1
|
Facilitation of information processing in the primary somatosensory area in the ball rotation task. Sci Rep 2017; 7:15507. [PMID: 29138504 PMCID: PMC5686197 DOI: 10.1038/s41598-017-15775-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/01/2017] [Indexed: 11/08/2022] Open
Abstract
Somatosensory input to the brain is known to be modulated during voluntary movement. It has been demonstrated that the response in the primary somatosensory cortex (SI) is generally gated during simple movement of the corresponding body part. This study investigated sensorimotor integration in the SI during manual movement using a motor task combining movement complexity and object manipulation. While the amplitude of M20 and M30 generated in the SI showed a significant reduction during manual movement, the subsequent component (M38) was significantly higher in the motor task than in the stationary condition. Especially, that in the ball rotation task showed a significant enhancement compared with those in the ball grasping and stone and paper tasks. Although sensorimotor integration in the SI generally has an inhibitory effect on information processing, here we found facilitation. Since the ball rotation task seems to be increasing the demand for somatosensory information to control the complex movements and operate two balls in the palm, it may have resulted in an enhancement of M38 generated in the SI.
Collapse
|
2
|
Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R. Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. Neuroimage 2006; 32:1355-64. [PMID: 16806987 DOI: 10.1016/j.neuroimage.2006.05.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/27/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022] Open
Abstract
Many studies have reported a movement-related modulation of response in the primary and secondary somatosensory cortices (SI and SII) to a task-irrelevant stimulation in primates. In the present study, magnetoencephalography (MEG) was used to examine the top-down centrifugal regulation of neural responses in the human SI and SII to a task-relevant somatosensory signal triggering a voluntary movement. Nine healthy adults participated in the study. A visual warning signal was followed 2 s later by a somatosensory imperative signal delivered to the right median nerve at the wrist. Three kinds of warning signal informed the participants of the reaction which should be executed on presentation of the imperative signal (rest or extension of the right index finger, extension of the left index finger). The somatosensory stimulation was used to both generate neural responses and trigger voluntary movement and therefore was regarded as a task-relevant signal. The responses were recorded using a whole-head MEG system. The P35m response around the SI was reduced in magnitude without alteration of the primary SI response, N20m, when the signal triggered a voluntary movement compared to the control condition, whereas bilateral SII responses peaking at 70-100 ms were enhanced and the peak latency was shortened. The peak latency of the responses in the SI and SII preceded the onset of the earliest voluntary muscle activation in each subject. Later bilateral perisylvian responses were also enhanced with movement. In conclusion, neural activities in the SI and SII evoked by task-relevant somatosensory signals are regulated differently by motor-related neural activities before the afferent inputs. The present findings indicate a difference in function between the SI and SII in somatosensory-motor regulation.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | | | | | |
Collapse
|
3
|
Kida T, Wasaka T, Nakata H, Akatsuka K, Kakigi R. Centrifugal regulation of a task-relevant somatosensory signal triggering voluntary movement without a preceding warning signal. Exp Brain Res 2006; 173:733-41. [PMID: 16636794 DOI: 10.1007/s00221-006-0448-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
A warning signal followed by an imperative signal generates anticipatory and preparatory activities, which regulate sensory evoked neuronal activities through a top-down centrifugal mechanism. The present study investigated the centrifugal regulation of neuronal responses evoked by a task-relevant somatosensory signal, which triggers a voluntary movement without a warning signal. Eleven healthy adults participated in this study. Electrical stimulation was delivered to the right median nerve at a random interstimulus interval (1.75-2.25 s). The participants were instructed to extend the second digit of the right hand as fast as possible when the electrical stimulus was presented (ipsilateral reaction condition), or extend that of the left hand (contralateral reaction condition). They also executed repetitively extension of the right second digit at a rate of about 0.5 Hz, irrespective of electrical stimulation (movement condition), to count silently the number of stimuli (counting condition). In the control condition, they had no task to perform. The amplitude of short-latency somatosensory evoked potentials, the central P25, frontal N30, and parietal P30, was significantly reduced in both movement and ipsilateral reaction conditions compared to the control condition. The amplitude of long-latency P80 was significantly enhanced only in the ipsilateral reaction condition compared to the control, movement, contralateral reaction, and counting conditions. The long-latency N140 was significantly enhanced in both movement and ipsilateral reaction conditions compared to the control condition. In conclusion, short- and long-latency neuronal activities evoked by task-relevant somatosensory signals were regulated differently through a centrifugal mechanism even when the signal triggered a voluntary movement without a warning signal. The facilitation of activities at a latency of around 80 ms is associated with gain enhancement of the task-relevant signals from the body part involved in the action, whereas that at a latency of around 140 ms is associated with unspecific gain regulation generally induced by voluntary movement. These may be dissociated from the simple effect of directing attention to the stimulation.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
| | | | | | | | | |
Collapse
|
4
|
Kida T, Wasaka T, Nakata H, Kakigi R. Centrifugal regulation of task-relevant somatosensory signals to trigger a voluntary movement. Exp Brain Res 2005; 169:289-301. [PMID: 16307265 DOI: 10.1007/s00221-005-0141-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 07/16/2005] [Indexed: 10/25/2022]
Abstract
Many previous papers have reported the modulation of somatosensory evoked potentials (SEPs) during voluntary movement, but the locus and mechanism underlying the movement-induced centrifugal modulation of the SEPs elicited by a task-relevant somatosensory stimulus still remain unclear. We investigated the centrifugal modulation of the SEPs elicited by a task-relevant somatosensory stimulus which triggers a voluntary movement in a forewarned reaction time task. A pair of warning (S1: auditory) and imperative stimuli (S2: somatosensory) was presented with a 1 s interstimulus interval. Subjects were instructed to respond by moving the hand ipsilateral or contralateral to the somatosensory stimulation which elicits the SEPs. In four experiments, the locus and selectivity of the SEPs' modulation, the contribution of cutaneous afferents and the effect of contraction magnitude were examined, respectively. A control condition where subjects had no task to perform was compared to several task conditions. The amplitude of the frontal N30, parietal P30, and central P25 was decreased and that of the long latency P80 and N140 was increased when the somatosensory stimuli triggered a voluntary movement of the stimulated finger compared to the control condition. The N60 decreased with the movement of any finger. These results were considered to be caused by the centrifugal influence of neuronal activity which occurs before a somatosensory imperative stimulus. The present findings did not support the hypothesis that the inhibition of afferent inputs by descending motor commands can occur at subcortical levels. A higher contraction magnitude produced a further attenuation of the amplitude of the frontal N30, while it decreased the enhancement of the P80. Moreover, the modulation of neuronal responses seems to result mainly from the modulation of cutaneous afferents, especially from the moved body parts. In conclusion, the short- and long-latency somatosensory neuronal activities evoked by task-relevant ascending afferents from the moved body parts are regulated differently by motor-related neuronal activities before those afferent inputs. The latter activities may be associated with sensory gain regulation related to directing attention to body parts involved in the action.
Collapse
Affiliation(s)
- Tetsuo Kida
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan.
| | | | | | | |
Collapse
|
5
|
Abstract
Dystonia is a syndrome characterised by abnormal involuntary sustained muscle contractions that often result in twisted and abnormal positions. Focal dystonia affects only a single body part with symptoms varying from permanent (e.g., torticollis) to task-specific (e.g., musician's cramp). The exact causes of focal dystonia have yet to be determined. Possible causative factors have been identified at all levels along the sensorimotor pathway, including anatomical constraints of the hand (musicians), abnormal co-contractions of the muscles due to reciprocal inhibition in the spinal cord, subcortical and cortical remapping, deficiencies in sensorimotor integration and perceptual deficits. A review of the current literature on these topics is provided with a special focus on musicians with focal dystonia. Also reviewed are current treatments of focal dystonia in musicians. On the basis of the currently available evidence, certain risk factors are identified for the development of task-specific focal dystonia, including number of practice hours, personality, genetic predisposition, performance factors and sensory effects. In addition, it is highlighted that dystonic movements occur predominantly in the context of perceptual-motor tasks involving emotions. When emotional and motor traces have become associated, they are difficult to change; it is suggested that this mechanism plays an important role in the preservation of dystonic symptoms.
Collapse
Affiliation(s)
- V K Lim
- The Department of Psychology, School of Behavioural Sciences, The University of Melbourne, Melbourne, Vic 3010, Australia.
| | | | | |
Collapse
|
6
|
Harrison LM, Norton JA, Stephens JA. Habituation of cutaneomuscular reflexes recorded from the first dorsal interosseous and triceps muscle in man. J Neurol Sci 2000; 177:32-40. [PMID: 10967180 DOI: 10.1016/s0022-510x(00)00326-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cutaneomuscular reflexes have been recorded from the first dorsal interosseous muscle during a sustained abduction of the index finger of 20 subjects (25 recordings) following stimulation of the digital nerves at the following frequencies: 2 Hz, 3 Hz, 5 Hz, 7 Hz and 9 Hz, presented in random order. Five hundred stimuli were given at each frequency. EMG was rectified and consecutive batches of 100 sweeps of each set of 500 responses were averaged time locked to the stimulus. All reflex components, E1, I1 and E2, exhibit habituation with the E1 component habituating the most and the I1 component the least. There was considerable variation in the rate of habituation between subjects. The rate of habituation was independent of the frequency of stimulation. Reflex responses were recorded from the triceps brachii muscle in eight subjects; this reflex response habituated at a faster rate than the E2 component recorded from the first dorsal interosseous muscle. These results are discussed in relation to the choice of stimulus parameters for the clinical testing of cutaneous reflexes. We conclude that it is important to consistently average the same number of responses.
Collapse
Affiliation(s)
- L M Harrison
- Department of Physiology, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | |
Collapse
|
7
|
Cheron G, Dan B, Borenstein S. Sensory and motor interfering influences on somatosensory evoked potentials. J Clin Neurophysiol 2000; 17:280-94. [PMID: 10928640 DOI: 10.1097/00004691-200005000-00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The interfering influences by which the different components of the early somatosensory evoked potentials are modified are reviewed from both neurophysiologic and clinical perspectives. Special consideration is given to the specific differences between sensory and motor interferences. In this context, the specific effect of the mental movement simulation task on the frontal N30 component is discussed in relation to the involvement of this evoked wave as a physiologic index of the dopaminergic motor pathways. Relevant interfering approaches, including concurrent events ranging from tactile stimulation to locomotion, are reviewed and discussed insofar as these data provide insights into the neurophysiologic processes of interaction between competing internal models controlling motor acts and sensory information.
Collapse
Affiliation(s)
- G Cheron
- Laboratory of Physiology, ISEPK, Free University of Brussels, Belgium.
| | | | | |
Collapse
|
8
|
Valeriani M, Restuccia D, Di Lazzaro V, Barba C, Le Pera D, Tonali P. Dissociation induced by voluntary movement between two different components of the centro-parietal P40 SEP to tibial nerve stimulation. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1998; 108:190-8. [PMID: 9566632 DOI: 10.1016/s0168-5597(97)00079-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whether the two earliest cortical somatosensory evoked potentials (SEPs) to tibial nerve stimulation (N37 and P40) are generated by the same dipolar source or, instead, originate from different neuronal populations is still a debated problem. We recorded the early scalp SEPs to tibial nerve stimulation in 10 healthy subjects at rest and during voluntary movement of the stimulated foot. We found that the P40, which reached its highest amplitude on the vertex at rest, changed its topography during movement, since its amplitude was reduced much more in the central than in the parietal traces. These findings suggest that two different components contribute to the centro-parietal positivity at rest: (1) the P37 response, which is parietally distributed and is not modified by movement, and (2) the 'real' P40 SEP, which is focused on the vertex and is reduced in amplitude during voluntary movement. Since, also, the N37 response did not vary its amplitude under interference condition, it is possible that the N37 and P37 potentials are generated by the same dipolar source. Other later components, namely P50 and N50 were significantly reduced in amplitude during foot movement. Lastly, the subcortical P30 far-field remained unchanged and this suggests that the phenomenon of amplitude reduction during movement (i.e. gating) occurs above the cervico-medullary junction.
Collapse
Affiliation(s)
- M Valeriani
- Department of Neurology, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Tinazzi M, Zanette G, La Porta F, Polo A, Volpato D, Fiaschi A, Mauguière F. Selective gating of lower limb cortical somatosensory evoked potentials (SEPs) during passive and active foot movements. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:312-21. [PMID: 9246068 DOI: 10.1016/s0168-5597(97)00023-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We evaluated subcortical and cortical somatosensory evoked potentials (SEPs) in response to posterior tibial nerve stimulation in 4 experimental conditions of foot movement and compared them with the baseline condition of full relaxation. The experimental conditions were: (a) active flexion-extension of the stimulated foot; (b) active flexion-extension of the non-stimulated foot; (c) passive flexion-extension of the stimulated foot in complete relaxation; (d) tonic active flexion of the stimulated foot. We analyzed latencies and amplitudes of the subcortical P30 potential, of the contralateral pre-rolandic N37 and P50 responses and of the P37, N50 and P60 potentials recorded over the vertex. Latencies did not vary in any of the paradigms. The amplitude of subcortical P30 potential did not change during any of the paradigms. Among the cortical waves, P37, N50 and P60 amplitudes were significantly attenuated in all conditions except active movement of the non-stimulated foot (b). This attenuation was less during passive (c) than during active movements of the stimulated foot (a and d). The contralateral pre-rolandic waves N37 and P50 showed no significant decrease during any of the paradigms. These results suggest that gating occurs rostrally to the cervico-medullary junction, probably at cortical level. The different behavior of N37, P50 and P37, N50 cortical responses during movement of the stimulated foot provides evidence suggestive of a highly localized gating process occurring at cortical level. These potentials could reflect activation of separate, functionally distinct generators.
Collapse
Affiliation(s)
- M Tinazzi
- Functional Neurology and Epileptology Department, Hopital Neurologique, Lyon, France
| | | | | | | | | | | | | |
Collapse
|