1
|
Loring RH. The Molecular Basis of Curaremimetic Snake Neurotoxin Specificity for Neuronal Nicotinic Receptor Subtypes. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549309033109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
2
|
Yang X, Knapp DJ, Criswell HE, Breese GR. Action of Ethanol and Zolpidem on gamma-Aminobutyric Acid Responses from Cerebellar Purkinje Neurons: Relationship to beta-Adrenergic Receptor Input. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03963.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Spurden DP, Court JA, Lloyd S, Oakley A, Perry R, Pearson C, Pullen RG, Perry EK. Nicotinic receptor distribution in the human thalamus: autoradiographical localization of [3H]nicotine and [125I] alpha-bungarotoxin binding. J Chem Neuroanat 1997; 13:105-13. [PMID: 9285355 DOI: 10.1016/s0891-0618(97)00038-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The thalamus plays a major role in relaying and transforming information that is relayed to the cortex and in turn modulates cortical outputs. The reticular nucleus projects to the other thalamic nuclei, modulating and integrating their activity. The distribution of high affinity nicotine and alpha-bungarotoxin (alpha BTX) receptors in the human thalamus has been investigated by radioligand autoradiography in post mortem human tissue. [3H]nicotine binding in the human thalamus was high in most thalamic nuclei, especially in the lateral dorsal, the medial geniculate, lateral geniculate and anterior nuclei. The distribution of [125I] alpha BTX binding was quite distinct from [3H]nicotine binding. [125I] alpha BTX binding was generally lower (< 0.26-11.62 fmol/mg protein compared with 6.68-36.17 fmol/mg protein for nicotine binding) and concentrated in the reticular nucleus, with discrete groups of cells displaying higher binding in the latter. These results indicate differences between the distribution of nicotinic receptors in humans and those previously reported in mice and monkeys. Changes in high affinity nicotine and alpha BTX receptors in the thalamus may contribute to symptoms observed in neuropathological conditions associated with disorders of perception and movement such as Dementia with Lewy Bodies, Alzheimer's Disease and Schizophrenia.
Collapse
Affiliation(s)
- D P Spurden
- M.R.C. Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Palma E, Bertrand S, Binzoni T, Bertrand D. Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J Physiol 1996; 491 ( Pt 1):151-61. [PMID: 9011607 PMCID: PMC1158766 DOI: 10.1113/jphysiol.1996.sp021203] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The recently isolated compound methyllycaconitine (MLA) is a plant toxin which is a competitive inhibitor of nicotinic acetylcholine receptors (nAChRs). We found that homomeric alpha 7 receptors display a very high sensitivity to MLA with an IC50 in the picomolar range. 2. The competitive nature of the alpha 7 MLA blockade was reinforced by the observation that this compound has no action on wild-type serotoninergic receptors (5-HT3), whereas it is a powerful antagonist of chimaeric receptors alpha 7-5-HT3. 3. The time course of MLA inhibition of the wild-type (WT) alpha 7 follows a monotonic exponential decay whose time constant is proportional to the MLA concentration and could be described by a bimolecular mechanism with a forward rate constant (k+) of 2.7 x 10(7) S-1 M-1. In contrast, recovery from MLA inhibition displays an S-shaped time course that is incompatible with a simple bimolecular reaction. 4. Given the pentameric nature of the neuronal nicotinic receptors, a linear chain model, including five putative MLA binding sites corresponding to the homomeric nature of alpha 7, is proposed. 5. Both onset and recovery data obtained on the alpha 7 wild-type receptor are adequately described by this model assuming that a single MLA molecule is sufficient to block receptor function. 6. Analysis of MLA blockade and recovery of reconstituted heteromeric alpha 4 beta 2 receptors reveals, as expected, a time course compatible with only two binding sites for the toxin and, thus, further supports the validity of our model.
Collapse
Affiliation(s)
- E Palma
- Department of Physiology, Faculty of Medicine, University of Geneva, Switzerland
| | | | | | | |
Collapse
|
5
|
Vidal C, Changeux JP. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience 1993; 56:23-32. [PMID: 7901807 DOI: 10.1016/0306-4522(93)90558-w] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The importance of the cholinergic innervation of the neocortex in cognitive functions has been shown in a number of clinical and animal studies. Until recently, attempts to study the mode of action of acetylcholine in the neocortex have concentrated on muscarinic effects, whereas cholinergic actions mediated by nicotinic receptors have been difficult to demonstrate. The present work was undertaken to study the mechanism of action of nicotinic agents on cortical neurons and compare it to muscarinic effects by means of intracellular recordings in a slice preparation. The study was performed in the prelimbic area of the rat prefrontal cortex, a cortical region particularly involved in cognitive processes. Recordings were made from pyramidal cells located in layers II/III and synaptic potentials were evoked by stimulation of superficial cortical layers. Iontophoretic applications of nicotinic agonists (nicotine, dimethylphenylpiperazinium, cytisine) increased the amplitude of the monosynaptic excitatory postsynaptic potential mediated by non-N-methyl-D-aspartate glutamate receptors in 14% (22/159) of cells. This effect was abolished by the selective nicotinic blocker, neuronal bungarotoxin (IC50 = 0.6-0.7 microM) and by dihydro-beta-erythroidine (IC50 = 20-30 microM), whereas hexamethonium, mecamylamine, curare and alpha-bungarotoxin were ineffective. The nicotinic agonists did not change resting membrane potential, input resistance or current-voltage relationship. They also did not affect the depolarizations produced by glutamate applied by iontophoresis in the somatic or dendritic area. In contrast, the muscarinic agonists (muscarine, acetyl-beta-methylcholine) decreased the amplitude of the excitatory postsynaptic potential in 100% of the neurons tested. Atropine was more effective (IC50 = 0.08 microM) than pirenzepine (IC50 = 2 microM) to antagonize the muscarinic action. These effects were observed in the absence of any direct postsynaptic change in membrane potential or input resistance, provided that the site of the iontophoretic application was more than 100 microM distant from the soma. The muscarinic agonists did not influence the actions of iontophoretically applied glutamate. These results suggest that nicotinic and muscarinic agonists modulate excitatory synaptic transmission mediated at dendritic sites by non-N-methyl-D-aspartate glutamate receptors, possibly through a presynaptic action. Thus ascending cholinergic systems may take part in information processing in the prefrontal cortex through the control of ongoing excitation to pyramidal cells.
Collapse
Affiliation(s)
- C Vidal
- Institut Pasteur, UA CNRS 1284, Département des Biotechnologies, Paris, France
| | | |
Collapse
|
6
|
Lukas RJ, Bencherif M. Heterogeneity and regulation of nicotinic acetylcholine receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1992; 34:25-131. [PMID: 1587717 DOI: 10.1016/s0074-7742(08)60097-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R J Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona 85013
| | | |
Collapse
|
7
|
Identification of sequence segments forming the alpha-bungarotoxin binding sites on two nicotinic acetylcholine receptor alpha subunits from the avian brain. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98607-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Wong LA, Gallagher JP. Pharmacology of nicotinic receptor-mediated inhibition in rat dorsolateral septal neurones. J Physiol 1991; 436:325-46. [PMID: 2061835 PMCID: PMC1181508 DOI: 10.1113/jphysiol.1991.sp018553] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. Intracellular electrophysiological techniques were employed to investigate the effects of nicotinic receptor stimulation on rat dorsolateral septal nucleus (DLSN) neurones in a submerged rat brain slice preparation. 2. Acetylcholine (in the presence of the muscarinic antagonist, atropine), nicotine or dimethylphenylpiperazinium (DMPP), applied either by pressure ejection or superfusion, produced predominantly a membrane potential hyperpolarization. 3. Following concentration-response comparisons, DMPP appeared to exhibit fewer desensitizing properties and greater efficacy than nicotine with half-maximal hyperpolarizing responses attainable at 3 and 10 microM, respectively. 4. Pharmacological analyses revealed that the agonist-induced membrane hyperpolarization was sensitive to antagonism by mecamylamine (50-100 microM) and neuronal bungarotoxin (0.2-0.3 microM), but not alpha-bungarotoxin (0.5-1.0 microM), curare (10-50 microM) or dihydro-beta-erythroidine (50-100 microM). 5. Hyperpolarizing responses to DMPP were found to reverse near the equilibrium potential for potassium and were sensitive to changes in extracellular potassium concentration as predicted by the Nernst equation. Under single-electrode voltage clamp, application of DMPP produced an outward current (75-100 pA) which approached reversal at around -88 mV. These findings indicated that the hyperpolarizing response to nicotinic receptor stimulation was mediated by changes in membrane permeability to potassium. 6. DMPP-induced membrane hyperpolarization resulted from a direct action on postsynaptic DLSN neurones since the response persisted under conditions of superfusion with calcium-free/high-magnesium media or tetrodotoxin; both conditions blocked orthodromically induced neurotransmission. The hyperpolarizing response remained unaltered in TTX but was diminished in calcium-free/high-magnesium media. Further studies revealed blockade of the DMPP response following intracellular injection of EGTA. This response was also sensitive to antagonism by various calcium-dependent potassium channel blockers including apamin, barium and tetraethylammonium. 7. Our studies reveal a novel class of CNS nicotinic receptor whose action upon stimulation by an agonist results in a membrane hyperpolarization via a calcium-dependent increase in potassium ion conductance.
Collapse
Affiliation(s)
- L A Wong
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston
| | | |
Collapse
|
9
|
McLane KE, Wu XD, Conti-Tronconi BM. Amino acid residues forming the interface of a neuronal nicotinic acetylcholine receptor with kappa-bungarotoxin: a study using single residue substituted peptide analogs. Biochem Biophys Res Commun 1991; 176:11-7. [PMID: 2018515 DOI: 10.1016/0006-291x(91)90882-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
kappa-Bungarotoxin is a high affinity antagonist of neuronal nicotinic acetylcholine receptors of the alpha 3 subtype. Three sequence segments of the alpha 3 subunit that contribute to forming the binding site for kappa-bungarotoxin were previously located using synthetic peptides corresponding to the complete alpha 3 subunit, i.e., alpha 3(1-18), alpha 3(50-71) and alpha 3(180-201). Here we use single residue substituted peptide analogs of the alpha 3(50-71) sequence, in which amino acids are sequentially replaced by Gly, to determine which residues are important for kappa-bungarotoxin binding activity. Although no single substitution obliterated kappa-bungarotoxin binding, several amino acid substitutions lowered the affinity for kappa-bungarotoxin--i.e., two negatively charged residues (Glu51 and Asp62), and several aliphatic and aromatic residues (Leu54, Leu56, and Tyr63). These results indicate that the interface of the alpha 3 subunit with kappa-bungarotoxin involves primarily hydrophobic interactions, and a few negatively charged residues.
Collapse
Affiliation(s)
- K E McLane
- Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
10
|
Giacobini E. Nicotinic cholinergic receptors in human brain: effects of aging and Alzheimer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1991; 296:303-15. [PMID: 1781336 DOI: 10.1007/978-1-4684-8047-4_28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- E Giacobini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794
| |
Collapse
|
11
|
Abstract
A general review of cholinergic receptors in human brain is presented. The paper focuses upon changes in normal aging brain and in Alzheimer disease. Studies from five different approaches are reported: 1) molecular biology; 2) receptor binding studies; 3) studies with specific neurotoxins; 4) immunocytochemistry; and 5) PET scan. These studies document profound and characteristic differences between the normal aging and the pathological Alzheimer brain with regard to cholinergic receptor localization, distribution, and function.
Collapse
Affiliation(s)
- E Giacobini
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794
| |
Collapse
|
12
|
Sugaya K, Giacobini E, Chiappinelli VA. Nicotinic acetylcholine receptor subtypes in human frontal cortex: changes in Alzheimer's disease. J Neurosci Res 1990; 27:349-59. [PMID: 2097379 DOI: 10.1002/jnr.490270314] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular genetic and pharmacological studies have suggested that several subtypes of nicotinic acetylcholine receptors exist in the mammalian and avian brain. Combining 3H-(-)-nicotine, 125I-alpha-bungarotoxin, and 125I-kappa-bungarotoxin as ligands, we report here the first evidence for the existence in human frontal cortex of at least three different subtypes of nicotinic receptors. Autoradiographic analysis shows that specific 125I-kappa-bungarotoxin binding sites are concentrated mainly in several cortical layers. We also show that kappa-bungarotoxin, but not alpha-bungarotoxin decreases the evoked release of 3H-acetylcholine in rat cortical slices, indicating a likely presynaptic localization for some of the alpha-bungarotoxin-insensitive kappa-bungarotoxin sites in mammalian brain. The brains of patients with Alzheimer's disease show marked decreases in Bmax values for low-affinity 125I-kappa-bungarotoxin sites and both high- and low-affinity 3H-nicotine sites, whereas 125I-alpha-bungarotoxin sites are not significantly different in number from age-matched control brains. We conclude that Alzheimer's disease does not affect all subtypes of nicotinic receptors in the frontal cortex to the same extent.
Collapse
Affiliation(s)
- K Sugaya
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-9230
| | | | | |
Collapse
|
13
|
Chiappinelli VA, Wolf KM, Grant GA, Chen SJ. Kappa 2-bungarotoxin and kappa 3-bungarotoxin: two new neuronal nicotinic receptor antagonists isolated from the venom of Bungarus multicinctus. Brain Res 1990; 509:237-48. [PMID: 2322821 DOI: 10.1016/0006-8993(90)90548-p] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuronal nicotinic acetylcholine receptors are recognized with high affinity by two snake venom kappa-neurotoxins, kappa-bungarotoxin and kappa-flavitoxin. Native and radiolabeled kappa-neurotoxins have been used to localize and quantitate neuronal nicotinic receptors in a variety of species. We now report the identification of two new kappa-neurotoxins. kappa 2-Bungarotoxin and kappa 3-bungarotoxin were purified from the venom of Bungarus multicinctus collected in the province of Guangdong, China. kappa-Bungarotoxin has as yet not been found in this venom, although it is the only kappa-neurotoxin to be isolated thus far from Taiwanese Bungarus multicinctus. The geographical separation of Guangdong and Taiwan might account for this evolutionary divergence within the species. Both of the new kappa-neurotoxins are potent antagonists of nicotinic transmission in the chick ciliary ganglion. kappa 3-Bungarotoxin, the least potent of the kappa-neurotoxins, produces a complete blockage of nicotinic transmission in 60 min at 250 nM. Protection experiments using the short-acting nicotinic antagonists dihydro-beta-erythroidine and (+)-tubocurarine demonstrate that kappa 2-bungarotoxin blocks transmission by binding to the acetylcholine recognition sites of neuronal nicotinic receptors. The isoelectric point of kappa 2-bungarotoxin (pI = 8.9) is similar to that of kappa-bungarotoxin and kappa-flavitoxin, but kappa 3-bungarotoxin is considerably more basic, with pI greater than 11. Partial amino acid sequences are reported for both kappa 2-bungarotoxin and kappa 3-bungarotoxin. These sequences show a high degree of homology (approximately 80%) with other kappa-neurotoxins, and allow the determination of the critical differences between the kappa-neurotoxins and the structurally related alpha-neurotoxins. For example, all 4 kappa-neurotoxins lack a tryptophanyl residue which is invariant and important for function in the alpha-neurotoxins. The kappa-neurotoxins also differ from the alpha-neurotoxins by having an invariant prolinyl residue at a critical sequence position. Heterodimers were detected consisting of one subunit each of kappa 2-bungarotoxin and kappa 3-bungarotoxin. These heterodimers, which form between any combination of two kappa-neurotoxins, appear to be physiologically active and confirm that a further distinction between kappa-neurotoxins and alpha-neurotoxins is the strong tendency of the former to self-associate in solution. The present results help to establish the definition of 'kappa-neurotoxin'. These snake toxins are now being used by a number of laboratories in physiological and biochemical experiments on neuronal nicotinic receptors from a variety of species.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- V A Chiappinelli
- Department of Pharmacology, St. Louis University School of Medicine, MO 63104
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- E Giacobini
- Department of Pharmacology, Southern Illinois University, School of Medicine, Springfield 62794-9230
| |
Collapse
|