett 1993; 330:347-51. [PMID: 8397107 DOI: 10.1016/0014-5793(93)80902-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
When platelets are stimulated by thrombin they immediately undergo inositol lipid hydrolysis via phospholipase C activation. However, subsequently an increased production of phosphatidylinositol 4,5-bisphosphate is observed. Phospholipases C were inhibited by lowering the cytoplasmic free calcium concentration by preincubation with Quin-2-tetra(acetoxymethyl) ester. Aggregation and secretion were also totally suppressed. Under these conditions we observed an increased labeling of phosphatidylinositol 4,5-bisphosphate, indicating a stimulation of inositol lipid kinases, independent of lipid hydrolysis by phospholipase C. Conversely the production of phosphatidylinositol 3,4-bisphosphate was totally abolished. These results suggest a different regulation of the kinases/phosphatases responsible for the production of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate.
Collapse
Affiliation(s)
- C Racaud-Sultan
- INSERM U 326, Phospholipides Membranaires, Signalisation Cellulaire et Lipoprotéines, Hôpital Purpan, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Moritz A, Westerman J, De Graan PN, Payrastre B, Gispen WH, Wirtz KW. Characterization of phosphatidylinositol-4-phosphate 5-kinase activities from bovine brain membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1168:79-86. [PMID: 8389203 DOI: 10.1016/0005-2760(93)90269-f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Phosphatidylinositol-4-phosphate (PtdIns(4)P) kinase activity associated with bovine brain membranes, was released by NaCl treatment and partially purified by chromatography on phosphocellulose, phenylsepharose, Ultrogel AcA44, DEAE-cellulose and ATP-agarose. The final preparation contained a 6333-fold purified protein fraction with a specific activity of 171 nmol.min-1 x mg-1. Under conditions where this PtdIns(4)P kinase activity (PtdIns(4)P kinase activity b) did not bind to DEAE-cellulose, a PtdIns(4)P kinase activity purified earlier (Moritz, A., De Graan, P.N.E., Ekhart, P.F., Gispen, W.H. and Wirtz, K.W.A. (1990) J. Neurochem. 54, 351-354) does bind (PtdIns(4)P kinase activity a). Both enzyme activities specifically used PtdIns(4)P as substrate and phosphorylated the inositol moiety at the 5'-position. PtdIns(4) kinase activity a has an apparent Km of 18 microM for PtdIns(4)P whereas PtdIns(4)P kinase activity b has a Km of 4 microM. All other measured kinetic parameters (i.e., Km for ATP, Mg(2+)-dependence, pH optimum, activation by phosphatidylserine and inhibition by phosphatidylinositol 4,5-bisphosphate) were similar for both enzyme activities.
Collapse
Affiliation(s)
- A Moritz
- Center for Biomembranes and Lipid Enzymology, Rudolf Magnus Institute, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Brooksbank CE, Hutchings A, Butcher GW, Irvine RF, Divecha N. Monoclonal antibodies to phosphatidylinositol 4-phosphate 5-kinase: distribution and intracellular localization of the C isoform. Biochem J 1993; 291 ( Pt 1):77-82. [PMID: 8385940 PMCID: PMC1132483 DOI: 10.1042/bj2910077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have raised a panel of monoclonal antibodies to PtdIns4P 5-kinase C purified from bovine brain [Divecha, Brooksbank and Irvine (1992) Biochem. J. 288, 637-642]. This panel includes antibodies which specifically recognize PtdIns4P 5-kinase C both in a native catalytically active condition, and/or when presented on Western blots. Some of the former antibodies will also inhibit PtdIns4P 5-kinase C activity. We have used the blotting antibodies to study the bovine tissue distribution of PtdIns4P 5-kinase C and its distribution in mammalian species. We have also studied its localization in Jurkat cells and found it to be predominantly bound to membranes, with only a minority localized to the cytoskeleton. Neither PtdIns4P 5-kinase activity nor PtdIns4P 5-kinase C, as detected by Western blotting, were increased in the cytoskeleton after stimulation of Jurkat cells with OKT3. These antibodies should prove to be extremely useful tools with which to study the regulation of PtdIns4P 5-kinase C.
Collapse
Affiliation(s)
- C E Brooksbank
- Department of Biochemistry, AFRC Institute of Animal Physiology and Genetics Research, Cambridge, U.K
| | | | | | | | | |
Collapse
|
14
|
Divecha N, Brooksbank CE, Irvine RF. Purification and characterization of phosphatidylinositol 4-phosphate 5-kinases. Biochem J 1992; 288 ( Pt 2):637-42. [PMID: 1334412 PMCID: PMC1132058 DOI: 10.1042/bj2880637] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We detail the purification and characterization of three distinct isoforms of PtdIns4P 5-kinase present in bovine brain. One of these, PtdIns4P 5-kinase C, was purified to apparent homogeneity, and SDS/PAGE analysis demonstrated a single polypeptide and molecular mass 53 KDa. These three isoforms were shown to differ in their kinetic properties, and immunological characterization with an antibody raised to PtdIns4P 5-kinase C demonstrated that this isoform was unrelated to the other two. Furthermore, PtdIns4P 5-kinase C was shown to be the bovine brain homologue of the Type II PtdIns4P 5-kinase previously purified from human erythrocytes [Bazenet, Ruano, Brockman & Anderson (1990) J. Biol. Chem. 265, 18012-18022].
Collapse
Affiliation(s)
- N Divecha
- AFRC Institute of Animal Physiology and Genetics Research, Cambridge, U.K
| | | | | |
Collapse
|
15
|
Thomas LM, Holub BJ. Regulation and role of phosphoinositide phosphorylation in human platelets. Prog Lipid Res 1992; 31:399-416. [PMID: 1338960 DOI: 10.1016/0163-7827(92)90003-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- L M Thomas
- Department of Nutritional Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|
16
|
Moritz A, Westerman J, de Graan PN, Wirtz KW. Phosphatidylinositol 4-kinase and phosphatidylinositol-4-phosphate 5-kinase from bovine brain membranes. Methods Enzymol 1992; 209:202-11. [PMID: 1323033 DOI: 10.1016/0076-6879(92)09024-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT 4)-containing vesicles. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98835-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|