1
|
Baba K, Kawasaki M, Nishimura H, Suzuki H, Matsuura T, Ikeda N, Fujitani T, Yamanaka Y, Tsukamoto M, Ohnishi H, Yoshimura M, Maruyama T, Sanada K, Sonoda S, Nishimura K, Tanaka K, Onaka T, Ueta Y, Sakai A. Upregulation of the hypothalamo-neurohypophysial system and activation of vasopressin neurones attenuates hyperalgesia in a neuropathic pain model rat. Sci Rep 2022; 12:13046. [PMID: 35906406 PMCID: PMC9338054 DOI: 10.1038/s41598-022-17477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Arginine vasopressin (AVP) is a hypothalamic neurosecretory hormone well known as an antidiuretic, and recently reported to be involved in pain modulation. The expression kinetics of AVP and its potential involvement in the descending pain modulation system (DPMS) in neuropathic pain (NP) remains unclear. We investigated AVP expression and its effects on mechanical and thermal nociceptive thresholds using a unilateral spinal nerve ligation (SNL) model. All rats with SNL developed NP. Intensities of enhanced green fluorescent protein (eGFP) in the supraoptic and paraventricular nuclei, median eminence, and posterior pituitary were significantly increased at 7 and 14 days post-SNL in AVP-eGFP rats. In situ hybridisation histochemistry revealed significantly increased AVP mRNA expression at 14 days post-SNL compared with the sham control group. The chemogenetic activation of AVP neurones significantly attenuated mechanical and thermal hyperalgesia with elevated plasma AVP concentration. These analgesic effects were suppressed by pre-administration with V1a receptor antagonist. AVP neurones increased the neuronal activity of serotonergic dorsal raphe, noradrenergic locus coeruleus, and inhibitory interneurones in the spinal dorsal horn. These results suggest that the hypothalamo-neurohypophysial system of AVP is upregulated in NP and activated endogenous AVP exerts analgesic effects via the V1a receptors. AVP neurones may activate the DPMS.
Collapse
Affiliation(s)
- Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Naofumi Ikeda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
2
|
Yokoyama H, Hirai T, Nagata T, Enomoto M, Kaburagi H, Leiyo L, Motoyoshi T, Yoshii T, Okawa A, Yokota T. DNA Microarray Analysis of Differential Gene Expression in the Dorsal Root Ganglia of Four Different Neuropathic Pain Mouse Models. J Pain Res 2020; 13:3031-3043. [PMID: 33244261 PMCID: PMC7685567 DOI: 10.2147/jpr.s272952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Pathological stimuli or injury to the peripheral nervous system can trigger neuropathic pain with common clinical features such as allodynia and hypersensitivity. Although various studies have identified molecules or genes related to neuropathic pain, the essential components are still unclear. Therefore, in this study, we investigated the molecular and genetic factors related to neuropathic pain. Methods We extracted candidate genes in the dorsal root ganglion (DRG) from three nerve injury mouse models and a sham-operated model (sciatic nerve ligation and resection, sural nerve resection, spared nerve injury [SNI], and sham) using DNA microarray to elucidate the genes responsible for the neuropathic pain mechanism in the SNI model, which exhibits hypersensitivity in the hindpaw of the preserved sural nerve area. We eliminated as many biases as possible. We then focused on an upregulated endogenous vasopressin receptor and clarified whether it is closely associated with traumatic neuropathic pain using a knockout mouse and drug-mediated suppression of the gene. Results Algorithm analysis of DNA microarray results identified 50 genes significantly upregulated in the DRG of the SNI model. Two independent genes—cyclin-dependent kinase-1 (CDK-1) and arginine vasopressin receptor 1A (V1a)—were subsequently identified as candidate SNI-specific genes in the DRG by quantitative PCR analysis. Administration of V1a agonist to wild-type SNI mice significantly alleviated neuropathic pain. However, V1a knockout mice did not exhibit higher hypersensitivity to mechanical stimulation than wild-type mice. In addition, V1a knockout mice showed similar pain behaviors after SNI to wild-type mice. Conclusion Through the DNA microarray analysis of several neuropathic models, we detected specific genes related to chronic pain. In particular, our results suggest that V1a in the DRG may partially contribute to the mechanism of neuropathic pain.
Collapse
Affiliation(s)
- Hiroyuki Yokoyama
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takashi Hirai
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Mitsuhiro Enomoto
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hidetoshi Kaburagi
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Li Leiyo
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takayuki Motoyoshi
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Toshitaka Yoshii
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Atsushi Okawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
3
|
Nishimura H, Kawasaki M, Suzuki H, Matsuura T, Baba K, Motojima Y, Yamanaka Y, Fujitani T, Ohnishi H, Tsukamoto M, Maruyama T, Yoshimura M, Nishimura K, Sonoda S, Sanada K, Tanaka K, Onaka T, Ueta Y, Sakai A. The neurohypophysial oxytocin and arginine vasopressin system is activated in a knee osteoarthritis rat model. J Neuroendocrinol 2020; 32:e12892. [PMID: 32761684 DOI: 10.1111/jne.12892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 01/11/2023]
Abstract
Osteoarthritis (OA) causes chronic joint pain and significantly impacts daily activities. Hence, developing novel treatment options for OA has become an increasingly important area of research. Recently, studies have reported that exogenous, as well as endogenous, hypothalamic-neurohypophysial hormones, oxytocin (OXT) and arginine-vasopressin (AVP), significantly contribute to nociception modulation. Moreover, the parvocellular OXT neurone (parvOXT) extends its projection to the superficial spinal dorsal horn, where it controls the transmission of nociceptive signals. Meanwhile, AVP produced in the magnocellular AVP neurone (magnAVP) is released into the systemic circulation where it contributes to pain management at peripheral sites. The parvocellular AVP neurone (parvAVP), as well as corticotrophin-releasing hormone (CRH), suppresses inflammation via activation of the hypothalamic-pituitary adrenal (HPA) axis. Previously, we confirmed that the OXT/AVP system is activated in rat models of pain. However, the roles of endogenous hypothalamic-neurohypophysial hormones in OA have not yet been characterised. In the present study, we investigated whether the OXT/AVP system is activated in a knee OA rat model. Our results show that putative parvOXT is activated and the amount of OXT-monomeric red fluorescent protein 1 positive granules in the ipsilateral superficial spinal dorsal horn increases in the knee OA rat. Furthermore, both magnAVP and parvAVP are activated, concurrent with HPA axis activation, predominantly modulated by AVP, and not CRH. The OXT/AVP system in OA rats was similar to that in systemic inflammation models, including adjuvant arthritis; however, magnocellular OXT neurones (magnOXT) were not activated in OA. Hence, localised chronic pain conditions, such as knee OA, activate the OXT/AVP system without impacting magnOXT.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentarou Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
4
|
Li R, Sun H, Zheng H, Zong Z, Li S, Meng T, Li J, Liu Y, Wang C, Li J. Intradermal Injection of Oxytocin Aggravates Chloroquine-Induced Itch Responses via Activating the Vasopressin-1a Receptor/Nitric Oxide Pathway in Mice. Front Pharmacol 2019; 10:1380. [PMID: 31824317 PMCID: PMC6881818 DOI: 10.3389/fphar.2019.01380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022] Open
Abstract
Oxytocin (OT), a hormone synthesized within the paraventricular nucleus and supraoptic nucleus of the hypothalamus, when given intracerebroventricularly, induces strong scratching behaviors. However, it is not clear whether intradermal injection (ID) of OT elicits itch sensation. Herein, we found that OT (0.02 mg/ml) did not elicit an itch-scratching response in mice but aggravated chloroquine (CQ, 3 mmol/L)-elicited scratching behavior. Similar to OT, arginine vasopressin (AVP, 0.02 mg/ml), which is structurally related to OT, also enhanced CQ-induced scratching behavior but did not directly induce scratching behavior in mice. Mechanistically, OT-mediated enhancement of CQ-induced scratching behavior was significantly suppressed by conivaptan (0.05 mg/ml), a vasopressin-1a receptor (V1AR) antagonist and 1,400 W (3 mg/kg), inhibitor of inducible nitric oxide synthase (iNOS), but not OT receptor (OTR) antagonist L-368,899 (0.05 mg/ml). Notably, conivaptan also directly decreased CQ-induced scratching. In conclusion, OT plays a role in CQ-induced scratching behavior via V1AR binding events. V1AR antagonists could be used as possible treatments for CQ-induced itch.
Collapse
Affiliation(s)
- Rulong Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, China
| | - Hua Sun
- Department of the Sixth Internal Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Haotian Zheng
- Department of Physiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, China
| | - Zhihua Zong
- Department of Physiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, China
| | - Shengnan Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, China
| | - Tingting Meng
- Department of Physiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, China
| | - Jing Li
- Department of Pathology, Central Hospital of Zibo, Zibo, China
| | - Yunfang Liu
- Center for Strategic Studies, Chinese Academy of Engineering, Beijing, China
| | - Chao Wang
- Department of Rehabilitation Medicine, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Jingxin Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Jinan, China
| |
Collapse
|
5
|
Peptidergic nature of nociception-related projections from the hypothalamic paraventricular nucleus to the dorsal horn of the spinal cord. Neurosci Lett 2018; 685:124-130. [DOI: 10.1016/j.neulet.2018.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 11/23/2022]
|
6
|
Manzano-García A, González-Hernández A, Tello-García IA, Martínez-Lorenzana G, Condés-Lara M. The role of peripheral vasopressin 1A and oxytocin receptors on the subcutaneous vasopressin antinociceptive effects. Eur J Pain 2017; 22:511-526. [PMID: 29082571 DOI: 10.1002/ejp.1134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Vasopressin (AVP) seems to play a role as an antinociceptive neurohormone, but little is known about the peripheral site of action of its antinociceptive effects. Moreover, AVP can produce motor impairment that could be confused with behavioural antinociception. Finally, it is not clear which receptor is involved in the peripheral antinociceptive AVP effects. METHODS In anaesthetized rats with end-tidal CO2 monitoring, extracellular unitary recordings were performed, measuring the evoked activity mediated by Aβ-, Aδ-, C-fibres and post-discharge. Behavioural nociception and motor impairment were evaluated under subcutaneous AVP (0.1-10 μg) using formalin and rotarod tests. Selective antagonists to vasopressin (V1A R) or oxytocin receptors (OTR) were used. Additionally, vasopressin and oxytocin receptors were explored immunohistochemically in skin tissues. RESULTS Subcutaneous AVP (1 and 10 μg/paw) induced antinociception and a transitory reduction of the end-tidal CO2 . The neuronal activity associated with Aδ- and C-fibre activation was diminished, but no effect was observed on Aβ-fibres. AVP also reduced paw flinches in the formalin test and a transitory locomotor impairment was also found. The AVP-induced antinociception was blocked by the selective antagonist to V1A R (SR49059) or OTR (L368,899). Immunohistochemical evidence of skin VP and OT receptors is given. CONCLUSIONS Subcutaneous AVP produces antinociception and behavioural analgesia. Both V1a and OTR participate in those effects. Our findings suggest that antinociception could be produced in a local manner using a novel vasopressin receptor located in cutaneous sensorial fibres. Additionally, subcutaneous AVP also produces important systemic effects such as respiratory and locomotor impairment. SIGNIFICANCE Our findings support that AVP produces peripheral antinociception and behavioural analgesia in a local manner; nevertheless, systemic effects are also presented. Additionally, this is the first detailed electrophysiological analysis of AVP antinociceptive action after subcutaneous administration. The results are reasonably explained by the demonstration of V1A R and OTR in cutaneous fibres.
Collapse
Affiliation(s)
- A Manzano-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - A González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - I A Tello-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - G Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - M Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
7
|
Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain 2013; 154:1449-56. [DOI: 10.1016/j.pain.2013.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 11/18/2022]
|
8
|
Veitenheimer B, Osborn JW. Role of spinal V1a receptors in regulation of arterial pressure during acute and chronic osmotic stress. Am J Physiol Regul Integr Comp Physiol 2010; 300:R460-9. [PMID: 21123759 DOI: 10.1152/ajpregu.00371.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vasopressinergic neurons in the paraventricular nucleus project to areas in the spinal cord from which sympathetic nerves originate. This pathway is hypothesized to be involved in the regulation of mean arterial pressure (MAP), particularly under various conditions of osmotic stress. Several studies measuring sympathetic nerve activity support this hypothesis. However, the evidence that spinal vasopressin influences MAP under physiological or pathophysiological conditions in conscious animals is limited. The purpose of this study was to investigate, in conscious rats, if the increases in MAP during acute or chronic osmotic stimuli are due to activation of spinal vasopressin (V1a) receptors. Three conditions of osmotic stress were examined: acute intravenous hypertonic saline, 24- and 48-h water deprivation, and 4 wk of DOCA-salt treatment. Rats were chronically instrumented with an indwelling catheter for intrathecal injections and a radiotelemeter to measure MAP. In normotensive rats, intrathecal vasopressin and V1a agonist increased MAP, heart rate, and motor activity; these responses were blocked by pretreatment with an intrathecal V1a receptor antagonist. However, when the intrathecal V1a antagonist was given during the three conditions of osmotic stress to investigate the role of "endogenous" vasopressin, the antagonist had no effect on MAP, heart rate, or motor activity. Contrary to the hypothesis suggested by previous studies, these findings indicate that spinal V1a receptors are not required for elevations of MAP under conditions of acute or chronic osmotic stress in conscious rats.
Collapse
Affiliation(s)
- Britta Veitenheimer
- Dept. of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA
| | | |
Collapse
|
9
|
Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci 2010; 30:8274-84. [PMID: 20554879 DOI: 10.1523/jneurosci.1594-10.2010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The neuropeptides oxytocin (OXT) and arginine vasopressin (AVP) contribute to the regulation of diverse cognitive and physiological functions including nociception. Indeed, OXT has been reported to be analgesic when administered directly into the brain, the spinal cord, or systemically. Here, we characterized the phenotype of oxytocin receptor (OTR) and vasopressin-1A receptor (V1AR) null mutant mice in a battery of pain assays. Surprisingly, OTR knock-out mice displayed a pain phenotype identical to their wild-type littermates. Moreover, systemic administration of OXT dose-dependently produced analgesia in both wild-type and OTR knock-out mice in three different assays, the radiant-heat paw withdrawal test, the von Frey test of mechanical sensitivity, and the formalin test of inflammatory nociception. In contrast, OXT-induced analgesia was completely absent in V1AR knock-out mice. In wild-type mice, OXT-induced analgesia could be fully prevented by pretreatment with a V1AR but not an OTR antagonist. Receptor binding studies demonstrated that the distribution of OXT and AVP binding sites in mouse lumbar spinal cord resembles the pattern observed in rat. AVP binding sites diffusely label the lumbar spinal cord, whereas OXT binding sites cluster in the substantia gelatinosa of the dorsal horn. In contrast, quantitative real-time reverse transcription (RT)-PCR revealed that V1AR but not OTR mRNA is abundantly expressed in mouse dorsal root ganglia, where it localizes to small- and medium-diameter cells as shown by single-cell RT-PCR. Hence, V1ARs expressed in dorsal root ganglia might represent a previously unrecognized target for the analgesic action of OXT and AVP.
Collapse
|
10
|
Gerardo RP, Rosalinda MR, Guadalupe ML, Miguel CL. Oxytocin, but not vassopressin, modulates nociceptive responses in dorsal horn neurons. Neurosci Lett 2010; 476:32-5. [DOI: 10.1016/j.neulet.2010.03.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 12/31/2022]
|
11
|
Honda K, Takano Y. New topics in vasopressin receptors and approach to novel drugs: involvement of vasopressin V1a and V1b receptors in nociceptive responses and morphine-induced effects. J Pharmacol Sci 2009; 109:38-43. [PMID: 19151540 DOI: 10.1254/jphs.08r30fm] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Arginine vasopressin (AVP) receptors have been classified into V1a, V1b, and V2 subtypes. Recent studies have demonstrated the involvement of AVP in anti-nociception and in morphine-induced anti-nociception. However, the roles of individual AVP-receptor subtypes have not been fully elucidated. Here, we have summarized the role of V1-receptor subtypes in behavioral responses to noxious stimuli and to morphine. In this review, we focus on studies using mice lacking the V1a receptor (V1a(-/-) mice) and the V1b receptor (V1b(-/-) mice).
Collapse
Affiliation(s)
- Kenji Honda
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | |
Collapse
|
12
|
Vargas KJ, Sarmiento JM, Ehrenfeld P, Añazco CC, Villanueva CI, Carmona PL, Brenet M, Navarro J, Müller-Esterl W, González CB. Postnatal expression of V2 vasopressin receptor splice variants in the rat cerebellum. Differentiation 2009; 77:377-85. [PMID: 19281786 DOI: 10.1016/j.diff.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/29/2008] [Accepted: 11/30/2008] [Indexed: 11/30/2022]
Abstract
The V(2) vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V(2a) and V(2b)) first identified in the kidney. The open reading frame of the alternatively spliced V(2b) transcript encodes a truncated receptor, showing the same amino acid sequence as the canonical V(2a) receptor up to the sixth transmembrane segment, but displaying a distinct sequence to the corresponding seventh transmembrane segment and C-terminal domain relative to the V(2a) receptor. Here, we demonstrate the postnatal expression of V(2a) and V(2b) variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V(2) splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V(2) receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 expressing similar amounts of both V(2) splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V(2a) receptors, suggesting that the differential expression of the V(2) splice variants regulates the vasopressin signaling in the cerebellum.
Collapse
Affiliation(s)
- Karina J Vargas
- Department of Physiology, Universidad Austral de Chile, Valdivia 509-9200, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Norepinephrine-induced nociception and vasoconstrictor hypersensitivity in rats with chronic post-ischemia pain. Pain 2008; 137:640-651. [PMID: 18079061 DOI: 10.1016/j.pain.2007.10.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/09/2007] [Accepted: 10/30/2007] [Indexed: 01/31/2023]
Abstract
Painful hypersensitivity to norepinephrine (NE) has been reported in various chronic pain conditions that exhibit sympathetically-maintained pain (SMP), particularly CRPS-I and II. We investigated the parallels between the nociceptive and vascular sensitivity to NE in rats with chronic post-ischemia pain (CPIP), an animal model of CRPS-I induced by hind paw ischemia-reperfusion injury. Intradermal injections of NE to the affected hind paw induced dose-dependent nociceptive behaviours in CPIP rats, but not sham animals. These behaviours were blocked by alpha(1)- and alpha(2)-adrenergic receptor antagonists, or a nitric oxide (NO) donor. Using laser Doppler flowmetry, we detected vasoconstrictor hypersensitivity in the ipsilateral CPIP hind paw, as compared to responses in sham animals or the contralateral hind paw. The vasoconstrictor hypersensitivity was also attenuated by adrenergic antagonists. Intradermal injection of [Arg(8)] vasopressin (AVP) or the endothelial NO synthase (eNOS) inhibitor, L-NIO, to the affected paw also induced nociceptive behaviours in CPIP rats, but not sham rats. These results suggest CPIP rats display abnormal nociceptive responses to adrenergic and non-adrenergic vasoconstrictive agents. Furthermore, the nociceptive responses to NE in CPIP rats are paralleled by enhanced vasoconstrictive responses to NE, and are relieved by alpha-adrenergic antagonists or a vasodilator. We conclude that persistent tissue ischemia and hypersensitivity to sympathetic vasoconstriction are important mechanisms for pain in CPIP rats, and that either reducing vasoconstriction or enhancing vasodilatation may be effective methods of relieving the pain of CRPS-I.
Collapse
|
14
|
Yang J, Song CY, Liu WY, Lin BC. Only through the brain nuclei, arginine vasopressin regulates antinociception in the rat. Peptides 2006; 27:3341-6. [PMID: 17018240 DOI: 10.1016/j.peptides.2006.08.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 06/08/2005] [Indexed: 11/26/2022]
Abstract
The effect of arginine vasopressin (AVP) on rat antinociception was investigated. Intraventricular injection of 50 or 100 ng AVP dose-dependently increased the pain threshold; in contrast, intraventricular injection of 10 microl anti-AVP serum decreased the pain threshold; both intrathecal injection of 200 ng AVP or 10 microl anti-AVP serum and intravenous injection of 5 microg AVP or 200 microl anti-AVP serum did not influence the pain threshold. Pain stimulation reduced AVP concentration in hypothalamic paraventricular nucleus (PVN), and elevated AVP concentration in hypothalamic supraoptical nucleus (SON) and periaqueductal gray (PAG), but no change in AVP concentration was detected in pituitary, spinal cord and serum. The results indicated that AVP regulation of antinociception was limited to the brain nuclei.
Collapse
Affiliation(s)
- Jun Yang
- Institute for Pharmaceuticals and Medical Science, Guangdong Bangmin Pharmaceutical Co. Ltd., Jianghai District, Jiangmen, Guangdong 529000, China.
| | | | | | | |
Collapse
|
15
|
Zubrzycka M, Janecka A. Effects of centrally administered vasopressin on orofacial pain perception in rats. Brain Res 2005; 1051:112-6. [PMID: 15993385 DOI: 10.1016/j.brainres.2005.05.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 01/05/2023]
Abstract
Vasopressin (AVP) appears in the cerebrospinal fluid and plays an important role in nociceptive modulation in the central nervous system. The effect of increased concentration of AVP in the cerebrospinal fluid on the excitability of the hypoglossal nerve nucleus was investigated. The experiments were carried out on rats under chloralose anesthesia. Amplitudes of the retractory evoked tongue jerks (ETJ) of the outstretched tongue during the perfusion of cerebral ventricles with solutions containing AVP or its antagonists and also opioid and serotonin antagonists were recorded. Perfusion of the ventricles with AVP in 100 microM concentration suppressed the ETJ amplitude to 66 +/- 3.83%, and in 200 microM concentration, to 53 +/- 3.18% of the control. V1 vasopressin receptor antagonist, d(CH2)5,Tyr(Me)AVP, blocked the suppressive effect caused by cerebral ventricle perfusion with AVP from 64 +/- 4.11% to 83 +/- 1.58%, whereas V2 vasopressin receptor antagonist, d(CH2)5[Ile2, Ile4]AVP, did not block the antinociceptive effect of AVP. Analgesic effect of AVP was also inhibited by opioid and serotonin receptor antagonists, naloxone and methysergide, respectively. Naloxone blocked the suppressive effect of 100 microM AVP from 64 +/- 5.63% to 92 +/- 3.70% and methysergide from 65 +/- 3.62% to 80 +/- 2.72% of the control. The results indicate that exogenous AVP plays an antinociceptive role in the brain of rats penetrating the lining of the cerebral ventricles into the cerebrospinal fluid and exerting a modulating effect on the tongue motor center situated near III and IV cerebral ventricle. V1 vasopressin receptor, but not V2 vasopressin receptor, is involved in this activity in the CNS. The antinociception of AVP seems to be mediated by opioid and serotonergic pathways.
Collapse
Affiliation(s)
- Maria Zubrzycka
- Department of Experimental and Clinical Physiology, Institute of Physiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Mazowiecka 6/8, Poland.
| | | |
Collapse
|
16
|
Portugal-Santana P, Doretto MC, Tatsuo MAKF, Duarte IDG. Involvement of prolactin, vasopressin and opioids in post-ictal antinociception induced by electroshock in rats. Brain Res 2004; 1003:1-8. [PMID: 15019557 DOI: 10.1016/j.brainres.2003.09.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2003] [Indexed: 10/26/2022]
Abstract
The neurochemical mechanisms involved in post-ictal antinociception remain to be elucidated. Application of electroconvulsive shock (ECS) to rats results in post-ictal antinociception. The objective of this study was to identify endogenous substances that could participate in antinociception during post-ictal depression induced by ECS (70 mA, 60 Hz, 1 s). Antinociception was measured by the rat paw-pressure test, in which increased sensitivity is induced by intraplantar injection of carrageenan. This test proved to be efficient in detecting the electroshock-induced antinociception. Intense post-ictal antinociception was observed over a period of 30 min after the end of the seizure. It was used nonspecific opioid and specific vasopressin antagonists and the prolactin (PRL) release inhibitor to test the reversal of antinociception. Administration of naloxone (5, 7.5 and 10 mg/kg) blocked the post-ictal antinociception. The V(1) (125 microg/kg) and V(2) (250 microg/kg) vasopressin receptor antagonists ([beta-mercapto-beta,beta-cyclopentamethylenepropionyl(1),O-Et-Tyr(2),Val(4),Arg(8)]-vasopressin and [adamantaneacetyl(1),O-Et-d-Tyr(2),Val(4),Abu(6),Arg(8,9)]-vasopressin) also inhibited the nociceptive response. The antinociception blockade was more intense after administration of the V(1) receptor antagonist. Bromocriptine (4, 8 and 12 mg/kg) was able to reverse antinociception behavior during the post-ictal period. Morphine (1, 2 and 4 mg/kg), vasopressin (12.5, 100 and 400 microg/kg) and prolactin (100, 200 and 400 microg/kg) administration promoted a higher nociceptive threshold. It was administered the three substances with their respective antagonists to verify the opioidergic pathway and vasopressin and prolactin release interactions, and as a positive control. We observed that the tested mediators were released in an independent manner, indicating no interference in which other.
Collapse
Affiliation(s)
- P Portugal-Santana
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, CEP: 31.270.100. Belo Horizonte, 1 Minas Gerais, Brazil
| | | | | | | |
Collapse
|
17
|
Kc P, Haxhiu MA, Tolentino-Silva FP, Wu M, Trouth CO, Mack SO. Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites. Respir Physiol Neurobiol 2002; 133:75-88. [PMID: 12385733 DOI: 10.1016/s1569-9048(02)00131-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied in the rat projections of vasopressin-containing neurons of the paraventricular nucleus (PVN) to phrenic nuclei and to the pre-Botzinger complex (pre-BotC). In addition, we determined vasopressin receptor expression within the pre-BotC and the physiological effects of vasopressin on respiratory drive and arterial blood pressure when injected into the pre-BotC. Retrograde tracing with cholera toxin B subunit (CT-b) showed that a subpopulation of vasopressin-containing PVN neurons project to phrenic nuclei and the pre-BotC. The latter region, identified by expression of neurokinin-1 receptors, contained a subpopulation of neurons that were immunoreactive for the vasopressin type 1 receptor (V(1)R). Microinjection of vasopressin in the pre-BotC (0.2 nmol/200 nl) significantly increased diaphragm electromyographic activity and frequency discharge (P<0.05). In addition, vasopressin increased blood pressure and heart rate (P<0.05). These data indicate that PVN vasopressin-containing neurons innervate respiratory-related regions of the medulla oblongata and spinal cord and when vasopressin is released at these sites, it may increase respiratory drive via activation of the distinct V(1)R.
Collapse
Affiliation(s)
- Prabha Kc
- Specialized Neuroscience Research Program, Department of Physiology and Biophysics, Howard University College of Medicine, 520 W St. N.W., Washington, DC 20059, USA
| | | | | | | | | | | |
Collapse
|
18
|
McLay RN, Pan W, Kastin AJ. Effects of peptides on animal and human behavior: a review of studies published in the first twenty years of the journal Peptides. Peptides 2001; 22:2181-255. [PMID: 11786208 DOI: 10.1016/s0196-9781(01)00550-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review catalogs effects of peptides on various aspects of animal and human behavior as published in the journal Peptides in its first twenty years. Topics covered include: activity levels, addiction behavior, ingestive behaviors, learning and memory-based behaviors, nociceptive behaviors, social and sexual behavior, and stereotyped and other behaviors. There are separate tables for these behaviors and a short introduction for each section.
Collapse
Affiliation(s)
- R N McLay
- Naval Medical Center San Diego, Department of Psychiatry, San Diego, CA, USA
| | | | | |
Collapse
|
19
|
Ahn DK, Kim KH, Ju JS, Kwon S, Park JS. Microinjection of arginine vasopressin into the central nucleus of amygdala suppressed nociceptive jaw opening reflex in freely moving rats. Brain Res Bull 2001; 55:117-21. [PMID: 11427346 DOI: 10.1016/s0361-9230(01)00493-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was performed to examine the antinociceptive effect after microinjection of arginine vasopressin (AVP) into the central nucleus of amygdala. We recorded the jaw opening reflex in freely moving rats. After injection of 0.2 or 0.4 nM AVP into the central nucleus of amygdala, digastric electromyogram (dEMG) was suppressed to 55 +/- 5% or 88 +/- 3 of the control. Artificial cerebrospinal fluid had no effects on the basal dEMG activity. V(1) vasopressin receptor antagonist blocked the suppressive effect produced by microinjection of 0.4 nM AVP from 53 +/- 3 to 81 +/- 3% of the control. However, V(2) vasopressin receptor antagonist did not affect changes in dEMG. We observed dEMG activity after intracerebroventricular injection of naloxone, methysergide, or phentolamine. All drugs did not affect the basal dEMG activity at our dose. Naloxone blocked the suppressive effect of 0.4 nM AVP from 42 +/- 4 to 79 +/- 5% of the control. Methysergide also inhibited the suppression of dEMG from 44 +/- 3 to 83 +/- 6% of the control. However, phentolamine, an alpha-adrenergic receptor antagonist, did not affect the suppression of dEMG. These results indicate AVP in the central nucleus of amygdala has potent analgesic effects in the orofacial area. The antinociception of central AVP seems to be mediated by opioid and serotonergic pathways.
Collapse
Affiliation(s)
- D K Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Taegu, South Korea.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Reijmers LG, van Ree JM, Spruijt BM, Burbach JP, De Wied D. Vasopressin metabolites: a link between vasopressin and memory? PROGRESS IN BRAIN RESEARCH 1999; 119:523-35. [PMID: 10074810 DOI: 10.1016/s0079-6123(08)61591-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The effects of endogenous metabolites of the neuropeptide vasopressin (VP) in behavioural tests led to the hypothesis that VP metabolites have a more selective function than VP. In contrast to VP, no peripheral effects have been found thus far with VP metabolites and their function seems to be associated with memory-related behaviour. VP metabolites can improve both consolidation and retrieval of memory. Effects on autonomic and electrophysiological parameters and interactions with other neurotransmitter systems have provided some information about the processes that could underlie the effects of VP metabolites on memory-related behaviour. There is evidence that the effects of VP metabolites could be mediated by a VP metabolite receptor, which is different from the known VP receptors. The VP metabolite receptor could be a link between the neuropeptide VP and memory-related behaviour.
Collapse
Affiliation(s)
- L G Reijmers
- Rudolf Magnus Institute for Neurosciences, Department of Medical Pharmacology, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
22
|
Drago F, Stanciu M, Salehi S, Scapagnini U. The block of central vasopressin V1 but not V2 receptors suppresses grooming behavior and hypothermia induced by intracerebroventricular vasopressin in male rats. Peptides 1997; 18:1389-92. [PMID: 9392841 DOI: 10.1016/s0196-9781(97)00203-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of central vasopressin V1 receptors in grooming behavior induced by vasopressin and oxytocin was studied in male rats of the Wistar strain. The intracerebroventricular (ICV) injection of vasopressin (3 micrograms/5 microliters) induced hypothermia and enhanced novelty-induced grooming behavior. Enhanced grooming but not hypothermia was also induced by ICV injection of oxytocin (3 micrograms/5 microliters). The central administration of a selective vasopressin V1 receptor antagonist prevented the stimulating action of vasopressin on novelty-induced grooming and its hypothermic effect. The ICV injection of a selective vasopressin V2 receptor antagonist failed to affect vasopressin-induced grooming and hypothermic effect. An increase in core temperature was observed in oxytocin-injected animals pretreated with the vasopressin V1 receptor antagonist. Furthermore, pretreatment with the antagonist did not affect grooming induced by oxytocin. These results suggest that enhancement of grooming behavior and influence on thermoregulation are differently regulated by central receptors for vasopressin and oxytocin.
Collapse
Affiliation(s)
- F Drago
- Institute of Pharmacology, University of Catania Medical School, Italy.
| | | | | | | |
Collapse
|
23
|
Wahlbeck K, Sundblom M, Kalso E, Tigerstedt I, Rimón R. Elevated plasma vasopressin and normal cerebrospinal fluid angiotensin-converting enzyme in chronic pain disorder. Biol Psychiatry 1996; 40:994-9. [PMID: 8915558 DOI: 10.1016/0006-3223(95)00577-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The study was performed proceeding from the hypothesis that pain proneness in chronic pain disorder (CPD) is a result of alterations in central mechanisms regulating pain sensations. To elucidate the function of the central renin-angiotensin system, the levels of angiotensin-converting enzyme (ACE) and arginine vasopressin (AVP) in cerebrospinal fluid (CSF) and peripheral blood were measured in 15 CPD patients and 19 healthy controls. Plasma AVP levels (p = .01) as well as the serum osmolality (p = .01) were significantly higher in the CPD group. No significant differences in CSF ACE levels were found. AVP is a stress-related peptide, but central antinociceptive effects have also been reported. Elevated plasma AVP levels possibly may constitute a response to chronic stress.
Collapse
Affiliation(s)
- K Wahlbeck
- Department of Psychiatry, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
24
|
Petrov ES, Varlinskaya EI, Smotherman WP. Interactions between vasopressin and mu-opioid systems in the rat fetus. Physiol Behav 1996; 60:217-30. [PMID: 8804667 DOI: 10.1016/0031-9384(96)00018-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Administration of arginine-vasopressin (AVP) into the cisterna magna (IC injection) of the E20 rat fetus increases motor activity and promotes expression of rare patterns of behavior including mouthing, licking, and facial wiping. These effects are mediated by V1 receptors in the brain stem and spinal cord. In this study, AVP-induced changes in motor behavior were measured to characterize interactions within the AVP system and between the AVP and mu-opioid systems in the fetal rat. Injection of AVP into the brain hemispheres (IH injection) diminished the effects of an IC injection of AVP. AVP effects were potentiated by blockade of hemispheric V1 receptors, suggesting that hemispheric V1 receptors inhibit V1 receptor-containing neurons in the brain stem and spinal cord. Intracisternal injection of the mu agonist DAGO suppressed the effects of AVP whereas blockade of mu-opioid receptors in the brain stem and spinal cord with CTOP and activation of mu receptors in the hemispheres with DAGO potentiated the behavioral effects of AVP. The behavioral effects of AVP are mediated by V1 receptors in the brain stem and spinal cord and may be under the inhibitory control of a mu-opioid system localized at the same level of the brain. Facilitation of AVP effects following IH injection of DAGO may involve an inhibition of the inhibitory effects of V1 receptor-containing neurons located in the hemispheres. Interactions between mu-opioid and AVP systems in the caudal and rostral portions of the fetal brain may be based on a common principle.
Collapse
Affiliation(s)
- E S Petrov
- Pavlovian Physiology Department, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|
25
|
Hallbeck M, Hermanson O, Blomqvist A. Preprovasopressin mRNA is not present in dorsal root ganglia of the rat. Neurosci Lett 1996; 209:125-8. [PMID: 8761998 DOI: 10.1016/0304-3940(96)12616-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunohistochemical studies on colchicine-treated rats have suggested that more than half of the neurons in dorsal root ganglia (DRG) contain vasopressin. Thus, vasopressin would be the most commonly found peptide in DRG neurons. In the present study we have reexamined the presence of vasopressin in DRG neurons, using a sensitive in situ hybridization method employing long riboprobes that will detect very small amounts of mRNA. The C3, C6, T2, T12, L2 and L5 DRG were studied. None of these ganglia contained any preprovasopressin mRNA. Yet, dense labeling for preprovasopressin mRNA was seen on simultaneously processed hypothalamic sections and a heavy preprotachykinin mRNA expression was seen in adjacent DRG sections. These findings demonstrate that vasopressin is not produced in DRG in normal rats.
Collapse
Affiliation(s)
- M Hallbeck
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden.
| | | | | |
Collapse
|
26
|
Stebbins CL. Mechanisms underlying spinal neuromodulation of the exercise pressor reflex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 381:209-13. [PMID: 8867836 DOI: 10.1007/978-1-4615-1895-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C L Stebbins
- Department of Internal Medicine, University of California, Davis 95616, USA
| |
Collapse
|
27
|
Ahmed B, Kastin AJ, Banks WA, Zadina JE. CNS effects of peptides: a cross-listing of peptides and their central actions published in the journal Peptides, 1986-1993. Peptides 1994; 15:1105-55. [PMID: 7991456 DOI: 10.1016/0196-9781(94)90078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The centrally mediated effects of peptides as published in the journal Peptides from 1986 to 1993 are tabulated in two ways. In one table, the peptides are listed alphabetically. In another table, the effects are arranged alphabetically. Most of the effects observed after administration of peptides are grouped, wherever possible, into categories such as cardiovascular and gastrointestinal. The species used in most cases has been rats; where other animals were used, the species is noted. The route of administration of peptides and source of information also are included in the tables, with a complete listing provided at the end. Many peptides have been shown to exert a large number of centrally mediated effects.
Collapse
Affiliation(s)
- B Ahmed
- VA Medical Center, New Orleans, LA 70146
| | | | | | | |
Collapse
|