1
|
Alseth I, Rognes T, Lindbäck T, Solberg I, Robertsen K, Kristiansen KI, Mainieri D, Lillehagen L, Kolstø AB, Bjørås M. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD. Mol Microbiol 2006; 59:1602-9. [PMID: 16468998 PMCID: PMC1413580 DOI: 10.1111/j.1365-2958.2006.05044.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Soil bacteria are heavily exposed to environmental methylating agents such as methylchloride and may have special requirements for repair of alkylation damage on DNA. We have used functional complementation of an Escherichia coli tag alkA mutant to screen for 3-methyladenine DNA glycosylase genes in genomic libraries of the soil bacterium Bacillus cereus. Three genes were recovered: alkC, alkD and alkE. The amino acid sequence of AlkE is homologous to the E. coli AlkA sequence. AlkC and AlkD represent novel proteins without sequence similarity to any protein of known function. However, iterative and indirect sequence similarity searches revealed that AlkC and AlkD are distant homologues of each other within a new protein superfamily that is ubiquitous in the prokaryotic kingdom. Homologues of AlkC and AlkD were also identified in the amoebas Entamoeba histolytica and Dictyostelium discoideum, but no other eukaryotic counterparts of the superfamily were found. The alkC and alkD genes were expressed in E. coli and the proteins were purified to homogeneity. Both proteins were found to be specific for removal of N-alkylated bases, and showed no activity on oxidized or deaminated base lesions in DNA. B. cereus AlkC and AlkD thus define novel families of alkylbase DNA glycosylases within a new protein superfamily.
Collapse
Affiliation(s)
- Ingrun Alseth
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Torbjørn Rognes
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
- Department of Informatics, University of OsloPO Box 1080 Blindern, N-0316 Oslo, Norway.
| | - Toril Lindbäck
- Department of Food Safety and Infection BiologyNorwegian School of Veterinary Science, N-0033 Oslo, Norway
- Biotechnology Centre of Oslo and Department of Pharmaceutical Biosciences, University of OsloPO Box 1125 Blindern, N-0317 Oslo, Norway
| | - Inger Solberg
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Kristin Robertsen
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Knut Ivan Kristiansen
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Davide Mainieri
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
| | - Lucy Lillehagen
- Biotechnology Centre of Oslo and Department of Pharmaceutical Biosciences, University of OsloPO Box 1125 Blindern, N-0317 Oslo, Norway
| | - Anne-Brit Kolstø
- Biotechnology Centre of Oslo and Department of Pharmaceutical Biosciences, University of OsloPO Box 1125 Blindern, N-0317 Oslo, Norway
| | - Magnar Bjørås
- Department of Molecular Biology, Institute of Medical Microbiology and Centre of Molecular Biology and Neuroscience, University of OsloRikshospitalet-Radiumhospitalet HF, N-0027 Oslo, Norway
- *For correspondence. E-mail ; Tel. (+47) 23074061; Fax (+47) 23074060
| |
Collapse
|
2
|
Tudek B, Van Zeeland AA, Kusmierek JT, Laval J. Activity of Escherichia coli DNA-glycosylases on DNA damaged by methylating and ethylating agents and influence of 3-substituted adenine derivatives. Mutat Res 1998; 407:169-76. [PMID: 9637245 DOI: 10.1016/s0921-8777(98)00005-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylating and ethylating agents are used in the chemical industry and produced during tobacco smoking. They generate DNA base damage whose role in cancer induction has been documented. Alkylated bases are repaired by the base excision repair pathway. We have established the repair efficiency of methylated and ethylated bases by various Escherichia coli repair proteins, namely 3-methyladenine-DNA-glycosylase I (TagA protein), which excises 3-methyladenine and 3-methylguanine, 3-methyladenine-DNA-glycosylase II (AlkA protein), which has a broad substrate specificity including 3- and 7-alkylated purines and the formamidopyrimidine(Fapy)-DNA-glycosylase (Fpg protein) repairing imidazole ring-opened 7-methylguanine. The comparison of the Km values of these various enzymes showed that methylated bases were excised more efficiently than ethylated bases. Several 3-alkyladenine derivatives have been synthesized and examined for their ability to inhibit the activity of the various repair proteins. We have shown that 3-ethyl-, 3-propyl-, 3-butyl- and 3-benzyladenine were much more efficient inhibitors of TagA protein than 3-methyladenine. The inhibitory effect was increased with the increase of the size of alkyl-group and IC50 for 3-benzyladenine was 0.4 +/- 0.1 microM as compared to 1.5 +/- 0.3 mM for 3-methyladenine. These compounds inhibited neither the AlkA protein nor human 3-methyladenine-DNA-glycosylase (ANPG protein). Moreover, 3-hydroxyethyladenine did not affect the activity of any of these enzymes. Taken together, these results suggest that hydrophobic interactions are involved in the mechanism of inhibition and/or recognition and excision of alkylated purines by TagA protein.
Collapse
Affiliation(s)
- B Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| | | | | | | |
Collapse
|
3
|
Abstract
A wide range of cytotoxic and mutagenic DNA bases are removed by different DNA glycosylases, which initiate the base excision repair pathway. DNA glycosylases cleave the N-glycosylic bond between the target base and deoxyribose, thus releasing a free base and leaving an apurinic/apyrimidinic (AP) site. In addition, several DNA glycosylases are bifunctional, since they also display a lyase activity that cleaves the phosphodiester backbone 3' to the AP site generated by the glycosylase activity. Structural data and sequence comparisons have identified common features among many of the DNA glycosylases. Their active sites have a structure that can only bind extrahelical target bases, as observed in the crystal structure of human uracil-DNA glycosylase in a complex with double-stranded DNA. Nucleotide flipping is apparently actively facilitated by the enzyme. With bacteriophage T4 endonuclease V, a pyrimidine-dimer glycosylase, the enzyme gains access to the target base by flipping out an adenine opposite to the dimer. A conserved helix-hairpin-helix motif and an invariant Asp residue are found in the active sites of more than 20 monofunctional and bifunctional DNA glycosylases. In bifunctional DNA glycosylases, the conserved Asp is thought to deprotonate a conserved Lys, forming an amine nucleophile. The nucleophile forms a covalent intermediate (Schiff base) with the deoxyribose anomeric carbon and expels the base. Deoxyribose subsequently undergoes several transformations, resulting in strand cleavage and regeneration of the free enzyme. The catalytic mechanism of monofunctional glycosylases does not involve covalent intermediates. Instead the conserved Asp residue may activate a water molecule which acts as the attacking nucleophile.
Collapse
Affiliation(s)
- H E Krokan
- UNIGEN Center for Molecular Biology, The Medical Faculty, Norwegian University of Science and Technology, N-7005 Trondheim, Norway
| | | | | |
Collapse
|
4
|
Sedgwick B, Vaughan P. Widespread adaptive response against environmental methylating agents in microorganisms. Mutat Res 1991; 250:211-21. [PMID: 1944338 DOI: 10.1016/0027-5107(91)90178-q] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many bacterial species have adaptive responses which protect against the toxicity and mutagenicity of methylating agents. Induced 3-methyladenine-DNA glycosylase and O6-methylguanine-DNA methyltransferase activities increase the cellular capacity of E. coli, B. subtilis, and M. luteus to repair toxic and mutagenic methylated base derivatives in DNA. The DNA methyltransferase or Ada protein of E. coli regulates the response and is converted into a strong transcriptional activator by self-methylation on repair of a methylphosphotriester in DNA. The multiple functions of the E. coli Ada protein (39 kDa) are split between two proteins, AdaA (24 kDa) and AdaB (20 kDa), in B. subtilis. Proteins (39 kDa) recognised by anti-Ada antibodies are efficiently induced in several enterobacterial species and correlate with increased DNA methyltransferase activities. In contrast, an "Ada-related" protein is only weakly induced in Salmonella typhimurium and no increase in DNA repair activity is detectable. The existence of adaptive responses in diverged bacterial species suggests the frequent occurrence of methylating agents in the environment. Several direct-acting methylating agents which are known to arise in the environment have been shown to induce the response. These include abundantly occurring methyl chloride, the antibiotic streptozotocin, the precursors of the known labile inducers N-methyl-N'-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine and as shown in this paper, methyl radicals which may arise by the irradiation or oxidation of methyl compounds.
Collapse
Affiliation(s)
- B Sedgwick
- Imperial Cancer Research Fund, Potters Bar, Herts., Great Britain
| | | |
Collapse
|
5
|
O'Connor TR, Laval J. Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem Biophys Res Commun 1991; 176:1170-7. [PMID: 1645538 DOI: 10.1016/0006-291x(91)90408-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cDNA expression library from a human cell line was introduced into an E. coli strain deficient in the repair of 3-meAde bases in DNA. E. coli strains deficient in the repair of 3-meAde are unusually sensitive to DNA methylating agents. A plasmid pANPG10 (Alkyl-N-Purine-DNA Glycosylase) was rescued from the library based on its ability to reduce the sensitivity of the mutant strain to methylmethane sulfonate. Crude extracts of the E. coli mutant strain hosting the plasmid pANPG10 release both 3-meAde and 7-meGua from DNA. The longest open reading frame in the sequence codes for a polypeptide of 230 amino acids of molecular weight 25.5 kD, with a pI of 9.1. The derived amino acid sequence of the human 3-meAde-DNA glycosylase has 85% sequence identity with the 3-meAde-DNA glycosylase from rat hepatoma cells.
Collapse
Affiliation(s)
- T R O'Connor
- URA147 CNRS/U140 INSERM Institut Gustave-Roussy, Villejuif, France
| | | |
Collapse
|