1
|
Kazakou P, Nicolaides NC, Chrousos GP. Basic Concepts and Hormonal Regulators of the Stress System. Horm Res Paediatr 2023; 96:8-16. [PMID: 35272295 DOI: 10.1159/000523975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human organisms have to cope with a large number of external or internal stressful stimuli that threaten - or are perceived as threatening - their internal dynamic balance or homeostasis. To face these disturbing forces, or stressors, organisms have developed a complex neuroendocrine system, the stress system, which consists of the hypothalamic-pituitary-adrenal axis and the locus caeruleus/norepinephrine-autonomic nervous system. SUMMARY Upon exposure to stressors beyond a certain threshold, the activation of the stress system leads to a series of physiological and behavioral adaptations that help achieve homeostasis and increase the chances of survival. When, however, the stress response to stressors is inadequate, excessive, or prolonged, the resultant maladaptation may lead to the development of several stress-related pathologic conditions. Adverse environmental events, especially during critical periods of life, such as prenatal life, childhood, and puberty/adolescence, in combination with the underlying genetic background, may leave deep, long-term epigenetic imprints in the human expressed genome. KEY MESSAGES In this review, we describe the components of the stress system and its functional interactions with other homeostatic systems of the organism; we present the hormonal regulators of the stress response, and we discuss the development of stress-related pathologies.
Collapse
Affiliation(s)
- Paraskevi Kazakou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Endocrine Unit, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
2
|
Affiliation(s)
- George P Chrousos
- First Department of Pediatrics and Unit on Endocrinology, Metabolism and Diabetes, University of Athens, Athens, Greece
| |
Collapse
|
3
|
Abstract
Stress is a state of threatened homeostasis or disharmony caused by intrinsic or extrinsic adverse forces and is counteracted by an intricate repertoire of physiologic and behavioral responses that aim to reestablish the challenged body equilibrium. The adaptive stress response depends upon an elaborate neuroendocrine, cellular, and molecular infrastructure, the stress system. Crucial functions of the stress system response are mediated by the hypothalamic-pituitary-adrenal (HPA) axis and the central and peripheral components of the autonomic nervous system (ANS). The integrity of the HPA axis and the ANS and their precise interactions with other CNS components are essential for a successful response to the various stressors. Chronic stress represents a prolonged threat to homeostasis by persistent or frequently repeated stressors and may lead to manifestations that characterize a wide range of diseases and syndromes. Such states progressively lead to a deleterious overload with complications caused by both the persistent stressor and the detrimental prolongation of the adaptive response. The metabolic syndrome can be described as a state of deranged metabolic homeostasis characterized by the combination of central obesity, insulin resistance, dyslipidemia, and hypertension. The incidence of both obesity and the metabolic syndrome in modern Western societies has taken epidemic proportions over the past decades and often correlates with indices of stress in the affected populations. Stress, primarily through hyperactivation of the HPA axis, appears to contribute to the accumulation of fat tissue, and vice versa, obesity itself seems to constitute a chronic stressful state and may cause HPA axis dysfunction. In addition, the description of obesity as a systemic low grade inflammatory condition that contributes to the derangement of the metabolic equilibrium implies that the proinflammatory cytokines which are secreted by the adipocytes hold a potentially important pathogenetic role. In this article we describe the physiology of the stress system response, with emphasis on metabolism, and review the recent data that implicate several neuroendocrine and inflammatory mechanisms mobilized during chronic stress in the development of the metabolic complications that characterize central obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- Ioannis Kyrou
- Endocrinology, Metabolism and Diabetes Unit, Evgenidion Hospital, Athens University Medical School, Athens, 115 28, Greece
| | | | | |
Collapse
|
4
|
Westfall TC, Naes L, Gardner A, Yang CL. Neuropeptide Y Induced Attenuation of Catecholamine Synthesis in the Rat Mesenteric Arterial Bed. J Cardiovasc Pharmacol 2006; 47:723-8. [PMID: 16810071 DOI: 10.1097/01.fjc.0000211761.06271.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of neuropeptide Y (NPY) on the basal and nerve stimulation-induced increase in norepinephrine synthesis was studied in the isolated and perfused mesenteric arterial bed of the rat. Tyrosine hydroxylation, the rate-limiting step in catecholamine (CA) biosynthesis, was assessed by measuring the accumulation of DOPA in the perfusate/superfusate overflow after perfusion of the mesenteric arterial bed with the decarboxylase inhibitor m-hydroxybenzyl hydralazine (NSD-1015). Treatment with NDS-1015 resulted in a time-dependent increase in DOPA production and nerve stimulation (8 Hz, supramaximal voltage, 2 ms duration) increased DOPA production even further. NPY 1 to 100 nM was observed to produce a concentration-dependent attenuation in both the basal and nerve stimulation-induced increase in DOPA formation. To come to an understanding of the NPY receptor subtype mediating the inhibition of CA synthesis, the rank order of potency of a series of NPY analogs with varying selectivity for NPY receptor subtypes including intestinal polypeptide (PYY), PYY 13-36, Leu36 Pro34 NPY, human pancreatic polypeptide (h-PP), and rat pancreatic polypeptide (r-PP) were determined. In addition, the effect of various selective NPY antagonists on the inhibitory effect of NPY was also examined. These included the Y1 antagonist BIB03304, the Y2 antagonist BIIE0246, and the Y5 antagonist CGP71683. The IC50's for NPY, PYY, PYY13-36, Leu31 Pro34 NPY, and hPP in inhibiting CA synthesis were 5, 7, 15, 30, and 33 nM respectively. rPP failed to inhibit CA synthesis. All 3 of the NPY antagonists produced attenuation of the NPY-induced inhibition of CA synthesis, but it took a combination of all 3 to completely block the effect of a maximal inhibitory concentration of NPY. These results demonstrate that NPY inhibits CA synthesis in the perfused mesenteric arterial bed and can do so by activation of a variety of receptors including the Y1, Y2, and Y5.
Collapse
Affiliation(s)
- Thomas C Westfall
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
5
|
Kubista H, Boehm S. Molecular mechanisms underlying the modulation of exocytotic noradrenaline release via presynaptic receptors. Pharmacol Ther 2006; 112:213-42. [PMID: 16730801 DOI: 10.1016/j.pharmthera.2006.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/10/2006] [Indexed: 10/24/2022]
Abstract
The release of noradrenaline from nerve terminals is modulated by a variety of presynaptic receptors. These receptors belong to one of the following three receptor superfamilies: transmitter-gated ion channels, G protein-coupled receptors (GPCR), and membrane receptors with intracellular enzymatic activities. For representatives of each of these three superfamilies, receptor activation has been reported to cause either an enhancement or a reduction of noradrenaline release. As these receptor classes display greatly diverging structures and functions, a multitude of different molecular mechanisms are involved in the regulation of noradrenaline release via presynaptic receptors. This review gives a short overview of the presynaptic receptors on noradrenergic nerve terminals and summarizes the events involved in vesicle exocytosis in order to finally delineate the most important signaling cascades that mediate the modulation via presynaptic receptors. In addition, the interactions between the various presynaptic receptors are described and the underlying molecular mechanisms are elucidated. Together, these presynaptic signaling mechanisms form a sophisticated network that precisely adapts the amount of noradrenaline being released to a given situation.
Collapse
Affiliation(s)
- Helmut Kubista
- Institute of Pharmacology, Centre of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringer Strasse 13a, A-1090 Vienna, Austria
| | | |
Collapse
|
6
|
Abstract
The stress response is subserved by the stress system, which is located both in the central nervous system and the periphery. The principal effectors of the stress system include corticotropin-releasing hormone (CRH); arginine vasopressin; the proopiomelanocortin-derived peptides alpha-melanocyte-stimulating hormone and beta-endorphin, the glucocorticoids; and the catecholamines norepinephrine and epinephrine. Appropriate responsiveness of the stress system to stressors is a crucial prerequisite for a sense of well-being, adequate performance of tasks, and positive social interactions. By contrast, inappropriate responsiveness of the stress system may impair growth and development and may account for a number of endocrine, metabolic, autoimmune, and psychiatric disorders. The development and severity of these conditions primarily depend on the genetic vulnerability of the individual, the exposure to adverse environmental factors, and the timing of the stressful events, given that prenatal life, infancy, childhood, and adolescence are critical periods characterized by increased vulnerability to stressors.
Collapse
Affiliation(s)
- Evangelia Charmandari
- Pediatric and Reproductive Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
7
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 453] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
8
|
McCullough LA, Egan TM, Westfall TC. Neuropeptide Y inhibition of calcium channels in PC-12 pheochromocytoma cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1290-7. [PMID: 9612216 DOI: 10.1152/ajpcell.1998.274.5.c1290] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously demonstrated, using rat PC-12 pheochromocytoma cells differentiated to a sympathetic neuronal phenotype with nerve growth factor (NGF), that neuropeptide Y (NPY) inhibits catecholamine synthesis as well as release. Inquiry into the mechanisms of these inhibitions implicated distinct pathways involving reduction of Ca2+ influx through voltage-activated Ca2+ channels. In the present investigation the effects of NPY on whole cell Ba2+ currents were examined to obtain direct evidence supporting the mechanisms suggested by those studies. NPY was found to inhibit the voltage-activated Ba2+ current in NGF-differentiated PC-12 cells in a reversible fashion with an EC50 of 13 nM. This inhibition was pertussis toxin sensitive and resulted from NPY modulation of L- and N-type Ca2+ channels. The inhibition of L-type channels was not seen with < 1 nM free intracellular Ca2+ or when protein kinase C (PKC) was inhibited by chelerythrine or PKC-(19-31). Furthermore, the effect of NPY on L-type channels was mimicked by the PKC activator phorbol 12-myristate 13-acetate. These studies demonstrate that, in addition to inhibition of N-type Ca2+ channels, in NGF-differentiated PC-12 cells NPY inhibits L-type Ca2+ channels via an intracellular Ca(2+)- and PKC-dependent pathway.
Collapse
Affiliation(s)
- L A McCullough
- Department of Pharmacological and Physiological Science, Saint Louis University Health Sciences Center, Missouri 63104, USA
| | | | | |
Collapse
|
9
|
Rump LC, Riess M, Schwertfeger E, Michel MC, Bohmann C, Schollmeyer P. Prejunctional neuropeptide Y receptors in human kidney and atrium. J Cardiovasc Pharmacol 1997; 29:656-61. [PMID: 9213209 DOI: 10.1097/00005344-199705000-00014] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of our study was to characterize functionally prejunctional neuropeptide Y (NPY) receptors in human and rabbit renal cortex, as well as in human right atrium. Segments of human atrial appendages and of human and rabbit renal cortex were preincubated with [3H]noradrenaline, superfused with Krebs-Henseleit solution and stimulated electrically in superfusion chambers. The stimulation-induced outflow of radioactivity was taken as an index of endogenous noradrenaline release. The effects of subtype-selective NPY analogs on the stimulation-induced noradrenaline release were studied. NPY, its endogenous analog, peptide YY, and its C-terminal fragment, NPY13-36, but not its analog, [Leu31,Pro34]NPY, concentration dependently (1-100 nM) inhibited [3H]noradrenaline release in all tissues studied. NPY-induced inhibition of [3H]noradrenaline release in human and rabbit kidney was abolished by pretreatment with pertussis toxin. We conclude that prejunctional inhibition of noradrenaline release in human heart and human and rabbit kidney occurs through NPY receptors of the Y2 subtype, which appear to couple to a pertussis toxin-sensitive G protein.
Collapse
Affiliation(s)
- L C Rump
- Department of Internal Medicine IV, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Primary cultures of postganglionic sympathetic neurons were established more than 30 years ago. More recently, these cultures have been used to characterize various neurotransmitter receptors that govern sympathetic transmitter release. These receptors may be categorized into at least three groups: (1) receptors which evoke transmitter release: (2) receptors which facilitate; (3) receptors which inhibit, depolarization-evoked release. Group (1) comprises nicotinic and muscarinic acetylcholine receptors, P2X purinoceptors and pyrimidinoceptors. Group (2) currently harbours beta-adrenoceptors, P2 purinoceptors, receptors for PACAP and VIP, as well as prostanoid EP1 receptors. In group (3), muscarinic cholinoceptors, alpha 2- and beta-adrenoceptors, P2 purinoceptors, and receptors for the neuropeptides NPY, somatostatin (SRIF1) and LHRH, as well as opioid (delta and kappa) receptors can be found. Receptors which regulate transmitter release from neurons in cell culture may be located either at the somatodendritic region or at the sites of exocytosis, i.e. the presynaptic specializations of axons. Most of the receptors that evoke release are located at the soma. There ionotropic receptors cause depolarizations to generate action potentials which then trigger Ca(2+)-dependent exocytosis at axon terminals. The signalling mechanisms of metabotropic receptors which evoke release still remain to be identified. Receptors which facilitate depolarization-evoked release appear to be located preferentially at presynaptic sites and presumably act via an increase in cyclic AMP. Receptors which inhibit stimulation evoked release are also presynaptic origin and most commonly rely on a G protein-mediated blockade of voltage-gated Ca2+ channels. Results obtained with primary cell cultures of postganglionic sympathetic neurons have now supplemented previous data about neurotransmitter receptors involved in the regulation of ganglionic as well as sympatho-effector transmission. In the future, this technique may prove useful to identify yet unrecognized receptors which control the output of the sympathetic nervous system and to elucidate underlying signalling mechanisms.
Collapse
Affiliation(s)
- S Boehm
- Department of Neuropharmacology, University of Vienna, Austria.
| | | |
Collapse
|
11
|
Klimaschewski L, Kummer W, Heym C. Localization, regulation and functions of neurotransmitters and neuromodulators in cervical sympathetic ganglia. Microsc Res Tech 1996; 35:44-68. [PMID: 8873058 DOI: 10.1002/(sici)1097-0029(19960901)35:1<44::aid-jemt5>3.0.co;2-s] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cervical sympathetic ganglia represent a suitable model for studying the establishment and plasticity of neurochemical organization in the nervous system since sympathetic postganglionic neurons: (1) express several neuromediators, i.e., short acting transmitters, neuropeptide modulators and radicals, in different combinations; (2) receive synaptic input from a limited number of morphologically and neurochemically well-defined neuron populations in the central and peripheral nervous systems (anterograde influence on phenotype); (3) can be classified morphologically and neurochemically by the target they innervate (retrograde influence on phenotype); (4) regenerate readily, making it possible to study changes in neuromediator content after axonal lesion and their possible influence on peripheral nerve regeneration; (5) can be maintained in vitro in order to investigate effects of soluble factors as well as of membrane bound molecules on neuromediator expression; and (6) are easily accessible. Acetylcholine and noradrenaline, as well as neuropeptides and the recently discovered radical, nitric oxide, are discussed with respect to their localization and possible functions in the mammalian superior cervical and cervicothoracic (stellate) paravertebral ganglia. Furthermore, mechanisms regulating transmitter synthesis in sympathetic neurons in vivo and in vitro, such as soluble factors, cell contact or electrical activity, are summarized, since modulation of transmitter synthesis, release and metabolism plays a key role in the neuronal response to environmental influences.
Collapse
Affiliation(s)
- L Klimaschewski
- Institute of Anatomy and Cell Biology, University of Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
12
|
McCullough LA, Westfall TC. Neuropeptide Y inhibits depolarization-stimulated catecholamine synthesis in rat pheochromocytoma cells. Eur J Pharmacol 1995; 287:271-7. [PMID: 8991801 DOI: 10.1016/0014-2999(95)00496-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In PC12 rat pheochromocytoma cells differentiated with nerve growth factor (NGF), neuropeptide Y inhibited depolarization-stimulated catecholamine synthesis as determined by in situ measurement of 3,4-dihydroxyphenylalanine (DOPA) production in the presence of the decarboxylase inhibitor m-hydroxybenzylhydrazine (NSD-1015). The inhibition by neuropeptide Y was concentration-dependent and was prevented by pretreatment with pertussis toxin, suggesting the involvement of a GTP-binding protein of the Gi or Go subtype. The neuropeptide Y analog [Leu31,Pro34]neuropeptide Y also caused inhibition of DOPA production, but was less potent than neuropeptide Y itself, while peptide YY and neuropeptide Y-(13-36) had no significant effect. This pattern is most consistent with the involvement of the neuropeptide Y Y3 receptor subtype. In PC12 cells differentiated with dexamethasone, neuropeptide Y also caused a concentration-dependent inhibition of DOPA production, while peptide YY was again without effect. Neuropeptide Y had no effect on DOPA production in undifferentiated PC12 cells. These results indicate that neuropeptide Y can modulate catecholamine synthesis in addition to its modulatory effects on catecholamine release.
Collapse
Affiliation(s)
- L A McCullough
- Department of Pharmacological and Physiological Science, Saint Louis University Health Sciences Center, MO 63104, USA
| | | |
Collapse
|