1
|
Agrawal A, Khan MJ, Graugnard DE, Vailati-Riboni M, Rodriguez-Zas SL, Osorio JS, Loor JJ. Prepartal Energy Intake Alters Blood Polymorphonuclear Leukocyte Transcriptome During the Peripartal Period in Holstein Cows. Bioinform Biol Insights 2017; 11:1177932217704667. [PMID: 28579762 PMCID: PMC5414586 DOI: 10.1177/1177932217704667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
In the dairy industry, cow health and farmer profits depend on the balance between diet (ie, nutrient composition, daily intake) and metabolism. This is especially true during the transition period, where dramatic physiological changes foster vulnerability to immunosuppression, negative energy balance, and clinical and subclinical disorders. Using an Agilent microarray platform, this study examined changes in the transcriptome of bovine polymorphonuclear leukocytes (PMNLs) due to prepartal dietary intake. Holstein cows were fed a high-straw, control-energy diet (CON; NEL = 1.34 Mcal/kg) or overfed a moderate-energy diet (OVE; NEL = 1.62 Mcal/kg) during the dry period. Blood for PMNL isolation and metabolite analysis was collected at −14 and +7 days relative to parturition. At an analysis of variance false discovery rate <0.05, energy intake (OVE vs CON) influenced 1806 genes. Dynamic Impact Approach bioinformatics analysis classified treatment effects on Kyoto Encyclopedia of Genes and Genomes pathways, including activated oxidative phosphorylation and biosynthesis of unsaturated fatty acids and inhibited RNA polymerase, proteasome, and toll-like receptor signaling pathway. This analysis indicates that processes critical for energy metabolism and cellular and immune function were affected with mixed results. However, overall interpretation of the transcriptome data agreed in part with literature documenting a potentially detrimental, chronic activation of PMNL in response to overfeeding. The widespread, transcriptome-level changes captured here confirm the importance of dietary energy adjustments around calving on the immune system.
Collapse
Affiliation(s)
- A Agrawal
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M J Khan
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D E Graugnard
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M Vailati-Riboni
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - S L Rodriguez-Zas
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - J S Osorio
- Department of Dairy Science, South Dakota State University, Brookings, SD, USA
| | - J J Loor
- Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Abstract
In plants and animals, RNA polymerase I (pol I) can be purified in a form that is self-sufficient for accurate rRNA gene promoter-dependent transcription and that has biochemical properties suggestive of a single complex, or holoenzyme. In this study, we examined the promoter binding properties of a highly purified Brassica pol I holoenzyme activity. DNase I footprinting revealed protection of the core promoter region from approximately -30 to +20, in good agreement with the boundaries of the minimal promoter defined by deletion analyses (-33 to +6). Using conventional polyacrylamide electrophoretic mobility shift assays (EMSA), protein-DNA complexes were mostly excluded from the gel. However, agarose EMSA revealed promoter-specific binding activity that co-purified with promoter-dependent transcription activity. Titration, time-course, and competition experiments revealed the formation or dissociation of a single protein-DNA complex. This protein-DNA complex could be labeled by incorporation of radioactive ribonucleotides into RNA in the presence of alpha-amanitin, suggesting that the polymerase I enzyme is part of the complex. Collectively, these results suggest that transcriptionally competent pol I holoenzymes can associate with rRNA gene promoters in a single DNA binding event.
Collapse
Affiliation(s)
- J Saez-Vasquez
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
3
|
Saez-Vasquez J, Pikaard CS. Extensive purification of a putative RNA polymerase I holoenzyme from plants that accurately initiates rRNA gene transcription in vitro. Proc Natl Acad Sci U S A 1997; 94:11869-74. [PMID: 9342329 PMCID: PMC23640 DOI: 10.1073/pnas.94.22.11869] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain approximately 30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.
Collapse
Affiliation(s)
- J Saez-Vasquez
- Biology Department, Washington University, Campus Box 1137, One Brookings Drive, St. Louis, MO 63130, USA
| | | |
Collapse
|
4
|
Larkin RM, Guilfoyle TJ. Reconstitution of yeast and Arabidopsis RNA polymerase alpha-like subunit heterodimers. J Biol Chem 1997; 272:12824-30. [PMID: 9139743 DOI: 10.1074/jbc.272.19.12824] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two subunits of about 36-44 kDa and 13-19 kDa in the eukaryotic nuclear RNA polymerases share limited amino acid sequence similarity to the alpha subunit in Escherichia coli RNA polymerase. The alpha subunit in the prokaryotic enzyme has a stoichiometry of 2, but the stoichiometry of the alpha-like subunits in the eukaryotic enzymes is not entirely clear. To gain insight into the subunit stoichiometry and assembly pathway for eukaryotic RNA polymerases, in vitro reconstitution experiments have been carried out with recombinant alpha-like subunits from yeast and plant RNA polymerase II. The large and small alpha-like subunits from each species formed stable heterodimers in vitro, but neither the large or small alpha-like subunits formed stable homodimers. Furthermore, mixed heterodimers were formed between corresponding subunits of yeast and plants, but were not formed between corresponding subunits in different RNA polymerases from the same species. Our results suggest that RNA polymerase II alpha-like heterodimers may be the equivalent of alpha homodimers found in E. coli RNA polymerase.
Collapse
Affiliation(s)
- R M Larkin
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|