1
|
Ganesh KN, Kumar VA, Barawkar DA. Synthetic Control of DNA Triplex Structure through Chemical Modifications. PERSPECTIVES IN SUPRAMOLECULAR CHEMISTRY 2007. [DOI: 10.1002/9780470511473.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Debin A, Laboulais C, Ouali M, Malvy C, Le Bret M, Svinarchuk F. Stability of G,A triple helices. Nucleic Acids Res 1999; 27:2699-707. [PMID: 10373587 PMCID: PMC148479 DOI: 10.1093/nar/27.13.2699] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work we selected double-stranded DNA sequences capable of forming stable triplexes at 20 or 50 degrees C with corresponding 13mer purine oligonucleotides. This selection was obtained by a double aptamer approach where both the starting sequences of the oligonucleotides and the target DNA duplex were random. The results of selection were confirmed by a cold exchange method and the influence of the position of a 'mismatch' on the stability of the triplex was documented in several cases. The selected sequences obey two rules: (i) they have a high G content; (ii) for a given G content the stability of the resulting triplex is higher if the G residues lie in stretches. The computer simulation of the Mg2+, Na+and Cl-environment around three triplexes by a density scaled Monte Carlo method provides an interpretation of the experimental observations. The Mg2+cations are statistically close to the G N7 and relatively far from the A N7. The presence of an A repels the Mg2+from adjacent G residues. Therefore, the triplexes are stabilized when the Mg2+can form a continuous spine on G N7.
Collapse
Affiliation(s)
- A Debin
- CNRS UMR 8532, Institut Gustave-Roussy, 94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
3
|
Yang L, Liu M, Deng W, Wang C, Bai C, Kan LS. Influence of 5-bromodeoxycytosine substitution on triplex DNA stability and conformation. Biophys Chem 1999; 76:25-34. [PMID: 10028230 DOI: 10.1016/s0301-4622(98)00215-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three triple-helical hairpin DNAs with substitution of 5-bromocytosine for cytosine in different strands have been investigated by molecular mechanics and Raman spectroscopy. The stability of the three substituted triplexes were compared with the corresponding unsubstituted triplex DNA by the molecular mechanics method. Base stacking interactions and strand--strand interactions of each triplex were analyzed in detail. Sugar conformations in these triplexes have been determined by both vibrational spectroscopy and molecular dynamics simulation. The hairpin triplexes with substitution occurring in strand I or both in strands I and III have the main sugar conformation of C3'-endo, while the triplex with substitution occurring in strand III is the combination of C3'-endo and C2'-endo sugar conformation. Theoretical results are basically in agreement with experiments.
Collapse
Affiliation(s)
- L Yang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
4
|
Kiran MR, Bansal M. Molecular dynamics simulations on parallel and antiparallel C.G*G triplexes. J Biomol Struct Dyn 1998; 16:511-26. [PMID: 10052610 DOI: 10.1080/07391102.1998.10508266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Molecular dynamics (MD) studies have been carried out on the Hoogsteen hydrogen bonded parallel and the reverse Hoogsteen hydrogen bonded antiparallel C.G*G triplexes. Earlier, the molecular mechanics studies had shown that the parallel structure was energetically more favourable than the antiparallel structure. To characterize the structural stability of the two triplexes and to investigate whether the antiparallel structure can transit to an energetically more favourable structure, due to the local fluctuations in the structure during the MD simulation, the two structures were subjected to 200ps of constant temperature vacuum MD simulations at 300K. Initially no constraints were applied to the structures and it was observed that for the antiparallel triplex, the structure showed a large root mean square deviation from the starting structure within the first 12ps and the N4-H41--O6 hydrogen bond in the WC duplex got distorted due to a high propeller twist and a moderate increase in the opening angle in the basepairs. Starting from an initial value of 30 degrees , helical twist of the average structure from this simulation had a value of 36 degrees , while the parallel structure stabilized at a twist of 33 degrees. In spite of the hydrogen bond distortions in the antiparallel triplex, it was energetically comparable to the parallel triplex. To examine the structural characteristics of an undistorted structure, another MD simulation was performed on the antiparallel triplex by constraining all the hydrogen bonds. This structure stabilized at an average twist of 33 degrees. In the course of the dynamics though the energy of the molecule - compared to the initial structure - improved, it did not become comparable to the parallel structure. Energy minimization studies performed in the presence of explicit water and counterions also showed the two structures to be equally favourable energetically. Together these results indicate that the parallel C.G*G triplex with Hoogsteen hydrogen bonds also represents a stereochemically and energetically favourable structure for this class of triplexes.
Collapse
Affiliation(s)
- M R Kiran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
5
|
Srinivasan AR, Olson WK. Molecular Models of Nucleic Acid Triple Helixes. I. DNA and RNA Backbone Complexes. J Am Chem Soc 1998. [DOI: 10.1021/ja972720k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A. R. Srinivasan
- Contribution from the Department of Chemistry, Wright-Rieman Laboratories, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087
| | - Wilma K. Olson
- Contribution from the Department of Chemistry, Wright-Rieman Laboratories, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087
| |
Collapse
|
6
|
Srinivasan AR, Olson WK. Molecular Models of Nucleic Acid Triple Helixes. II. PNA and 2‘-5‘ Backbone Complexes. J Am Chem Soc 1998. [DOI: 10.1021/ja972721c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- A. R. Srinivasan
- Contribution from the Department of Chemistry, Wright-Rieman Laboratories, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087
| | - Wilma K. Olson
- Contribution from the Department of Chemistry, Wright-Rieman Laboratories, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854-8087
| |
Collapse
|
7
|
|
8
|
Kiran MR, Bansal M. Sequence-independent recombination triple helices: a molecular dynamics study. J Biomol Struct Dyn 1997; 15:333-45. [PMID: 9399159 DOI: 10.1080/07391102.1997.10508196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent experimental studies have shown that the Rec-A mediated homologous recombination reaction involves a triple helical intermediate, in which the third strand base forms hydrogen bonds with both the bases in the major groove of the Watson-Crick duplex. Such 'mixed' hydrogen bonds allow formation of sequence independent triplexes. DNA triple helices involving 'mixed' hydrogen bonds have been studied, using model building, molecular mechanics (MM) and molecular dynamics (MD). Models were built for a triplex comprising all four possible triplets viz., G.C*C, C.G*G, A.T*T and T.A*A. To check the stability of all the 'mixed' hydrogen bonds in such triplexes and the conformational preferences of such triplex structures, MD studies were carried out starting from two structures with 30 degrees and 36 degrees twist between the basepairs. It was observed that though the two triplexes converged towards a similar structure, the various hydrogen bonds between the WC duplex and the third strand showed differential stabilities. An MD simulation with restrained hydrogen bonds showed that the resulting structure was stable and remained close to the starting structure. These studies help us in defining stable hydrogen bond geometries involving the third strand and the WC duplex. It was observed that in the C.G*G triplets the N7 atom of the second strand is always involved in hydrogen bonding. In the G.C*C triplets, either N3 or O2 in the third strand cytosine can interchangeably act as a hydrogen bond acceptor.
Collapse
Affiliation(s)
- M R Kiran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
9
|
Ojima N, Gekko K, Yamaoka K. Pulsed Electric Linear Dichroism of Poly(dA)·Poly(dT)·Poly(dT) and Poly(rA)·Poly(rU)·Poly(rU) in Solutions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1997. [DOI: 10.1246/bcsj.70.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Sponer J, Burda JV, Mejzlík P, Leszczynski J, Hobza P. Hydrogen-bonded trimers of DNA bases and their interaction with metal cations: ab initio quantum-chemical and empirical potential study. J Biomol Struct Dyn 1997; 14:613-28. [PMID: 9130083 DOI: 10.1080/07391102.1997.10508161] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neutral (G.GC, A.AT, G.AT, T.AT, and C(imino).GC) and protonated (CH+.GC and AH+.GC) hydrogen-bonded trimers of nucleic acid bases were characterized by ab initio methods with the inclusion of electron correlation. In addition, the influence of metal cations on the third-strand binding in Purine-Purine-Pyrimidine (Pu.PuPy) reverse-Hoogsteen triplets has been studied. The ab initio calculations were compared with those from recently introduced force fields (AMBER4.1, CHARMM23, and CFF95). The three-body term in neutral trimers is mostly negligible, and the use of empirical potentials is justified. The only exception is the neutral G.GC Hoogsteen trimer with a three-body term of -4 kcal/mol. Protonated trimers are stabilized by molecular ion-molecular dipole attraction and the interaction within the complex is nonadditive, with the three-body term on the order of -3 kcal/mol. There is a significant induction interaction between the third-strand protonated base and guanine. The calculations indicate an enhancement of the third-strand binding in the G.GC reverse-Hoogsteen trimer due to-metal cation coordination to the N7/O6 position of the third-strand guanine. Interactions between metal cations and complexes of DNA bases are in general highly non-additive; the three-body term is above-10 kcal/mol in a complex of a divalent cation (Ca2+) with the GG reverse-Hoogsteen pair. The pairwise additive empirical potentials qualitatively underestimate the binding energy between cation and base.
Collapse
Affiliation(s)
- J Sponer
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | | | |
Collapse
|
11
|
Dagneaux C, Gousset H, Shchyolkina AK, Ouali M, Letellier R, Liquier J, Florentiev VL, Taillandier E. Parallel and antiparallel A*A-T intramolecular triple helices. Nucleic Acids Res 1996; 24:4506-12. [PMID: 8948642 PMCID: PMC146268 DOI: 10.1093/nar/24.22.4506] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intramolecular triple helices have been obtained by folding back twice oligonucleotides formed by decamers bound by non-nucleotide linkers: dA10-linker-dA10-linker-dT10 and dA10-linker-dT10-linker-dA10. We have thus prepared two triple helices with forced third strand orientation, respectively antiparallel (apA*A-T) and parallel (pA*A-T) with respect to the adenosine strand of the Watson-Crick duplex. The existence of the triple helices has been shown by FTIR, UV and fluorescence spectroscopies. Similar melting temperatures have been obtained in very different oligomer concentration conditions (micromolar solutions for thermal denaturation classically followed by UV spectroscopy, milimolar solutions in the case of melting monitored by FTIR spectroscopy) showing that the triple helices are intramolecular. The stability of the parallel triplex is found to be slightly lower than that of the antiparallel (deltaT(m) = 6 degrees C). The sugar conformations determined by FTIR are different for both triplexes. Only South-type sugars are found in the antiparallel triplex whereas both South- and North-type sugars are detected in the parallel triplex. In this case, thymidine sugars have a South-type geometry, and the adenosine strand of the Watson-Crick duplex has North-type sugars. For the antiparallel triplex the experimental results and molecular modeling data are consistent with a reverse-Hoogsteen like third-strand base pairing and South-type sugar conformation. An energetically optimized model of the parallel A*A-T triple helix with a non-uniform distribution of sugar conformations is discussed.
Collapse
Affiliation(s)
- C Dagneaux
- Laboratoire CSSB - URA CNRS 1430, UFR de Santé-Médecine-Biologie-Humaine, Université Paris XIII, Bobigny, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Vlieghe D, Van Meervelt L, Dautant A, Gallois B, Précigoux G, Kennard O. Parallel and antiparallel (G.GC)2 triple helix fragments in a crystal structure. Science 1996; 273:1702-5. [PMID: 8781231 DOI: 10.1126/science.273.5282.1702] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nucleic acid triplexes are formed by sequence-specific interactions between single-stranded polynucleotides and the double helix. These triplexes are implicated in genetic recombination in vivo and have application to areas that include genome analysis and antigene therapy. Despite the importance of the triple helix, only limited high-resolution structural information is available. The x-ray crystal structure of the oligonucleotide d(GGCCAATTGG) is described; it was designed to contain the d(G middle dotGC)2 fragment and thus provide the basic repeat unit of a DNA triple helix. Parameters derived from this crystal structure have made it possible to construct models of both parallel and antiparallel triple helices.
Collapse
Affiliation(s)
- D Vlieghe
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium. Structurale, EP CNRS, Université de Bordeaux
| | | | | | | | | | | |
Collapse
|
13
|
Ketterlé C, Gabarro-Arpa J, Ouali M, Bouziane M, Auclair C, Helissey P, Giorgi-Renault S, Le Bret M. Binding of Net-Fla, a netropsin-flavin hybrid molecule, to DNA: molecular mechanics and dynamics studies in vacuo and in water solution. J Biomol Struct Dyn 1996; 13:963-77. [PMID: 8832379 DOI: 10.1080/07391102.1996.10508911] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have studied the binding of the hybrid netropsin-flavin (Net-Fla) molecule onto four sequences containing four A. T base pairs. Molecular mechanics minimizations in vacuo show numerous minimal conformations separated by one base pair. 400 ps molecular dynamics simulations in vacuo have been performed using the lowest minima as the starting conformations. During these simulations, the flavin moiety of the drug makes two hydrogen bonds with an amino group of a neighboring guanine. A 200 ps molecular dynamics simulation in explicit water solution suggests that the binding of Net-Fla upon the DNA substrate is enhanced by water bridges. A water molecule bridging the amidinium of Net-Fla to the N3 atom of an adenine seems to be stuck in the drug-DNA complex during the whole simulation. The fluctuations of the DNA helical parameters and of the torsion angles of the sugar-phosphate backbone are very similar in the simulations in vacuo and in water. The time auto-correlation functions for the DNA helical parameters decrease rapidly in the picosecond range in vacuo. The same functions computed from the water solution molecular dynamics simulations seem to have two modes: the rapid mode is similar to the behavior in vacuo, and is followed by a slower mode in the 10 ps range.
Collapse
Affiliation(s)
- C Ketterlé
- Laboratoire de Physicochimie et Pharmacologie des Macromolécules Biologiques, CNRS URA 147, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ouali M, Bouziane M, Ketterlé C, Gabarro-Arpa J, Auclair C, Le Bret M. A molecular mechanics and dynamics study of alternate triple-helices involving the integrase-binding site of the HIV-1 virus and oligonucleotides having a 3'-3' internucleotide junction. J Biomol Struct Dyn 1996; 13:835-53. [PMID: 8723778 DOI: 10.1080/07391102.1996.10508896] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Triple helix formation by oligonucleotides can be extended beyond polypurine tracts with the help of specially designed linkers. In this paper we focus our attention on the integrase-binding site of the HIV-1 virus located on the U5 LTR end which contains two adjacent purine tracts on opposite strands. Two alternate triple helices with a 3'-3' junction in the third strand are considered: 5'-GGTTTTp3'-3'pTGTGT-5' and 5'-GGAAAAp3'-3'pAGAGA-5' The structural plausibility of these triplexes is investigated using molecular mechanics and dynamics simulations, both in vacuo and in aqua. The non-isomorphism of the triplets in the GpT steps in the first sequence, gives rise to non canonical conformations in the torsion angles, hydration appears to be crucial for this triplex. Sugar puckers are predominantly South during in vacuo simulations while they turn East in aqua. In the simulation in aqua the triplexes are shrouded by an hydration shell, however, we have not been able to detect any permanent hydrogen bond bridge between DNA and water. The solvation of ions as well as their radial distribution, appear to be relatively well behaved despite the artifacts known to be generated by the simulation procedure. The experimental feasibility of these structures is discussed.
Collapse
Affiliation(s)
- M Ouali
- Laboratoire de Physicochimie des Macromolécules Biologiques, Villejuif, France
| | | | | | | | | | | |
Collapse
|
15
|
Correlations between the sugar-backbone conformation and the third strand orientation in triple helices. J Mol Struct 1996. [DOI: 10.1016/0022-2860(95)09103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Abstract
DNA triple helices containing two thymine strands and one adenine strand have been studied, using model building followed by energy minimisation, for different orientations of the third strand resulting from variation in the hydrogen bonding between the Watson-Crick duplex and the third strand and the glycosidic torsion angle in the third strand. Our results show that the structure with a parallel orientation of the third strand, in which the third strand base forms Hoogsteen hydrogen bonds with the adenine base in the Watson-Crick duplex, is energetically the most favourable. An antiparallel orientation of the third strand is also possible, in which the third strand base hydrogen bonds to both the bases in the Watson-Crick duplex. This structure is energetically comparable to the parallel structure. For the parallel triplex a 200ps molecular dynamics simulation starting from two different starting structures indicates that at 300K significant structural heterogeneity exists in this triplex structure. The results are compared with existing structural data on this class of triplexes derived from theoretical and NMR techniques.
Collapse
Affiliation(s)
- M R Kiran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
17
|
Raghunathan G, Miles HT, Sasisekharan V. Symmetry and structure of RNA and DNA triple helices. Biopolymers 1995; 36:333-43. [PMID: 7545446 DOI: 10.1002/bip.360360308] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite wide interest in nucleic acid triple helices, there has been no stereochemically satisfactory structure of an RNA triple helix in atomic detail. AN RNA triplex structure has previously been proposed based on fiber diffraction and molecular modeling [S. Arnott and P. J. Bond (1973) Nature New Biology, Vol. 244, pp. 99-101; S. Arnott, P. J. Bond, E. Selsing, and P. J. C. Smith (1976) Nucleic Acids Research, Vol. 3, pp. 2459-2470], but it has nonallowed close contacts at every triplet and is therefore not stereochemically acceptable. We propose here a new model for an RNA triple helix in which the three chains have identical backbone conformations and are symmetry related. There are no short contacts. The modeling employs a novel geometrical approach using the linked atom least squares [P. J. C. Smith and S. Arnott (1978) Acta Crystallographica, Vol. A34, pp. 3-11] program and is not based on energy minimization. In general, the method leads to a range of possible structures rather than a unique structure. In the present case, however, the constraints resulting from the introduction of a third strand limit the possible structures to a very small range of conformation space. This method was used previously to obtain a model for DNA triple helices [G. Raghunathan, H. T. Miles, and V. Sasisekharan (1993) Biochemistry, Vol. 32, pp. 455-462], subsequently confirmed by fiber-type x-ray diffraction of oligomeric crystals [K. Liu, H. T. Miles, K. D. Parris, and V. Sasisekharan (1994) Nature Structural Biology, Vol. 1, pp. 11-12]. The above triple helices have Watson-Crick-Hoogsteen [K. Hoogsteen (1963) Acta Crystallographica, Vol. 16, pp. 907-916] pairing of the three bases. The same modeling method was used to investigate the feasibility of three-dimensional structures based on the three possible alternative hydrogen-bonding schemes: Watson-Crick-reverse Hoogsteen, Donohue [J. Donohue (1953) Proceedings of the National Academy of Science USA, Vol. 39, pp. 470-475] (reverse Watson-Crick)-Hoogsteen, and Donohue-reverse Hoogsteen. We found that none of these can occur in either RNA or DNA helices because they give rise only to structures with prohibitively short contacts between backbone and base atoms in the same chain.
Collapse
Affiliation(s)
- G Raghunathan
- Laboratory of Mathematical Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
18
|
Van Meervelt L, Vlieghe D, Dautant A, Gallois B, Précigoux G, Kennard O. High-resolution structure of a DNA helix forming (C.G)*G base triplets. Nature 1995; 374:742-4. [PMID: 7715732 DOI: 10.1038/374742a0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Triple helices result from interaction between single- and double-stranded nucleic acids. Their formation is a possible mechanism for recombination of homologous gene sequences in nature and provides, inter alia, a basis for artificial control of gene activity. Triple-helix motifs have been extensively studied by a variety of techniques, but few high-resolution structural data are available. The only triplet structures characterized so far by X-ray diffraction were in protein-DNA complexes studied at about 3 A resolution. We report here the X-ray analysis of a DNA nonamer, d(GCGAATTCG), to a resolution of 2.05 A, in which the extended crystal structure contains (C.G)*G triplets as a fragment of triple helix. The guanosine-containing chains are in a parallel orientation. This arrangement is a necessary feature of models for homologous recombination which results ultimately in replacement of one length of DNA by another of similar sequence. The present-structure agrees with many published predictions of triplex organization, and provides an accurate representation of an element that allows sequence-specific association between single- and double-stranded nucleic acids.
Collapse
Affiliation(s)
- L Van Meervelt
- Department of Chemistry, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
19
|
Ouali M, Pothier J, Gabarro-Arpa J, Le Bret M. About the large fluctuations observed using gas-phase molecular dynamics in the K-ras gene containing a mismatch. Biochimie 1995; 77:835-9. [PMID: 8824761 DOI: 10.1016/0300-9084(95)90000-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe how we can reduce the periodic bending motions in the simulation in vacuo of the molecular dynamics of a short DNA fragment containing the Gly 12 hot spot of the K-ras oncogene and having at its center a mismatch CA+.
Collapse
Affiliation(s)
- M Ouali
- Unité de Physicochimie, URA 147 CNRS, Villejuif, France
| | | | | | | |
Collapse
|