1
|
Pucciarelli S, Marziale F, Di Giuseppe G, Barchetta S, Miceli C. Ribosomal cold-adaptation: characterization of the genes encoding the acidic ribosomal P0 and P2 proteins from the Antarctic ciliate Euplotes focardii. Gene 2005; 360:103-10. [PMID: 16143466 DOI: 10.1016/j.gene.2005.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 04/14/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
Molecular adaptation at low temperature requires specificities represented mainly by modifications in the gene sequence and consequently in the protein primary structure. To characterize the molecular mechanisms responsible for ribosome cold-adaptation, we compared the ribosomal P0 and P2 genes from the Antarctic ciliate Euplotes focardii with homologous genes from mesophilic organisms, including the ciliates Tetrahymena thermophila and non cold-adapted Euplotes species. This analysis revealed the presence of non synonymous mutations unique to E. focardii. In the P0 protein the mutations produced amino acid substitutions that increased the molecular flexibility that may facilitate a conformational adjustment associated with the interaction with the GTPase center of the large subunit rRNA, and increased the hydrophobicity of the region involved in the interaction with P1/P2 heterodimer, probably to keep associated the ribosomal stalk in the cold. In the P2 protein the mutations produced amino acid substitutions that increased the N-terminus flexibility, which may facilitate interactions with P1 protein in the formation of the heterodimer, and reduced the mobility of the C-terminus, to stabilize the stalk during ribosomal activity. Finally, P proteins appeared to be valid markers for investigating the phylogenetic origin of early eukaryotes.
Collapse
Affiliation(s)
- Sandra Pucciarelli
- Dipartimento di Biologia Molecolare, Cellulare e Animale, University of Camerino, Via F Camerini 2, 62032 Camerino (MC), Italy
| | | | | | | | | |
Collapse
|
2
|
Di Giuseppe G, Wirz A, Miceli C. Molecular cloning of the gene encoding an acidic ribosomal protein of the P2 family from the ciliate Euplotes raikovi. J Eukaryot Microbiol 1999; 46:626-31. [PMID: 10568036 DOI: 10.1111/j.1550-7408.1999.tb05139.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized a macronuclear gene of the ciliate protozoan Euplotes raikovi, which encodes an acidic ribosomal protein of the P protein family. This gene shows the typical organization of the hypotrich ciliate macronuclear "gene-sized" molecules with Euplotes telomeres at the ends. The longest open reading frame encodes a conceptual protein of 113 amino acid residues, with a molecular mass and pI value of 11.45 kDa and 3.97, respectively. By using sequence homology analysis, the protein was found to belong to the ribosomal P2 protein family and was named Er P2, where Er stands for Euplotes raikovi. These proteins, generally called A (acidic/alanine rich) proteins in prokaryotes and P (phosphorylated) proteins in eukaryotes, in which they are divided into P1 and P2 families, play a role in the elongation step of protein synthesis. Approximately 40% amino acid sequence identity was found between the cloned protein and other known protozoan ribosomal P2 proteins. Within its N-terminal half, this protein contains several potential kinase phosphorylation sites. Protein Er P2 differs markedly from the consensus P protein sequence in its C-terminal region, usually highly conserved among eukaryotic ribosomal P proteins, and shows similarities with the C-terminus of the archaebacterial ribosomal A proteins. To our knowledge, this E. raikovi protein represents the first demonstration of a ribosome-associated protein of the P2 family in a ciliate protozoan.
Collapse
Affiliation(s)
- G Di Giuseppe
- Department of Molecular, Cellular, and Animal Biology, University of Camerino, Macerata, Italy
| | | | | |
Collapse
|
3
|
Ballesta JP, Rodriguez-Gabriel MA, Bou G, Briones E, Zambrano R, Remacha M. Phosphorylation of the yeast ribosomal stalk. Functional effects and enzymes involved in the process. FEMS Microbiol Rev 1999; 23:537-50. [PMID: 10525165 DOI: 10.1111/j.1574-6976.1999.tb00412.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ribosomal stalk is directly involved in the interaction of the elongation factors with the ribosome during protein synthesis. The stalk is formed by a complex of five proteins, four small acidic polypeptides and a larger protein which directly interacts with the rRNA at the GTPase center. In eukaryotes the acidic components correspond to the 12-kDa P1 and P2 proteins, and the RNA binding component is the P0 protein. All these proteins are found phosphorylated in eukaryotic organisms, and previous in vitro data suggested this modification was involved in the activity of this structure. Results from mutational studies have shown that phosphorylation takes place at a serine residue close to the carboxy end of the P proteins. Modification of this serine residue does not affect the formation of the stalk and the activity of the ribosome in standard conditions but induces an osmoregulation-related phenotype at 37 degrees C. The phosphorylatable serine is part of a consensus casein kinase II phosphorylation site. However, although CKII seems to be responsible for part of the stalk phosphorylation in vivo, it is probably not the only enzyme in the cell able to perform this modification. Five protein kinases, RAPI, RAPII and RAPIII, in addition to the previously reported CKII and PK60 kinases, are able to phosphorylate the stalk proteins. A comparison of the five enzymes shows differences among them that suggest some specificity regarding the phosphorylation of the four yeast acidic proteins. It has been found that some typical effectors of the PKC kinase stimulate the in vitro phosphorylation of the stalk proteins. All the data suggest that although phosphorylation is not involved in the interaction of the acidic P proteins with the ribosome, it can affect the ribosome activity and might participate in a possible ribosome regulatory mechanism.
Collapse
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular, CSIC and UAM, Canto Blanco, 28049, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
4
|
Szick K, Springer M, Bailey-Serres J. Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes. Proc Natl Acad Sci U S A 1998; 95:2378-83. [PMID: 9482893 PMCID: PMC19351 DOI: 10.1073/pnas.95.5.2378] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1997] [Accepted: 12/17/1997] [Indexed: 02/06/2023] Open
Abstract
The P-protein complex of eukaryotic ribosomes forms a lateral stalk structure in the active site of the large ribosomal subunit and is thought to assist in the elongation phase of translation by stimulating GTPase activity of elongation factor-2 and removal of deacylated tRNA. The complex in animals, fungi, and protozoans is composed of the acidic phosphoproteins P0 (35 kDa), P1 (11-12 kDa), and P2 (11-12 kDa). Previously we demonstrated by protein purification and microsequencing that ribosomes of maize (Zea mays L.) contain P0, one type of P1, two types of P2, and a distinct P1/P2 type protein designated P3. Here we implemented distance matrices, maximum parsimony, and neighbor-joining analyses to assess the evolutionary relationships between the 12 kDa P-proteins of maize and representative eukaryotic species. The analyses identify P3, found to date only in mono- and dicotyledonous plants, as an evolutionarily distinct P-protein. Plants possess three distinct groups of 12 kDa P-proteins (P1, P2, and P3), whereas animals, fungi, and protozoans possess only two distinct groups (P1 and P2). These findings demonstrate that the P-protein complex has evolved into a highly divergent complex with respect to protein composition despite its critical position within the active site of the ribosome.
Collapse
Affiliation(s)
- K Szick
- Interdepartmental Graduate Program in Genetics, University of California, Riverside, CA 92521-0124, USA
| | | | | |
Collapse
|
5
|
Ballesta JP, Remacha M. The large ribosomal subunit stalk as a regulatory element of the eukaryotic translational machinery. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:157-93. [PMID: 8787610 DOI: 10.1016/s0079-6603(08)60193-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J P Ballesta
- Centro de Biología Molecular "Severo Ochoa" Canto Blanco, Madrid, Spain
| | | |
Collapse
|
6
|
Larsen LK, Kristiansen K. Transcription in vitro of Tetrahymena class II and class III genes. J Biol Chem 1995; 270:7601-8. [PMID: 7706308 DOI: 10.1074/jbc.270.13.7601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A method for preparation of transcriptionally active nuclear extracts from the ciliated protozoan Tetrahymena thermophila is described. Cells were lysed in the presence of gum arabic, and nuclei were further purified in the presence of Ficoll 400. Highly concentrated nuclear extracts were prepared by ultracentrifugation of nuclei in a buffer containing potassium glutamate and spermidine. These extracts supported accurate transcription initiation of T. thermophila class II and III genes. Using the histone H3-II gene as a template, we demonstrated that physiologically induced changes in transcriptional activity in vivo were reflected in the transcriptional activity of the nuclear extract in vitro. By electrophoretic mobility shift assays, five conserved sequence elements in the upstream region of the histone H3-II gene were shown specifically to bind proteins in extracts from exponentially growing as well as from starved cells, and by UV cross-linking we further characterized the specific binding of two proteins to an oligonucleotide containing a conserved CCAAT box motif. Transcription competition experiments showed that addition of this oligonucleotide decreased transcription significantly. Competition with oligonucleotides corresponding to the two proximal conserved sequence elements almost completely abolished transcription of the H3-II gene suggesting that binding of transacting factors to these elements is crucial for initiation of transcription.
Collapse
Affiliation(s)
- L K Larsen
- Department of Molecular Biology, University of Odense, Denmark
| | | |
Collapse
|
7
|
Liao D, Dennis PP. Molecular phylogenies based on ribosomal protein L11, L1, L10, and L12 sequences. J Mol Evol 1994; 38:405-19. [PMID: 8007008 DOI: 10.1007/bf00163157] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain.
Collapse
Affiliation(s)
- D Liao
- Canadian Institute for Advanced Research, University of British Columbia, Vancouver
| | | |
Collapse
|
8
|
Levin MJ, Vazquez M, Kaplan D, Schijman AG. The Trypanosoma cruzi ribosomal P protein family: Classification and antigenicity. ACTA ACUST UNITED AC 1993; 9:381-4. [PMID: 15463674 DOI: 10.1016/0169-4758(93)90088-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The multi-copy ribosomal P proteins have been identified on the ribosomes of prokaryotic and eukaryotic cells, and their antigenicity is an important feature of human Trypanosoma cruzi infection. In this review, Mariano Levin, Martin Vazquez, Dan Kaplan and Alejandro Schijman give a rational basis for the classification of these proteins, and discuss their inter-relationship.
Collapse
Affiliation(s)
- M J Levin
- Instituto de Investigaciones en Ingenieria Genética y Biologia Molecular (INGEBI), Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
9
|
Hummel R, Nørgaard P, Andreasen PH, Neve S, Skjødt K, Tornehave D, Kristiansen K. Tetrahymena gene encodes a protein that is homologous with the liver-specific F-antigen and associated with membranes of the Golgi apparatus and transport vesicles. J Mol Biol 1992; 228:850-61. [PMID: 1469718 DOI: 10.1016/0022-2836(92)90869-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The F-antigen is a prominent liver protein which has been extensively used in studies on natural and induced immunological tolerance. However, its intracellular localization and biological function have remained elusive. It has generally been assumed that the F-antigen is confined phylogenetically to vertebrates. Now we have cloned and characterized a gene from the ciliated protozoan Tetrahymena thermophila encoding a protein which clearly is homologous with the rat F-antigen. The coding region of the Tetrahymena F-antigen (TF-ag) gene specifies a 46,051 M(r) protein and is interrupted by three introns. In accordance with the predicted molecular mass of the TF-ag protein, antibodies raised against a cro-lacZ'-TF-ag fusion protein specifically recognized a 45,000 M(r) protein in Western blots of total T. thermophila protein. Immunoelectron microscopy demonstrated that the TF-ag is associated with membranes of the Golgi apparatus and transport vesicles pointing to a role of TF-ag in membrane trafficking. Transcription of the TF-ag gene, as determined by run-on analyses, was only detectable in growing cells, and following transfer to starvation condition pre-existing TF-ag mRNA was rapidly degraded. The abundance of the TF-ag protein, however, declined only moderately during prolonged periods of starvation demonstrating that extensive release of the TF-ag did not take place. In combination these results suggest that the TF-ag protein is a recycled constituent of the intracellular membrane network in T. thermophila.
Collapse
Affiliation(s)
- R Hummel
- Department of Molecular Biology, University of Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|
10
|
Mandrup S, Hummel R, Ravn S, Jensen G, Andreasen PH, Gregersen N, Knudsen J, Kristiansen K. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. A typical housekeeping gene family. J Mol Biol 1992; 228:1011-22. [PMID: 1469708 DOI: 10.1016/0022-2836(92)90888-q] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous modulator of the GABAA receptor in brain membranes. ACBP/DBI, or proteolytically derived polypeptides of ACBP/DBI, have also been implicated in the control of steroidogenesis in mitochondria and glucose-stimulated insulin secretion. Thus, it appears that ACBP/DBI is a remarkable, versatile protein. Now we have molecularly cloned and characterized the ACBP/DBI gene family in rat. The rat ACBP/DBI gene family comprises one expressed gene and four processed pseudogenes of which one was shown to exist in two allelic forms. The expressed gene is organized into four exons and three introns. There is a remarkable correspondence between the structural modules of ACBP/DBI as determined by 1H nuclear magnetic resonance spectroscopy and the exon-intron architecture of the ACBP/DBI gene. Detailed analyses of transcription of the ACBP/DBI gene in brain and liver were performed to map transcription initiation sites and to examine if transcripts from the ACBP/DBI gene were subject to alternative processing. In both brain and liver, transcription is initiated from two major and multiple minor initiation sites. No evidence for alternative splicing was obtained. The promoter region of the ACBP/DBI gene is located in a CpG island and lacks a canonical TATA box. Thus, the ACDB/DBI gene exhibits all the hallmarks of a typical housekeeping gene.
Collapse
Affiliation(s)
- S Mandrup
- Institute of Biochemistry, Odense University, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nørgaard P, Dreisig H, Kristiansen K. Chromatin structure and conserved sequence elements in genes encoding ribosomal proteins in Tetrahymena thermophila. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:621-7. [PMID: 1459144 DOI: 10.1111/j.1432-1033.1992.tb17462.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chromatin structure of the macronuclear genes encoding ribosomal proteins S25 and L1 in the ciliated protozoan Tetrahymena thermophila was analyzed. Using the indirect end-labelling technique, DNase-I-hypersensitive regions were located in the promoter regions as well as in the 3' regions of the genes. The DNase-I-hypersensitive regions were present in chromatin of exponentially growing cells, where the rate of ribosomal-protein gene transcription is high, and in chromatin from starved cells, where transcription of ribosomal-protein genes is severely depressed. Micrococcalnuclease-digestion experiments revealed that the promoter regions of the S25 gene and the L1 gene are devoid of nucleosomes in exponentially growing cells. In starved cells, no nucleosomal organisation of the promoter region of the L1 gene could be detected, whereas nucleosomal structures were discernible in the promoter region of the S25 gene. A conspicuous polypurine sequence motif, AARGGGAAA, is present within or adjacent to the DNase-I-hypersensitive regions in the promoter of the S25 and the L1 gene, and interestingly, the same motif is found also in the promoter regions of the genes encoding ribosomal proteins L21 and L37.
Collapse
Affiliation(s)
- P Nørgaard
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
12
|
Vazquez MP, Schijman AG, Panebra A, Levin MJ. Nucleotide sequence of a cDNA encoding another Trypanosoma cruzi acidic ribosomal P2 type protein (TcP2b). Nucleic Acids Res 1992; 20:2893. [PMID: 1614880 PMCID: PMC336945 DOI: 10.1093/nar/20.11.2893] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M P Vazquez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
13
|
Vazquez MP, Schijman AG, Levin MJ. Nucleotide sequence of a cDNA encoding a Trypanosoma cruzi acidic ribosomal P1 type protein. Nucleic Acids Res 1992; 20:2599. [PMID: 1598221 PMCID: PMC312400 DOI: 10.1093/nar/20.10.2599] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M P Vazquez
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), Buenos Aires, Argentina
| | | | | |
Collapse
|
14
|
Dalrymple BP, Peters JM. Identification of L10e/L12e ribosomal protein genes in Babesia bovis. Nucleic Acids Res 1992; 20:2376. [PMID: 1594456 PMCID: PMC312359 DOI: 10.1093/nar/20.9.2376] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- B P Dalrymple
- CSIRO Division of Tropical Animal Production, Indooroopilly, Qld, Australia
| | | |
Collapse
|
15
|
Isoleucyl-tRNA synthetase from the ciliated protozoan Tetrahymena thermophila. DNA sequence, gene regulation, and leucine zipper motifs. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42874-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|