1
|
Smyth G, Bamber JC, Evans PM, Bedford JL. Trajectory optimization for dynamic couch rotation during volumetric modulated arc radiotherapy. Phys Med Biol 2013; 58:8163-77. [PMID: 24200876 DOI: 10.1088/0031-9155/58/22/8163] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Non-coplanar radiation beams are often used in three-dimensional conformal and intensity modulated radiotherapy to reduce dose to organs at risk (OAR) by geometric avoidance. In volumetric modulated arc radiotherapy (VMAT) non-coplanar geometries are generally achieved by applying patient couch rotations to single or multiple full or partial arcs. This paper presents a trajectory optimization method for a non-coplanar technique, dynamic couch rotation during VMAT (DCR–VMAT), which combines ray tracing with a graph search algorithm. Four clinical test cases (partial breast, brain, prostate only, and prostate and pelvic nodes) were used to evaluate the potential OAR sparing for trajectory-optimized DCR–VMAT plans, compared with standard coplanar VMAT. In each case, ray tracing was performed and a cost map reflecting the number of OAR voxels intersected for each potential source position was generated. The least-cost path through the cost map, corresponding to an optimal DCR–VMAT trajectory, was determined using Dijkstra's algorithm. Results show that trajectory optimization can reduce dose to specified OARs for plans otherwise comparable to conventional coplanar VMAT techniques. For the partial breast case, the mean heart dose was reduced by 53%. In the brain case, the maximum lens doses were reduced by 61% (left) and 77% (right) and the globes by 37% (left) and 40% (right). Bowel mean dose was reduced by 15% in the prostate only case. For the prostate and pelvic nodes case, the bowel V50 Gy and V60 Gy were reduced by 9% and 45% respectively. Future work will involve further development of the algorithm and assessment of its performance over a larger number of cases in site-specific cohorts.
Collapse
|
2
|
|
3
|
Tsougos I, Schreibmann E, Lahanas M, Theodorou K, Kappas C, Baltas D. Geometrical pre-planning for conformal radiotherapy. Acta Oncol 2008; 46:918-27. [PMID: 17851850 DOI: 10.1080/02841860701218600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The optimum selection of beams and arcs in conformal techniques is of the outmost importance in modern radiotherapy. In this work we give a description of an analytic method to aid optimum selection, which is based on minimizing the intersection between beams and organs at risk (OAR) and on minimizing the intersection between the beam and the planning target volume (PTV). An arc-selection function that permits selection of irradiation arcs based on individual beam feasibility is introduce. The method simulates the treatment process by defining a computed beam feasibility, for every possible set of gantry-table angles, by taking into account accurately computer intersection volumes between the OAR and beams. The beams are shaped to conform the target using realistic parameters for the treatment process. The results are displayed on a virtual sphere centred at the isocenter with color-coded regions indicating beam feasibility. Arcs selections are performed by searching the map for successive gantry positions at a certain table angle, with feasibility values greater than a user-specified threshold. The accuracy of the method was confirmed by using geometrical regular shapes, as well as real clinical cases.
Collapse
Affiliation(s)
- Ioannis Tsougos
- Medical Physics Department, Medical School, University Hospital, University of Thessaly, Greece.
| | | | | | | | | | | |
Collapse
|
4
|
Yeo SG, Cho MJ, Kim SY, Lim SP, Kim KH, Kim JS. Treatment outcomes of three-dimensional conformal radiotherapy for stage III non-small cell lung cancer. Cancer Res Treat 2005; 37:273-8. [PMID: 19956526 DOI: 10.4143/crt.2005.37.5.273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/11/2005] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To evaluate the treatment outcomes of the three-dimensional conformal radiotherapy (3D-CRT), in conjunction with induction chemotherapy, for the treatment of stage III non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Between November 1998 and March 2003, 22 patients with histologically proven, clinical stage III NSCLC, treated with induction chemotherapy, followed by 3D-CRT, were retrospectively analyzed. There were 21 males (96%) and 1 female (4%), with a median age of 68.5 (range, 42 approximately 79). The clinical cancer stages were IIIA and IIIB in 41 and 59%, respectively. The histologies were squamous cell carcinoma, adenocarcinoma and others in 73, 18 and 9%, respectively. Twenty patients (91%) received induction chemotherapy before radiation therapy. The majority of the chemotherapy regimen consisted of cisplatin and gemcitabine. Radiation was delivered with conventional anteroposterior/posteroanterior fields for 36 Gy, and then 3D-CRT was performed. The total radiation dose was 70.2 Gy. The median follow-up period was 17 months (range, 4~59 months). RESULTS The median overall survival was 19 months. The two and four-year overall survival rates were 37.9 and 30.3%, respectively. The median progression-free survival was 21 months. The two and four-year progression-free survival rates were 42.1 and 21%, respectively. The prognostic factors for overall survival by a univariate analysis were age, histology and T stage (p<0.05). Acute radiation toxicities, as evaluated by the RTOG toxicity criteria, included two cases of grade 3 lung toxicity and one case of grade 2 esophagus toxicity. CONCLUSION The radiation dose could be increased without a significant increment in the acute toxicities when using 3D-CRT. It also seems to be a safe, well-tolerated and effective treatment modality for stage III NSCLC.
Collapse
Affiliation(s)
- Seung-Gu Yeo
- Department of Radiation Oncology, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | |
Collapse
|
5
|
Schreibmann E, Xing L. Dose–volume based ranking of incident beam direction and its utility in facilitating IMRT beam placement. Int J Radiat Oncol Biol Phys 2005; 63:584-93. [PMID: 16168850 DOI: 10.1016/j.ijrobp.2005.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 05/19/2005] [Accepted: 06/03/2005] [Indexed: 01/07/2023]
Abstract
PURPOSE Beam orientation optimization in intensity-modulated radiation therapy (IMRT) is computationally intensive, and various single beam ranking techniques have been proposed to reduce the search space. Up to this point, none of the existing ranking techniques considers the clinically important dose-volume effects of the involved structures, which may lead to clinically irrelevant angular ranking. The purpose of this work is to develop a clinically sensible angular ranking model with incorporation of dose-volume effects and to show its utility for IMRT beam placement. METHODS AND MATERIALS The general consideration in constructing this angular ranking function is that a beamlet/beam is preferable if it can deliver a higher dose to the target without exceeding the tolerance of the sensitive structures located on the path of the beamlet/beam. In the previously proposed dose-based approach, the beamlets are treated independently and, to compute the maximally deliverable dose to the target volume, the intensity of each beamlet is pushed to its maximum intensity without considering the values of other beamlets. When volumetric structures are involved, the complication arises from the fact that there are numerous dose distributions corresponding to the same dose-volume tolerance. In this situation, the beamlets are not independent and an optimization algorithm is required to find the intensity profile that delivers the maximum target dose while satisfying the volumetric constraints. In this study, the behavior of a volumetric organ was modeled by using the equivalent uniform dose (EUD). A constrained sequential quadratic programming algorithm (CFSQP) was used to find the beam profile that delivers the maximum dose to the target volume without violating the EUD constraint or constraints. To assess the utility of the proposed technique, we planned a head-and-neck and abdominal case with and without the guidance of the angular ranking information. The qualities of the two types of IMRT plans were compared quantitatively. RESULTS An effective angular ranking model with consideration of volumetric effect has been developed. It is shown that the previously reported dose-based angular ranking represents a special case of the general formalism proposed here. Application of the technique to a abdominal and a head-and-neck IMRT case indicated that the proposed technique is capable of producing clinically sensible angular ranking. In both cases, we found that the IMRT plans obtained under the guidance of EUD-based angular ranking were improved in comparison with that obtained using the conventional uniformly spaced beams. CONCLUSIONS The EUD-based function is a general approach for angular ranking and allows us to identify the potentially good and bad angles for clinically complicated cases. The ranking can be used either as a guidance to facilitate the manual beam placement or as prior information to speed up the computer search for the optimal beam configuration. Thus the proposed technique should have positive clinical impact in facilitating the IMRT planning process.
Collapse
Affiliation(s)
- Eduard Schreibmann
- Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5847
| | | |
Collapse
|
6
|
Meyer J, Hummel SM, Cho PS, Austin-Seymour MM, Phillips MH. Automatic selection of non-coplanar beam directions for three-dimensional conformal radiotherapy. Br J Radiol 2005; 78:316-27. [PMID: 15774592 DOI: 10.1259/bjr/13015047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
An algorithm is described, based on ray-tracing and the beam's-eye-view, that exhaustively searches all permitted beam directions. The evaluation of the search is based on a general cost function that can be adapted to the clinical objectives by means of parameters and weighting factors. The approach takes into account the constraints of the linear accelerator by discarding beam directions that are not permitted. A sensitivity analysis was carried out to determine appropriate parameters for different sized organs, and a prostate case was used to benchmark the approach. The algorithm was also applied to two clinical cases (brain and sinus) to test the benefits of the approach compared with manual angle selection. The time to perform a beam direction search was approximately 2 min for the coplanar and 12 min for the non-coplanar beam space. The angles obtained for the prostate case compared well with reports in the literature. For the brain case, the mean dose to the right and left optic nerves was reduced by 12% and 50%, respectively, whilst the target dose uniformity was improved. For the sinus case, the mean doses to the right and left parotid glands were reduced by 54% and 46%, respectively, to the right and left optic nerves by 37% and 62%, respectively, and to the optic chiasm by 39%, whilst the target dose uniformity was also improved. For the clinical cases the plans based on optimized beam directions were simpler and resulted in better sparing of critical structures compared with plans based on manual angle selection. The approach provides a practical alternative to elaborate and time consuming beam angle optimization schemes and is suitable for routine clinical usage.
Collapse
Affiliation(s)
- J Meyer
- University of Washington Medical Center, Department of Radiation Oncology, Box 356043, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
7
|
Cho BCJ, Mijnheer BJ, Bartelink H. Determining optimal two-beam axial orientations for heart sparing in left-sided breast cancer patients. Med Phys 2003; 31:111-21. [PMID: 14761027 DOI: 10.1118/1.1634391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND AND PURPOSE The optimal intensity fluence profile of a beam depends on the profiles of other beams but most optimizations assume fixed beam orientations, a priori. Breast cancer radiotherapy attempts to cover the target and to spare critical structures such as the heart and lungs. The study aims are (1) to determine and document the optimal two-beam orientation that best spares the heart for left-sided breast cancer patients and (2) to investigate the influence of the treatment technique (i.e., conformal versus intensity modulation) on the optimal objective cost function. MATERIAL AND METHODS Ten left-sided breast cancer patients were planned using a conformal (3DCRT) and a simplified intensity modulated (sIMRT) technique using predefined segments and different two-beam orientations. Optimal segment weights were determined exhaustively for all axial two-beam combinations, in 5 degree increments, by minimizing a quadratic objective cost function. The resulting objective cost function was analyzed with respect to target geometry and treatment technique. RESULTS The sIMRT plans are generally less sensitive to beam orientation compared to 3DCRT plans. Optimal two-beam orientations for 3DCRT and sIMRT plans exist and they correspond to a hinge angle of approximately 188 degrees and 160 degrees or 210 degrees (the latter is bimodal), respectively. CONCLUSIONS The optimization software is a useful tool that can test many different beam combinations and estimate their associated objective cost values. Afterwards, the most promising beam orientations could be re-optimized under the TPS to fine-tune and verify the dose distributions. Optimal uniform two-beam orientations for the breast consist of opposing tangential medial and lateral beams. Optimal nonuniform two-beam orientations for left-sided breast cancers are bimodal, containing hinge angles around 160 degrees and 210 degrees. Nonuniform beam techniques are less sensitive to beam orientation compared to uniform beam techniques and result in significantly improved heart sparing but at a cost of slightly compromised planning target volume coverage.
Collapse
Affiliation(s)
- B C John Cho
- The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Department of Radiotherapy, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Wang C, Dai J, Hu Y. Optimization of beam orientations and beam weights for conformal radiotherapy using mixed integer programming. Phys Med Biol 2003; 48:4065-76. [PMID: 14727751 DOI: 10.1088/0031-9155/48/24/005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An algorithm for optimizing beam orientations and beam weights for conformal radiotherapy has been developed. The algorithm models the optimization of beam orientations and beam weights as a problem of mixed integer linear programming (MILP), and optimizes the beam orientations and beam weights simultaneously. The application process of the algorithm has four steps: (a) prepare a pool of beam orientation candidates with the consideration of avoiding any patient-gantry collision and avoiding direct irradiation of organs at risk with quite low tolerances (e.g., eyes). (b) Represent each beam orientation candidate with a binary variable, and each beam weight with a continuous variable. (c) Set up an optimization problem according to dose prescriptions and the maximum allowed number of beam orientations. (d) Solve the optimization problem with a ready-to-use MILP solver. After optimization, the candidates with unity binary variables remain in the final beam configuration. The performance of the algorithm was tested with clinical cases. Compared with standard treatment plans, the beam-orientation-optimized plans had better dose distributions in terms of target coverage and avoidance of critical structures. The optimization processes took less than 1 h on a PC with a Pentium IV 2.4 GHz processor.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Radiation Oncology, Cancer Hospital (Institute), Chinese Academy of Medical Sciences, PO Box 2258, Beijing 100021, People's Republic of China
| | | | | |
Collapse
|
9
|
Schreibmann E, Lahanas M, Uricchio R, Theodorou K, Kappas C, Baltas D. A geometry based optimization algorithm for conformal external beam radiotherapy. Phys Med Biol 2003; 48:1825-41. [PMID: 12870586 DOI: 10.1088/0031-9155/48/12/311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A geometric solution of the problem of optimal orientation of beams in conformal external radiotherapy is presented. The method uses geometric derived quantities which consider the intersection volume between organs at risk (OAR) and the beam shape. In comparison to previous geometric methods a true 3D volume computation is used which takes into account beam divergence, concave shapes, as well as treatment settings such as individual beam shaping by blocks or multi-leaf collimators. For standard dosimetric cost functions used by dose optimization algorithms a corresponding set of geometric objective functions is proposed. We compare the correlations between geometric and dosimetric cost functions for two clinical cases, a prostate and a head tumour case. A correlation is observed for the prostate case, whereas for the head case it is less pronounced due to the larger part of overlapping volumes between the beams which cannot be considered by the used objectives. In comparison to not-optimized beam directions the dose distribution is significantly better for the beam directions found by the optimization of a geometric multi-objective cost function. An optimal dose distribution can easily be achieved using the geometric model. This is shown by comparing for the two cases the dose-volume histograms (DVH) of manually optimized plans by experienced planners and the DVHs of the geometrically found optimal solutions. In comparison to the manually optimized plans the solutions found by the geometric method significantly reduce the average dose in the OARs and NT, while maintaining the same PTV coverage. The optimization requires only a few seconds and could be used to improve the performance of inverse planning algorithms in radiotherapy for the determination of the optimal direction of beams.
Collapse
Affiliation(s)
- Eduard Schreibmann
- Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach, 63069 Offenbach, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Pugachev A, Xing L. Incorporating prior knowledge into beam orientation optimization in IMRT. Int J Radiat Oncol Biol Phys 2002; 54:1565-74. [PMID: 12459386 DOI: 10.1016/s0360-3016(02)03917-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Selection of beam configuration in currently available intensity-modulated radiotherapy (IMRT) treatment planning systems is still based on trial-and-error search. Computer beam orientation optimization has the potential to improve the situation, but its practical implementation is hindered by the excessive computing time associated with the calculation. The purpose of this work is to provide an effective means to speed up the beam orientation optimization by incorporating a priori geometric and dosimetric knowledge of the system and to demonstrate the utility of the new algorithm for beam placement in IMRT. METHODS AND MATERIALS Beam orientation optimization was performed in two steps. First, the quality of each possible beam orientation was evaluated using beam's-eye-view dosimetrics (BEVD) developed in our previous study. A simulated annealing algorithm was then employed to search for the optimal set of beam orientations, taking into account the BEVD scores of different incident beam directions. During the calculation, sampling of gantry angles was weighted according to the BEVD score computed before the optimization. A beam direction with a higher BEVD score had a higher probability of being included in the trial configuration, and vice versa. The inclusion of the BEVD weighting in the stochastic beam angle sampling process made it possible to avoid spending valuable computing time unnecessarily at "bad" beam angles. An iterative inverse treatment planning algorithm was used for beam intensity profile optimization during the optimization process. The BEVD-guided beam orientation optimization was applied to an IMRT treatment of paraspinal tumor. The advantage of the new optimization algorithm was demonstrated by comparing the calculation with the conventional scheme without the BEVD weighting in the beam sampling. RESULTS The BEVD tool provided useful guidance for the selection of the potentially good directions for the beams to incident and was used to guide the search for the optimal beam configuration. The BEVD-guided sampling improved both optimization speed and convergence of the calculation. A comparison of several five-field IMRT treatment plans obtained with and without BEVD guidance indicated that the computational efficiency was increased by a factor of approximately 10. CONCLUSION Incorporation of BEVD information allows for development of a more robust tool for beam orientation optimization in IMRT planning. It enables us to more effectively use the angular degree of freedom in IMRT without paying the excessive computing overhead and brings us one step closer to the goal of automated selection of beam orientations in a clinical environment.
Collapse
Affiliation(s)
- Andrei Pugachev
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
11
|
Pugachev A, Xing L. Pseudo beam's-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 51:1361-70. [PMID: 11728698 DOI: 10.1016/s0360-3016(01)01736-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE To introduce the concept of pseudo beam's-eye-view (pBEV), to establish a framework for computer-assisted beam orientation selection in intensity-modulated radiation therapy (IMRT), and to evaluate the utility of the proposed technique. METHODS AND MATERIALS To facilitate the selection of beam orientations for IMRT treatment planning, a scoring of beam direction was introduced. The score function was based on the maximum target dose deliverable by the beam without exceeding the tolerance doses of the critical structures. For the score function calculation, the beam portal at given gantry and couch angles was divided into a grid of beamlets. Each beamlet crossing the target was assigned the maximum intensity that could be used without exceeding the dose tolerances of the organs at risk (OARs) and normal tissue. Thereafter, a score was assigned to the beam according to the target dose delivered. The beams for the treatment were selected among those with the highest scores. In a sense, this technique is similar to the beam's-eye-view approach used in conventional radiation therapy, except that the evaluation by a human is replaced by a score function, and beam modulation is taken into account. RESULTS The pBEV technique was tested on two clinical cases: a paraspinal treatment and a nasopharyngeal cancer with both coplanar and noncoplanar beam configurations. The plans generated under the guidance of pBEV for the paraspinal treatment offered superior target dose uniformity and reduced OAR doses. For the nasopharyngeal cancer case, it was also found that the pBEV-selected coplanar and noncoplanar beams significantly improved the target coverage without compromising the sparing of the OARs. CONCLUSIONS The pBEV technique developed in this work provides a comprehensive tool for beam orientation selection in IMRT. It is especially valuable for complicated cases, where the target is surrounded by several sensitive structures and where it is difficult to select a set of good beam orientations. The pBEV technique has considerable potential for simplifying the IMRT treatment planning process and for maximizing the technical capacity of IMRT.
Collapse
Affiliation(s)
- A Pugachev
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5304, USA
| | | |
Collapse
|
12
|
Rowbottom CG, Khoo VS, Webb S. Simultaneous optimization of beam orientations and beam weights in conformal radiotherapy. Med Phys 2001; 28:1696-702. [PMID: 11548939 DOI: 10.1118/1.1387274] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A methodology for the concurrent optimization of beam orientations and beam weights in conformal radiotherapy treatment planning has been developed and tested on a cohort of five patients. The algorithm is based on a beam-weight optimization scheme with a downhill simplex optimization engine. The use of random voxels in the dose calculation provides much of the required speed up in the optimization process, and allows the simultaneous optimization of beam orientations and beam weights in a reasonable time. In the implementation of the beam-weight optimization algorithm just 10% of the original patient voxels are used for the dose calculation and cost function evaluation. A fast simulated annealing algorithm controls the optimization of the beam arrangement. The optimization algorithm was able to produce clinically acceptable plans for the five patients in the cohort study. The algorithm equalized the dose to the optic nerves compared to the standard plans and reduced the mean dose to the brain stem by an average of 4.4% (+/- 1.9, 1 SD), p value = 0.007. The dose distribution to the PTV was not compromised by developing beam arrangements via the optimization algorithm. In conclusion, the simultaneous optimization of beam orientations and beam weights has been developed to be routinely used in a realistic time. The results of optimization in a small cohort study show that the optimization can reliably produce clinically acceptable dose distributions and may be able to improve dose distributions compared to those from a human planner.
Collapse
Affiliation(s)
- C G Rowbottom
- Joint Department of Physics, Institute of Cancer Research & The Royal Marsden NHS Trust, Sutton, Surrey, United Kingdom.
| | | | | |
Collapse
|
13
|
Pugachev A, Li JG, Boyer AL, Hancock SL, Le QT, Donaldson SS, Xing L. Role of beam orientation optimization in intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2001; 50:551-60. [PMID: 11380245 DOI: 10.1016/s0360-3016(01)01502-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate the role of beam orientation optimization in intensity-modulated radiation therapy (IMRT) and to examine the potential benefits of noncoplanar intensity-modulated beams. METHODS AND MATERIALS A beam orientation optimization algorithm was implemented. For this purpose, system variables were divided into two groups: beam position (gantry and table angles) and beam profile (beamlet weights). Simulated annealing was used for beam orientation optimization and the simultaneous iterative inverse treatment planning algorithm (SIITP) for beam intensity profile optimization. Three clinical cases were studied: a localized prostate cancer, a nasopharyngeal cancer, and a paraspinal tumor. Nine fields were used for all treatments. For each case, 3 types of treatment plan optimization were performed: (1) beam intensity profiles were optimized for 9 equiangular spaced coplanar beams; (2) orientations and intensity profiles were optimized for 9 coplanar beams; (3) orientations and intensity profiles were optimized for 9 noncoplanar beams. RESULTS For the localized prostate case, all 3 types of optimization described above resulted in dose distributions of a similar quality. For the nasopharynx case, optimized noncoplanar beams provided a significant gain in the gross tumor volume coverage. For the paraspinal case, orientation optimization using noncoplanar beams resulted in better kidney sparing and improved gross tumor volume coverage. CONCLUSION The sensitivity of an IMRT treatment plan with respect to the selection of beam orientations varies from site to site. For some cases, the choice of beam orientations is important even when the number of beams is as large as 9. Noncoplanar beams provide an additional degree of freedom for IMRT treatment optimization and may allow for notable improvement in the quality of some complicated plans.
Collapse
Affiliation(s)
- A Pugachev
- Department of Radiation Oncology, Stanford University School of Medicine, CA 94305-5304, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Cho BC, Roa WH, Robinson D, Murray B. The development of target-eye-view maps for selection of coplanar or noncoplanar beams in conformal radiotherapy treatment planning. Med Phys 1999; 26:2367-72. [PMID: 10587218 DOI: 10.1118/1.598751] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Three-dimensional conformal radiotherapy allows the use of tightly conformed, multiple coplanar or noncoplanar beams. However, visualizing the spatial relationships between the target volume and adjacent critical structures is not always obvious or intuitive. Tools such as beam's eye view (BEV) have aided in this process and been very useful. In this study, a target-eye-view (TEV) map is developed as a functional extension of BEVs. The TEV map for a critical structure is created by checking the BEVs for all gantries and table rotations. For each possible BEV, the amount of overlap between the planning target volume (PTV) and the organ at risk (OAR) is determined. This information is presented in a Mercator spherical map, where the color tone indicates the amount of overlap between the PTV and the OAR. A composite TEV map is then created by summing the TEV grading scores for all OARs. The composite map shows beam orientations with the most overlap being light and the least overlap being dark, thus simplifying the selection of appropriate beam angles. The accuracy of the TEV maps has been confirmed separately with corresponding BEVs generated by a three-dimensional treatment planning system.
Collapse
Affiliation(s)
- B C Cho
- Department of Radiation Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
15
|
Vijayakumar S, Myrianthopoulos L, Hamilton R, Chen G. Conformal radiation therapy--a physician's perspective. Cancer Treat Res 1998; 93:269-81. [PMID: 9513785 DOI: 10.1007/978-1-4615-5769-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- S Vijayakumar
- Michael Reese/University of Chicago Center for Radiation Therapy, Michael Reese Hospital and Medical Center, Chicago, IL 60616, USA
| | | | | | | |
Collapse
|
16
|
Purdy JA. Three-dimensional treatment planning and conformal dose delivery--a physicist's perspective. Cancer Treat Res 1998; 93:1-34. [PMID: 9513774 DOI: 10.1007/978-1-4615-5769-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J A Purdy
- Radiation Oncology Center, Malinckrodt Institute of Radiology, Washington University Medical Center, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Ginestet C, Malet C, Lafay F, Dupin G, Chavand B, Carrie C. [Conformational radiotherapy with multi-leaf collimators: one year experience at the Leon-Berard Centre]. Cancer Radiother 1998; 1:328-40. [PMID: 9435824 DOI: 10.1016/s1278-3218(97)81501-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Taking advantage of the renewal of a linear accelerator, the Radiation Therapy Department of the Centre Léon Bérard implemented, in collaboration with Philips Systèmes Médicaux, a conformal therapy set-up procedure using CT-scan for 3D treatment planning and a multileaf collimator that allows achievement of numerous irregular-shaped beams via the multileaf preparation system. The various elements of this equipment make possible well defined and structured procedures for treatment planning with different steps and essential tools used by this technique. We describe the means used and indicate future improvements that will lead to automation in order to provide good quality assurance, better security and substantial time saving. During the first year, 115 patients were treated with this new technique. They presented with central nervous system tumors (32 patients), lung cancer (29 patients), prostate cancer (20 patients), paranasal sinus tumors (14 patients) and tumors located in other sites (13 patients with soft sarcoma, hepato-bilary tumor, etc).
Collapse
Affiliation(s)
- C Ginestet
- Département de radiothérapie, centre Léon-Bérard, Lyon, France
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- O Dahl
- Department of Oncology, University of Bergen, Norway
| | | | | | | |
Collapse
|
19
|
McShan DL, Kessler ML, Fraass BA. Advanced interactive planning techniques for conformal therapy: high level beam descriptions and volumetric mapping techniques. Int J Radiat Oncol Biol Phys 1995; 33:1061-72. [PMID: 7493832 DOI: 10.1016/0360-3016(95)02086-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE To aid in design of conformal radiation therapy treatment plans involving many conformally shaped fields, this work investigates the use of two methodologies to enhance the ease of interactive treatment planning: high-level beam constructs and beam's-eye view volumetric mapping. METHODS AND MATERIALS High-performance computer graphics running on various workstations using a graphical visualization system (AVS) have been used in this work. Software specific to this application has been written in standard FORTRAN and C languages. A new methodology is introduced by defining radiation therapy "fields" to be composed of multiple beam "segments." Fields can then be defined as higher-level entities such as arcs, cones, and other shapes. A "segmental cone" field, for example, is defined by a symmetry axis and a cone angle, and can be used to rapidly place a series of beam segments that converge at the target volume, while reducing the degree of overlap elsewhere. A new beam's-eye view (BEV) volumetric mapping technique is presented to aid in selecting the placement of conformal radiation fields. With this technique, the relative average dose within an organ of interest is calculated for a sampling of isocentric, conformally shaped beams and displayed either as a "globe," which can be combined with the display of anatomical surfaces, or as a two-dimensionally mapped projection. The dose maps from multiple organs can be generated, stacked, or composited with relative weightings to aid in the placement of fields that minimize overlap with critical structures. RESULTS The use of these new methodologies is demonstrated for prostate and lung treatment sites and compared to conventional planning techniques. DISCUSSION The use of many beams for conformal treatment delivery is difficult with current interactive planning. The use of high-level beam constructs provides a means to quickly specify, place, and configure multiple beam arrangements. The BEV volumetrics aids in the placing of fields, which minimize involvement with critical normal tissues. CONCLUSIONS Early experience with the new methodologies suggest that the new methods help to enhance (or at least speed up) the ability of a treatment planner to create optimal radiation treatment field arrangements.
Collapse
Affiliation(s)
- D L McShan
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, USA
| | | | | |
Collapse
|
20
|
Sibley GS, Mundt AJ, Shapiro C, Jacobs R, Chen G, Weichselbaum R, Vijayakumar S. The treatment of stage III nonsmall cell lung cancer using high dose conformal radiotherapy. Int J Radiat Oncol Biol Phys 1995; 33:1001-7. [PMID: 7493826 DOI: 10.1016/0360-3016(95)02010-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE To review our experience using conformal treatment planning and high-dose radiotherapy for Stage IIIa and IIIb nonsmall cell lung cancer (NSCLC), and to identify a subset of patients best suited for this approach by analyzing multiple pretreatment patient and tumor characteristics. METHODS AND MATERIALS Between December 1987 and June 1992, 37 patients with Stage III NSCLC treated with high-dose radiotherapy using conformal radiotherapy were reviewed. The patient characteristics were as follows: Stage IIIa (18 patients), IIIb [19]; T1-2 [13], T3-4 [24]; N0-1 [8], N2-3 [29]; and median age 63. All patients were treated with 1.8-2.0 Gy fractions to a median dose of 66 Gy (range 60-70 Gy). Outcome was analyzed by multiple pretreatment variables including age, sex, Karnofsky performance score, pretreatment symptoms, stage group, T and N stage, tumor volume (calculated from computed tomography (CT) contours), presence of atelectasis, and tumor histology. Outcome was also analyzed by total radiotherapy dose. RESULTS The median, 1-year and 2-year survival rates for the entire group were 19.5 months, 75 and 37%, respectively. The median, 1-year, and 2-year local progression-free survival rates are 15.6 months, 62 and 23%. There was no difference in survival by stage group (IIIa vs. IIIb) or by T or N stage. Tumor volumes ranged from 47-511 cc in the patients without atelectasis and were not a significant prognostic factor. Histology was found to be a significant prognostic factor, with squamous cell carcinoma having a better overall survival and local progression-free survival than other histologies. No other patient characteristic was found to be significant by either univariate or multivariate analysis. When outcome was analyzed by radiotherapy dose, no dose response was evident in the narrow dose range studied (60-70 Gy). Toxicity included two cases of pneumonitis, which resolved with conservative therapy. CONCLUSION High-dose conformal radiotherapy, in our experience, results in overall survival rates that compare favorably with trials of chemoradiotherapy or conventional radiotherapy with a low treatment-associated morbidity. However, local progression remains a significant problem despite median radiotherapy doses of 66 Gy. Future trials using escalating radiotherapy doses with conformal radiotherapy are therefore, indicated.
Collapse
Affiliation(s)
- G S Sibley
- University of Chicago/Michael Reese Center for Radiation and Cellular Oncology, IL, USA
| | | | | | | | | | | | | |
Collapse
|