1
|
Fontaine R, Rahmad Royan M, Henkel C, Hodne K, Ager-Wick E, Weltzien FA. Pituitary multi-hormone cells in mammals and fish: history, origin, and roles. Front Neuroendocrinol 2022; 67:101018. [PMID: 35870647 DOI: 10.1016/j.yfrne.2022.101018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan Henkel
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjetil Hodne
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
2
|
Nuñez L, Villalobos C, Senovilla L, García-Sancho J. Multifunctional cells of mouse anterior pituitary reveal a striking sexual dimorphism. J Physiol 2003; 549:835-43. [PMID: 12730343 PMCID: PMC2342984 DOI: 10.1113/jphysiol.2003.040758] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The existence of cells storing and secreting two different anterior pituitary (AP) hormones (polyhormonal cells) or responding to several hypothalamic releasing hormones (HRHs) (multiresponsive cells) has been reported previously. These multifunctional cells could be involved in paradoxical secretion (AP hormone secretion evoked by a non-corresponding HRH) and transdifferentiation (phenotypic switch between mature cell types without cell division). Despite their putative physiological relevance, a comprehensive characterization of multifunctional AP cells is lacking. Here we combine calcium imaging (to assess responses to the four HRHs) and multiple sequential immunoassay of the six AP hormones in the same individual cells to perform a complete phenotypic characterization of mouse AP cells. Polyhormonal and multiresponsive cells were identified within all five AP cell types. They were scarce in the more abundant cell types, somatotropes and lactotropes, but quite frequent in corticotropes and gonadotropes. Cells with mixed phenotypes were the rule rather than the exception in thyrotropes, where 56-83 % of the cells stored two to five different hormones. Multifunctional AP cells were much more abundant in females than in males, indicating that the hormonal changes associated with the sexual cycle may promote transdifferentiation. As the phenotypic analysis was performed here after stimulation with HRHs, the fraction of polyhormonal cells might have been underestimated. With this limitation, the polyhormonal cells detected here responded to the HRHs less than the monohormonal ones, suggesting that they might contribute less than expected a priori to paradoxical secretion. Overall, our results reveal a striking sexual dimorphism, the female pituitary being much more plastic than the male pituitary.
Collapse
Affiliation(s)
- Lucía Nuñez
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, Spain
| | | | | | | |
Collapse
|
3
|
Hauspie A, Seuntjens E, Vankelecom H, Denef C. Stimulation of combinatorial expression of prolactin and glycoprotein hormone alpha-subunit genes by gonadotropin-releasing hormone and estradiol-17beta in single rat pituitary cells during aggregate cell culture. Endocrinology 2003; 144:388-99. [PMID: 12488367 DOI: 10.1210/en.2002-220606] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously we showed the existence of rat and mouse anterior pituitary cells coexpressing mRNA from two or more hormone genes in which production and/or storage of the corresponding hormones were not detectable. To substantiate a putative function for these cells, we investigated whether these phenotypes were retained during long-term reaggregate cell culture and whether protagonist regulatory factors could expand cell populations expressing particular hormone mRNA combinations. After 4-wk culture and treatments, aggregates were trypsinized and single cells collected by means of a fluo-rescence-activated cell sorter. Hormone mRNAs were detected by single-cell RT-PCR. Combinatorial hormone mRNA expression was retained in culture. Both estradiol (E2) and GnRH (1 nM) markedly augmented the proportion of cells expressing prolactin (PRL) mRNA together with other hormone mRNAs and cells expressing glycoprotein subunit (GSU)-alpha mRNA together with other hormone mRNAs. GnRH strongly increased the proportion of cells containing alphaGSU mRNA alone, but E2 did not. GnRH and (E2) affected the expansion of a population (approximately 20% of all cells) coexpressing PRL and alphaGSU mRNA without betaGSUs. Immunostaining of stored hormone on tissue sections revealed colocalization of PRL and alphaGSU in the E2- but not in the GnRH-treated cells. The present findings suggest that cells coexpressing different pituitary hormone mRNAs form a distinct population that survives without extrapituitary factors. Their occurrence can be markedly modified by regulatory factors. Certain hormone regimens favor unique coexpressions distinctly at mRNA and protein level. These peculiar characteristics support the notion that combinatorial expression of hormone genes in the pituitary serves a biological role.
Collapse
Affiliation(s)
- A Hauspie
- Laboratory of Cell Pharmacology, University of Leuven (K.U. Leuven), Medical School, Campus Gasthuisberg (O&N), B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
4
|
Seuntjens E, Hauspie A, Vankelecom H, Denef C. Ontogeny of plurihormonal cells in the anterior pituitary of the mouse, as studied by means of hormone mRNA detection in single cells. J Neuroendocrinol 2002; 14:611-9. [PMID: 12153463 DOI: 10.1046/j.1365-2826.2002.00808.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of mRNA of growth hormone (GH), prolactin (PRL), pro-opiomelanocortin (POMC) and the common glycoprotein hormone alpha-subunit (alphaGSU) was studied by means of single cell reverse transcriptase-polymerase chain reaction in male mouse pituitary cells at key time points of fetal and postnatal development: embryonic day 16 (E16); postnatal day 1 (P1) and young-adult age (P38). At E16, the hormone mRNAs examined were detectable, although only in 44% of total cells. Most of the hormone-positive cells expressed only one of the tested hormone mRNAs (monohormonal) but 14% of them contained more than one hormone mRNA (plurihormonal cells). Combinations of GH mRNA with PRL mRNA, of alphaGSU mRNA with GH and/or PRL mRNA and of POMC mRNA with GH and/or PRL mRNA or alphaGSU mRNA were found. As expected, the proportion of hormone-positive cells rose as the mouse aged. The proportions of plurihormonal cells followed a developmental pattern independent of that of monohormonal cells and characteristic for each hormone mRNA examined. Cells coexpressing POMC mRNA with GH or PRL mRNA significantly rose in proportion between E16 and P1, while the proportion of cells coexpressing GH and PRL mRNA markedly increased between P1 and P38. The occurrence of cells displaying combined expression of alphaGSU mRNA with GH and/or PRL mRNA did not significantly change during development. Remarkably, the population of cells expressing PRL mRNA only, was larger at E16 than at P1 and expanded again thereafter. In conclusion, the normal mouse pituitary develops a cell population that is capable of expressing multiple hormone mRNAs, thereby combining typical phenotypes of different cell lineages. These plurihormonal cells are already present during embryonic life. This population is of potential physiological relevance because development-related factors appear to determine which hormone mRNAs are preferentially coexpressed. Coexpression of multiple hormone mRNAs may represent a mechanism to respond to temporally increased endocrine demands. The data also suggest that the control of combined hormone expression is different from that of single hormone expression, raising questions about the current view on pituitary cell lineage specifications.
Collapse
Affiliation(s)
- E Seuntjens
- Laboratory of Cell Pharmacology, University of Leuven (KU Leuven), School of Medicine, Leuven, Belgium
| | | | | | | |
Collapse
|
5
|
Seuntjens E, Hauspie A, Roudbaraki M, Vankelecom H, Denef C. Combined expression of different hormone genes in single cells of normal rat and mouse pituitary. Arch Physiol Biochem 2002; 110:12-5. [PMID: 11935395 DOI: 10.1076/apab.110.1.12.904] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cells displaying combined expression of different pituitary hormone genes (further referred to as 'multi-hormone mRNA cells') were identified in normal rat and mouse pituitary by single cell RT-PCR. These cells do not seem to produce or store all the respective hormones the mRNAs encode for. The cells are already developed at day 16 of embryonic life (E16) in the mouse. Different peptides, such as gamma3-melanocyte-stimulating hormone (gamma3-MSH) and gonadotropin-releasing hormone (GnRH), affect different subsets of these cells. In culture, estrogen and GnRH increase the number of 'multi-hormone mRNA cells' that contain prolactin (PRL) mRNA or mRNA of the alpha-subunit of the glycoprotein hormones (alpha-GSU) but not the number of 'multi-hormone mRNA cells' not containing PRL or alpha-GSU mRNA. 'Multi-hormone mRNA cells' may function as 'reserve cells' in which a particular hormone mRNA may be translated under a particular physiological condition demanding a rapid increase of that hormone.
Collapse
Affiliation(s)
- E Seuntjens
- Laboratory of Cell Pharmacology, University of Leuven (K.U. Leuven), Medical School, Campus Gasthuisberg (O & N), Belgium
| | | | | | | | | |
Collapse
|
6
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1556] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|
7
|
Castaño JP, Faught WJ, Frawley LS. Multiple measurements of gene expression in single, living cells enable molecular analysis of endocrine cell heterogeneity. Ann N Y Acad Sci 1998; 839:336-40. [PMID: 9629171 DOI: 10.1111/j.1749-6632.1998.tb10787.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J P Castaño
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
8
|
Castaño JP, Faught WJ, Glavé EE, Russell BS, Frawley LS. Discordance of prolactin gene transcription, mRNA storage, and hormone release in individual mammotropes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:E390-6. [PMID: 9124544 DOI: 10.1152/ajpendo.1997.272.3.e390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mammotrope has traditionally been a favored model for studies of hormonal gene expression, biosynthesis, and release. However, the primary site(s) at which these processes are coordinated and integrated remains to be established. Because there is considerable indirect evidence to suggest that the rate of prolactin (PRL) secretion is dictated, in large part, at the level of transcription, the relative contribution of other putative regulatory foci has received less attention. The purpose of the present study was to test the primacy of transcriptional regulation at the single-cell level. To this end, we quantified within individual mammotropes the relationship between PRL gene transcription, mRNA storage, and hormone release. This was accomplished by the combined application of "real-time" measurement of gene expression, in situ hybridization cytochemistry, and reverse hemolytic plaque assay, respectively. Our results demonstrate a quantitative dissociation among these variables, suggesting that control mechanisms besides transcription play a primary role in integrating and coordinating flow through the PRL secretory pathway.
Collapse
Affiliation(s)
- J P Castaño
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | |
Collapse
|
9
|
Stephen Frawley L. Role of the hypophyseal neurointermediate lobe in the dynamic release of prolactin. Trends Endocrinol Metab 1994; 5:107-12. [PMID: 18407195 DOI: 10.1016/1043-2760(94)90091-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The dynamic release of prolactin (PRL) occurs in a region of the anterior pituitary lobe (AP) that receives its blood supply primarily from the hypophyseal neurointermediate lobe (NIL) via the short portal vessels. This relationship, coupled with a growing body of supportive evidence, suggests that the hypophysiotropic signal mediating the massive discharge o f AP PRL derives from the NIL rather than the hypothalamic median eminence, as previously believed. Moreover, a major component of this signal appears to be a-MSH.
Collapse
Affiliation(s)
- L Stephen Frawley
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|