1
|
Nadal-Bufí F, Chan LY, Mohammad HH, Mason JM, Salomon C, Lai A, Thompson EW, Craik DJ, Kaas Q, Henriques ST. Peptide-based LDH5 inhibitors enter cancer cells and impair proliferation. Cell Mol Life Sci 2022; 79:606. [PMID: 36436181 PMCID: PMC11802983 DOI: 10.1007/s00018-022-04633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
Lactate dehydrogenase 5 (LDH5) is overexpressed in many cancers and is a potential target for anticancer therapy due to its role in aerobic glycolysis. Small-molecule drugs have been developed as competitive inhibitors to bind substrate/cofactor sites of LDH5, but none reached the clinic to date. Recently, we designed the first LDH5 non-competitive inhibitor, cGmC9, a peptide that inhibits protein-protein interactions required for LDH5 enzymatic activity. Peptides are gaining a large interest as anticancer agents to modulate intracellular protein-protein interactions not targetable by small molecules; however, delivery of these peptides to the cytosol, where LDH5 and other anticancer targets are located, remains a challenge for this class of therapeutics. In this study, we focused on the cellular internalisation of cGmC9 to achieve LDH5 inhibition in the cytosol. We designed cGmC9 analogues and compared them for LDH5 inhibition, cellular uptake, toxicity, and antiproliferation against a panel of cancer cell lines. The lead analogue, [R/r]cGmC9, specifically impairs proliferation of cancer cell lines with high glycolytic profiles. Proteomics analysis showed expected metabolic changes in response to decreased glycolysis. This is the first report of a peptide-based LDH5 inhibitor able to modulate cancer metabolism and kill cancer cells that are glycolytic. The current study demonstrates the potential of using peptides as inhibitors of intracellular protein-protein interactions relevant for cancer pathways and shows that active peptides can be rationally designed to improve their cell permeation.
Collapse
Affiliation(s)
- Ferran Nadal-Bufí
- Queensland University of Technology, School of Biomedical Sciences and Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hadi H Mohammad
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Kurdistan Region, Iraq
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, 8320000, Santiago, Chile
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Erik W Thompson
- Queensland University of Technology, School of Biomedical Sciences and Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sónia T Henriques
- Queensland University of Technology, School of Biomedical Sciences and Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Nadal-Bufi F, Mason JM, Chan LY, Craik DJ, Kaas Q, Troeira Henriques S. Designed β-Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. J Med Chem 2021; 64:3767-3779. [PMID: 33765386 DOI: 10.1021/acs.jmedchem.0c01898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lactate dehydrogenase 5 (LDH5) is overexpressed in metastatic tumors and is an attractive target for anticancer therapy. Small-molecule drugs have been developed to target the substrate/cofactor sites of LDH5, but none has reached the clinic to date, and alternative strategies remain almost unexplored. Combining rational and computer-based approaches, we identified peptidic sequences with high affinity toward a β-sheet region that is involved in protein-protein interactions (PPIs) required for the activity of LDH5. To improve stability and potency, these sequences were grafted into a cyclic cell-penetrating β-hairpin peptide scaffold. The lead grafted peptide, cGmC9, inhibited LDH5 activity in vitro in low micromolar range and more efficiently than the small-molecule inhibitor GNE-140. cGmC9 inhibits LDH5 by targeting an interface unlikely to be inhibited by small-molecule drugs. This lead will guide the development of new LDH5 inhibitors and challenges the landscape of drug discovery programs exclusively dedicated to small molecules.
Collapse
Affiliation(s)
- Ferran Nadal-Bufi
- School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland 4102, Australia
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland 4102, Australia
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Thabault L, Brisson L, Brustenga C, Martinez Gache SA, Prévost JRC, Kozlova A, Spillier Q, Liberelle M, Benyahia Z, Messens J, Copetti T, Sonveaux P, Frédérick R. Interrogating the Lactate Dehydrogenase Tetramerization Site Using (Stapled) Peptides. J Med Chem 2020; 63:4628-4643. [PMID: 32250117 DOI: 10.1021/acs.jmedchem.9b01955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lactate dehydrogenases (LDHs) are tetrameric enzymes of major significance in cancer metabolism as well as promising targets for cancer therapy. However, their wide and polar catalytic sites make them a challenging target for orthosteric inhibition. In this work, we conceived to target LDH tetramerization sites with the ambition of disrupting their oligomeric state. To do so, we designed a protein model of a dimeric LDH-H. We exploited this model through WaterLOGSY nuclear magnetic resonance and microscale thermophoresis for the identification and characterization of a set of α-helical peptides and stapled derivatives that specifically targeted the LDH tetramerization sites. This strategy resulted in the design of a macrocyclic peptide that competes with the LDH tetramerization domain, thus disrupting and destabilizing LDH tetramers. These peptides and macrocycles, along with the dimeric model of LDH-H, constitute promising pharmacological tools for the de novo design and identification of LDH tetramerization disruptors. Overall, our study demonstrates that disrupting LDH oligomerization state by targeting their tetramerization sites is achievable and paves the way toward LDH inhibition through this novel molecular mechanism.
Collapse
Affiliation(s)
- Léopold Thabault
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Lucie Brisson
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium.,INSERM UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais, F-37041 Tours, France
| | - Chiara Brustenga
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Santiago A Martinez Gache
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium.,Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Julien R C Prévost
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Arina Kozlova
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Quentin Spillier
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Maxime Liberelle
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Zohra Benyahia
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Joris Messens
- VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium.,Brussels Center for Redox Biology, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Tamara Copetti
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), B-1200 Brussels, Belgium
| |
Collapse
|