1
|
Alahmad R, Hinchey LM, Shaikh M, Amirsadri A, Javanbakht A. Gene expression and epigenetic changes in post-traumatic stress disorder, depression, and anxiety in first responders: A systematic review. J Psychiatr Res 2025; 182:438-451. [PMID: 39892213 DOI: 10.1016/j.jpsychires.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE Police, firefighters, dispatchers, and emergency medical technicians-collectively known as first responders-are a unique population frequently exposed to chronic, traumatic incidents. This exposure results in a high prevalence of PTSD, depression, and anxiety, posing a substantial public health concern. Genetic predispositions and epigenetic modifications that regulate gene expression are significant contributors to trauma-related pathologies. This systematic review aims to summarize current data on epigenetic and gene expression changes in first responders related to three post-trauma pathologies: PTSD, depression, and anxiety. We also explore genetic pathways across these disorders to identify potential commonalities and therapeutic targets. METHODS Following PRISMA guidelines, databases were searched from July to October 2023, yielding 1103 studies, 12 of which met the inclusion criteria (total N = 6943). RESULTS Of the included studies, 11 examined PTSD, consistently implicating stress-response genes, such as those in the hypothalamic-pituitary-adrenal axis (e.g., FKBP5, NR3C1), and genes related to inflammation and immune responses. Three studies focused on depression-related genetic biomarkers but reported no significant genome-wide methylation differences between responders with current versus no major depressive disorder (MDD). No studies addressed epigenetic or gene expression changes linked to anxiety. CONCLUSION This review identified novel genes and pathways related to trauma as potential targets for future research and pharmacological therapy. It also highlights a significant gap in the literature, emphasizing the need for broader research to investigate the genetic underpinnings of trauma exposure in first responders, aiming to identify relevant pathways and therapeutic targets.
Collapse
Affiliation(s)
- Rasheed Alahmad
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Detroit, MI 48201, USA.
| | - Liza M Hinchey
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Detroit, MI 48201, USA
| | - Manahil Shaikh
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Detroit, MI 48201, USA
| | - Alireza Amirsadri
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Detroit, MI 48201, USA
| | - Arash Javanbakht
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 3901 Chrysler Service Dr., Detroit, MI 48201, USA
| |
Collapse
|
2
|
Jaholkowski P, Bahrami S, Fominykh V, Hindley GFL, Tesfaye M, Parekh P, Parker N, Filiz TT, Nordengen K, Hagen E, Koch E, Bakken NR, Frei E, Birkenæs V, Rahman Z, Frei O, Haavik J, Djurovic S, Dale AM, Smeland OB, O'Connell KS, Shadrin AA, Andreassen OA. Charting the shared genetic architecture of Alzheimer's disease, cognition, and educational attainment, and associations with brain development. Neurobiol Dis 2024; 203:106750. [PMID: 39608471 DOI: 10.1016/j.nbd.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 11/30/2024] Open
Abstract
The observation that the risk of developing Alzheimer's disease is reduced in individuals with high premorbid cognitive functioning, higher educational attainment, and occupational status has led to the 'cognitive reserve' hypothesis. This hypothesis suggests that individuals with greater cognitive reserve can tolerate a more significant burden of neuropathological changes before the onset of cognitive decline. The underpinnings of cognitive reserve remain poorly understood, although a shared genetic basis between measures of cognitive reserve and Alzheimer's disease has been suggested. Using the largest samples to date and novel statistical tools, we aimed to investigate shared genetic variants between Alzheimer's disease, and measures of cognitive reserve; cognition and educational attainment to identify molecular and neurobiological foundations. We applied the causal mixture model (MiXeR) to estimate the number of trait-influencing variants shared between Alzheimer's disease, cognition, and educational attainment, and condFDR/conjFDR to identify shared loci. To provide biological insights loci were functionally characterized. Subsequently, we constructed a Structural Equation Model (SEM) to determine if the polygenic foundation of cognition has a direct impact on Alzheimer's disease risk, or if its effect is mediated through established risk factors for the disease, using a case-control sample from the UK Biobank. Univariate MiXeR analysis (after excluding chromosome 19) revealed that Alzheimer's disease was substantially less polygenic (450 trait-influencing variants) compared to cognition (11,100 trait-influencing variants), and educational attainment (12,700 trait-influencing variants). Bivariate MiXeR analysis estimated that Alzheimer's disease shared approximately 70 % of trait-influencing variants with cognition, and approximately 40 % with educational attainment, with mixed effect directions. Using condFDR analysis, we identified 18 loci jointly associated with Alzheimer's disease and cognition and 6 loci jointly associated with Alzheimer's disease and educational attainment. Genes mapped to shared loci were associated with neurodevelopment, expressed in early life, and implicated the dendritic tree and phosphatidylinositol phosphate binding mechanisms. Spatiotemporal gene expression analysis of the identified genes showed that mapped genes were highly expressed during the mid-fetal period, further suggesting early neurodevelopmental stages as critical periods for establishing cognitive reserve which affect the risk of Alzheimer's disease in old age. Furthermore, our SEM analysis showed that genetic variants influencing cognition had a direct effect on the risk of developing Alzheimer's disease, providing evidence in support of the neurodevelopmental hypothesis of the disease.
Collapse
Affiliation(s)
- Piotr Jaholkowski
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Shahram Bahrami
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vera Fominykh
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Guy F L Hindley
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Markos Tesfaye
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pravesh Parekh
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nadine Parker
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tahir T Filiz
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Espen Hagen
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elise Koch
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nora R Bakken
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Evgeniia Frei
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Viktoria Birkenæs
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Zillur Rahman
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Srdjan Djurovic
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA; Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Olav B Smeland
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kevin S O'Connell
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
3
|
Chemical Stimulation of Rodent and Human Cortical Synaptosomes: Implications in Neurodegeneration. Cells 2021; 10:cells10051174. [PMID: 34065927 PMCID: PMC8151714 DOI: 10.3390/cells10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity events, including long-term potentiation (LTP), are often regarded as correlates of brain functions of memory and cognition. One of the central players in these plasticity-related phenomena is the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR). Increased levels of AMPARs on postsynaptic membranes thus constitute a biochemical measure of LTP. Isolated synaptic terminals (synaptosomes) are an excellent ex vivo tool to monitor synaptic physiology in healthy and diseased brains, particularly in human research. We herein describe three protocols for chemically-induced LTP (cLTP) in synaptosomes from both rodent and human brain tissues. Two of these chemical stimulation protocols are described for the first time in synaptosomes. A pharmacological block of synaptosomal actin dynamics confirmed the efficiency of the cLTP protocols. Furthermore, the study prototypically evaluated the deficiency of cLTP in cortical synaptosomes obtained from human cases of early-onset Alzheimer’s disease (EOAD) and frontotemporal lobar degeneration (FLTD), as well as an animal model that mimics FLTD.
Collapse
|
4
|
Inagaki C. [Amyloid β hypothesis in Alzheimer's disease and Cl --ATPase-Neuronal cell death via PI4KIIα inhibition and recovery agents]. Nihon Yakurigaku Zasshi 2021; 156:166-170. [PMID: 33952846 DOI: 10.1254/fpj.20095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the brains of patients with Alzheimer's disease, a decrease in phosphatidylinositol phosphate (PIP) requiring Cl--ATPase activity was found. In cultured rat hippocampal neurons, pathophysiological concentrations of amyloid β proteins (Aβs≤10 nM) lowered PIP levels and Cl--ATPase activity with an increase in intracellular Cl- concentrations, resulting in Cl--dependent enhancements in glutamate neurotoxicity and, ultimately, neuronal cell death. Pathophysiological concentrations of Aβs(0.1-10 nM) directly lowered phosphatidylinositol-4-kinase. Non-toxic peptide fragments of Aβ, such as Ile-Gly-Leu, recovered Aβ-induced inhibition of recombinant human phosphatidylinositol-4-kinase IIα (PI4KIIα) and the intrahippocampally administered Aβ-induced degeneration of hippocampal neurons and impairment of spatial memory in mice. Agents with the potential to block these neurotoxic mechanisms of Aβ were summarized herein as (1) Aβ antagonists, (2) substrates of PI4K, (3) PI4K product, (4) PI4K activators, and (5) GABAc receptor stimulants.
Collapse
|
5
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Kuan PF, Yang X, Clouston S, Ren X, Kotov R, Waszczuk M, Singh PK, Glenn ST, Gomez EC, Wang J, Bromet E, Luft BJ. Cell type-specific gene expression patterns associated with posttraumatic stress disorder in World Trade Center responders. Transl Psychiatry 2019; 9:1. [PMID: 30664621 PMCID: PMC6341096 DOI: 10.1038/s41398-018-0355-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Posttraumatic stress disorder (PTSD), a chronic disorder resulting from severe trauma, has been linked to immunologic dysregulation. Gene expression profiling has emerged as a promising tool for understanding the pathophysiology of PTSD. However, to date, all but one gene expression study was based on whole blood or unsorted peripheral blood mononuclear cell (PBMC), a complex tissue consisting of several populations of cells. The objective of this study was to utilize RNA sequencing to simultaneously profile the gene expression of four immune cell subpopulations (CD4T, CD8T, B cells, and monocytes) in 39 World Trade Center responders (20 with and 19 without PTSD) to determine which immune subsets play a role in the transcriptomic changes found in whole blood. Transcriptome-wide analyses identified cell-specific and shared differentially expressed genes across the four cell types. FKBP5 and PI4KAP1 genes were consistently upregulated across all cell types. Notably, REST and SEPT4, genes linked to neurodegeneration, were among the top differentially expressed genes in monocytes. Pathway analyses identified differentially expressed gene sets involved in mast cell activation and regulation in CD4T, interferon-beta production in CD8T, and neutrophil-related gene sets in monocytes. These findings suggest that gene expression indicative of immune dysregulation is common across several immune cell populations in PTSD. Furthermore, given notable differences between cell subpopulations in gene expression associated with PTSD, the results also indicate that it may be valuable to analyze different cell populations separately. Monocytes may constitute a key cell type to target in research on gene expression profile of PTSD.
Collapse
Affiliation(s)
- Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Xiaohua Yang
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sean Clouston
- Department of Family and Preventive Medicine, Stony Book University, Stony Brook, NY, USA
| | - Xu Ren
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Roman Kotov
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Monika Waszczuk
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Prashant K Singh
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sean T Glenn
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Evelyn Bromet
- Department of Psychiatry, Stony Book University, Stony Brook, NY, USA
| | - Benjamin J Luft
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
8
|
Koran MEI, Hohman TJ, Meda SA, Thornton-Wells TA. Genetic interactions within inositol-related pathways are associated with longitudinal changes in ventricle size. J Alzheimers Dis 2014; 38:145-54. [PMID: 24077433 DOI: 10.3233/jad-130989] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genetic etiology of late-onset Alzheimer's disease (LOAD) has proven complex, involving clinical and genetic heterogeneity and gene-gene interactions. Recent genome wide association studies in LOAD have led to the discovery of novel genetic risk factors; however, the investigation of gene-gene interactions has been limited. Conventional genetic studies often use binary disease status as the primary phenotype, but for complex brain-based diseases, neuroimaging data can serve as quantitative endophenotypes that correlate with disease status and closely reflect pathological changes. In the Alzheimer's Disease Neuroimaging Initiative cohort, we tested for association of genetic interactions with longitudinal MRI measurements of the inferior lateral ventricles (ILVs), which have repeatedly shown a relationship to LOAD status and progression. We performed linear regression to evaluate the ability of pathway-derived SNP-SNP pairs to predict the slope of change in volume of the ILVs. After Bonferroni correction, we identified four significant interactions in the right ILV (RILV) corresponding to gene-gene pairs SYNJ2-PI4KA, PARD3-MYH2, PDE3A-ABHD12B, and OR2L13-PRKG1 and one significant interaction in the left ILV (LILV) corresponding to SYNJ2-PI4KA. The SNP-SNP interaction corresponding to SYNJ2-PI4KA was identical in the RILV and LILV and was the most significant interaction in each (RILV: p = 9.13 × 10(-12); LILV: p = 8.17 × 10(-13)). Both genes belong to the inositol phosphate signaling pathway which has been previously associated with neurodegeneration in AD and we discuss the possibility that perturbation of this pathway results in a down-regulation of the Akt cell survival pathway and, thereby, decreased neuronal survival, as reflected by increased volume of the ventricles.
Collapse
Affiliation(s)
- Mary Ellen I Koran
- Center for Human Genetics and Research, Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
9
|
Lim WLF, Martins IJ, Martins RN. The involvement of lipids in Alzheimer's disease. J Genet Genomics 2014; 41:261-74. [PMID: 24894353 DOI: 10.1016/j.jgg.2014.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
It has been estimated that Alzheimer's disease (AD), the most common form of dementia, will affect approximately 81 million individuals by 2040. To date, the actual cause and cascade of events in the progression of this disease have not been fully determined. Furthermore, there is currently no definitive blood test or simple diagnostic method for AD. Considerable efforts have been put into proteomic approaches to develop a diagnostic blood test, but to date these efforts have not been successful. More recently, there has been a stronger focus on lipidomic studies in the hope of increasing our understanding of the underlying mechanisms leading to AD and developing an AD blood test. It is well known that the strongest genetic risk factor for AD is the ε4 variant of apolipoprotein E (APOE). Evidence suggests that the ApoE protein, a major lipid transporter, plays a key role in the pathogenesis of AD, and its role in both normal and aberrant lipid metabolism warrants further extensive investigation. Here, we review ApoE-lipid interactions, as well as the roles that lipids may play in the pathogenesis of AD.
Collapse
Affiliation(s)
- Wei Ling Florence Lim
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ian James Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia
| | - Ralph Nigel Martins
- School of Medical Sciences, Edith Cowan University, Joondalup 6027, Australia; Centre of Excellence in Alzheimer's Disease Research and Care, Joondalup 6027, Australia; McCusker Foundation for Alzheimer's Disease Research Inc., Suite 22, Hollywood Medical Centre, Nedlands 6009, Australia; School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
| |
Collapse
|
10
|
Xiong ZM, Kitagawa K, Nishiuchi Y, Kimura T, Inagaki C. Protective effects of Aβ-derived tripeptide, Aβ32–34, on Aβ1–42-induced phosphatidylinositol 4-kinase inhibition and neurotoxicity. Neurosci Lett 2007; 419:247-52. [PMID: 17499922 DOI: 10.1016/j.neulet.2007.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/10/2007] [Accepted: 04/10/2007] [Indexed: 12/20/2022]
Abstract
We previously reported that the neurotoxicity of pathophysiological concentrations of amyloid beta proteins (Abetas, 0.1-10nM) as assessed by the inhibition of type II phosphatidylinositol 4-kinase (PI4KII) activity and the enhancement of glutamate toxicity was blocked by a short fragment of Abeta, Abeta(31-35). Such protective effects of shorter fragments derived from Abeta(31-35) were examined in this study to reach the shortest effective peptide, using recombinant human PI4KII and primary cultured rat hippocampal neurons. Among the peptides tested (Abeta(31-34), Abeta(31-33), Abeta(31-32), Abeta(32-35), Abeta(33-35), Abeta(34-35), Abeta(32-34), Abeta(33-34) and Abeta(32-33)), Abeta(31-34), Abeta(32-35) and Abeta(32-34) blocked both the Abeta(1-42)-induced inhibition of PI4KII activity and enhancement of glutamate toxicity on cell viability. The shortest peptide among them, Abeta(32-34), showed a dose-dependent protective effect with 50% effective concentration near 1nM, while Abeta(34-32), with a reverse amino acid sequence for Abeta(32-34), showed no protective effects. Thus, a tripeptide, Abeta(32-34) i.e. Ile-Gly-Leu, may be available as a lead compound for designing effective Abeta antagonists.
Collapse
Affiliation(s)
- Zheng-Mei Xiong
- Department of Pharmacology, Kansai Medical University, Fumizono-cho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | | | | | | | |
Collapse
|
11
|
Cole GM, Frautschy SA. The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol 2007; 42:10-21. [PMID: 17049785 DOI: 10.1016/j.exger.2006.08.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 08/23/2006] [Accepted: 08/23/2006] [Indexed: 12/15/2022]
Abstract
Although increased lifespan is associated with reduced insulin signaling, insulin signaling is essential for neuronal development and survival. Insulin resistance is central to Type II diabetes and is also implicated in the pathogenesis of Alzheimer's Disease (AD). This has prompted ongoing clinical trials in AD patients to test the efficacy of improving insulin - like signaling with dietary omega-3 fatty acids or insulin - sensitizing drugs as well as exercise regimens. Here we review the role of insulin signaling in brain aging and AD, concluding that the signaling pathways downstream to neurotrophic and insulin signaling are defective and coincident with aberrant phosphorylation and translocation of key components, notably AKT and GSK3beta, but also rac> PAK signaling. These responses are likely to contribute to defects in synaptic plasticity, learning and memory. Both oligomers of beta-amyloid (which are elevated in the AD brain) and pro-inflammatory cytokines (which are elevated in the aged or AD brain) can be used to mimic the trophic factor/insulin resistance observed in AD, but details on other factors and mechanisms contributing to this resistance remain elusive. A better understanding of the precise mechanisms underlying alterations in the insulin/neurotrophic factor signal transduction pathways should aid the search for better AD therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Greg M Cole
- Greater Los Angeles Veterans Affairs Healthcare System, Geriatric Research, Education and Clinical Center, 16111 Plummer Street, Sepulveda, CA 91343, USA.
| | | |
Collapse
|