1
|
Alexis NE, Zhou LY, Burbank AJ, Almond M, Hernandez ML, Mills KH, Noah TL, Wells H, Zhou H, Peden DB. Development of a screening protocol to identify persons who are responsive to wood smoke particle-induced airway inflammation with pilot assessment of GSTM1 genotype and asthma status as response modifiers. Inhal Toxicol 2022; 34:329-339. [PMID: 35968917 PMCID: PMC10519374 DOI: 10.1080/08958378.2022.2110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND We are currently screening human volunteers to determine their sputum polymorphonuclear neutrophil (PMN) response 6- and 24-hours following initiation of exposure to wood smoke particles (WSP). Inflammatory responders (≥10% increase in %PMN) are identified for their subsequent participation in mitigation studies against WSP-induced airways inflammation. In this report we compared responder status (<i>N</i> = 52) at both 6 and 24 hr time points to refine/expand its classification, assessed the impact of the GSTM1 genotype, asthma status and sex on responder status, and explored whether sputum soluble phase markers of inflammation correlate with PMN responsiveness to WSP. RESULTS Six-hour responders tended to be 24-hour responders and vice versa, but 24-hour responders also had significantly increased IL-1beta, IL-6, IL-8 at 24 hours post WSP exposure. The GSTM1 null genotype significantly (<i>p</i> < 0.05) enhanced the %PMN response by 24% in the 24-hour responders and not at all in the 6 hours responders. Asthma status enhanced the 24 hour %PMN response in the 6- and 24-hour responders. In the entire cohort (not stratified by responder status), we found a significant, but very small decrease in FVC and systolic blood pressure immediately following WSP exposure and sputum %PMNs were significantly increased and associated with sputum inflammatory markers (IL-1beta, IL-6, IL-8, and PMN/mg) at 24 but not 6 hours post exposure. Blood endpoints in the entire cohort showed a significant increase in %PMN and PMN/mg at 6 but not 24 hours. Sex had no effect on %PMN response. CONCLUSIONS The 24-hour time point was more informative than the 6-hour time point in optimally and expansively defining airway inflammatory responsiveness to WSP exposure. GSTM1 and asthma status are significant effect modifiers of this response. These study design and subject parameters should be considered before enrolling volunteers for proof-of-concept WSP mitigation studies.
Collapse
Affiliation(s)
- Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Laura Y Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Allison J Burbank
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Martha Almond
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michelle L Hernandez
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine H Mills
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Terry L Noah
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Pulmonology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Haibo Zhou
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Children's Research Institute, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Division of Allergy & Immunology, Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Henriquez A, House J, Miller DB, Snow SJ, Fisher A, Ren H, Schladweiler MC, Ledbetter AD, Wright F, Kodavanti UP. Adrenal-derived stress hormones modulate ozone-induced lung injury and inflammation. Toxicol Appl Pharmacol 2017. [PMID: 28623178 DOI: 10.1016/j.taap.2017.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ozone-induced systemic effects are modulated through activation of the neuro-hormonal stress response pathway. Adrenal demedullation (DEMED) or bilateral total adrenalectomy (ADREX) inhibits systemic and pulmonary effects of acute ozone exposure. To understand the influence of adrenal-derived stress hormones in mediating ozone-induced lung injury/inflammation, we assessed global gene expression (mRNA sequencing) and selected proteins in lung tissues from male Wistar-Kyoto rats that underwent DEMED, ADREX, or sham surgery (SHAM) prior to their exposure to air or ozone (1ppm), 4h/day for 1 or 2days. Ozone exposure significantly changed the expression of over 2300 genes in lungs of SHAM rats, and these changes were markedly reduced in DEMED and ADREX rats. SHAM surgery but not DEMED or ADREX resulted in activation of multiple ozone-responsive pathways, including glucocorticoid, acute phase response, NRF2, and PI3K-AKT. Predicted targets from sequencing data showed a similarity between transcriptional changes induced by ozone and adrenergic and steroidal modulation of effects in SHAM but not ADREX rats. Ozone-induced increases in lung Il6 in SHAM rats coincided with neutrophilic inflammation, but were diminished in DEMED and ADREX rats. Although ozone exposure in SHAM rats did not significantly alter mRNA expression of Ifnγ and Il-4, the IL-4 protein and ratio of IL-4 to IFNγ (IL-4/IFNγ) proteins increased suggesting a tendency for a Th2 response. This did not occur in ADREX and DEMED rats. We demonstrate that ozone-induced lung injury and neutrophilic inflammation require the presence of circulating epinephrine and corticosterone, which transcriptionally regulates signaling mechanisms involved in this response.
Collapse
Affiliation(s)
- Andres Henriquez
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Desinia B Miller
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Hongzu Ren
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Allen D Ledbetter
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Fred Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
3
|
Tong L, Liao X, Chen J, Xiao H, Xu L, Zhang F, Niu Z, Yu J. Pollution characteristics of ambient volatile organic compounds (VOCs) in the southeast coastal cities of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2603-2615. [PMID: 22972618 DOI: 10.1007/s11356-012-1187-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
With the rapid urbanization, the southeast coastal cities of China are facing increasing air pollution in the past decades. Large emissions of VOCs from vehicles and petrochemical factories have contributed greatly to the local air quality deterioration. Investigating the pollution characteristics of VOCs is of great significance to the environmental risk assessment and air quality improvement. Ambient VOC samples were collected simultaneously from nine coastal cities of southeast China using the Tedlar bags, and were subsequently preprocessed and analyzed using a cryogenic preconcentrator and a gas chromatography-mass spectrometry system, respectively. VOC compositions, spatial distributions, seasonal variations and ozone formation potentials (OPFs) were discussed. Results showed that methylene chloride, toluene, isopropyl alcohol and n-hexane were most abundant species, and oxygenated compounds, aromatics and halogenated hydrocarbons were most abundant chemical classes (62.5-95.6% of TVOCs). Both industrial and vehicular exhausts might contribute greatly to the VOC emissions. The VOC levels in the southeast coastal cities of China were sufficiently high (e.g., 6.5 μg m(-3) for benzene) to pose a health risk to local people. A more serious pollution state was found in the southern cities of the study region, while higher VOC levels were usually observed in winter. The B/T ratio (0.26 ± 0.09) was lower than the typical ratio (ca. 0.6) for roadside samples, while the B/E (1.6-7.6) and T/E (7.2-26.8) ratios were higher than other cities around the world, which indicated a unique emission profile in the study region. Besides, analysis on ozone formation potentials (OFPs) indicated that toluene was the most important species in ozone production with the accountabilities for total OFPs of 22.6 to 59.6%.
Collapse
Affiliation(s)
- Lei Tong
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Jimei Road 1799, Jimei District, Xiamen 361021, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Peden DB. The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev 2011; 242:91-105. [PMID: 21682740 DOI: 10.1111/j.1600-065x.2011.01035.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ozone (O(3)) and endotoxin are common environmental contaminants that cause asthma exacerbation. These pollutants have similar phenotype response characteristics, including induction of neutrophilic inflammation, changes in airway macrophage immunophenotypes, and ability to enhance response to inhaled allergen. Evoked phenotyping studies of volunteers exposed to O(3) and endotoxin were used to identify the response characteristics of volunteers to these pollutants. New studies support the hypotheses that similar innate immune and oxidant processes modulate response to these agents. These include TLR4 and inflammasome-mediated signaling and cytokine production. Innate immune responses are also impacted by oxidative stress. It is likely that continued discovery of common molecular processes which modulate response to these pollutants will occur. Understanding the pathways that modulate response to pollutants will also allow for discovery of genetic and epigenetic factors that regulate response to these pollutants and determine risk of disease exacerbation. Additionally, defining the mechanisms of response will allow rational selection of interventions to examine. Interventions focused on inhibition of Toll-like receptor 4 and inflammasome represent promising new approaches to preventing pollutant-induced asthma exacerbations. Such interventions include specific inhibitors of innate immunity and antioxidant therapies designed to counter the effects of pollutants on cell signaling.
Collapse
Affiliation(s)
- David B Peden
- Division of Pediatric Allergy, Immunology, Rheumatology and Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Rojas-Martinez R, Perez-Padilla R, Olaiz-Fernandez G, Mendoza-Alvarado L, Moreno-Macias H, Fortoul T, McDonnell W, Loomis D, Romieu I. Lung function growth in children with long-term exposure to air pollutants in Mexico City. Am J Respir Crit Care Med 2007; 176:377-84. [PMID: 17446338 DOI: 10.1164/rccm.200510-1678oc] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Although short-term exposure to air pollution has been associated with acute, reversible lung function decrements, the impact of long-term exposure has not been well established. OBJECTIVES To evaluate the association between long-term exposure to ozone (O(3)), particulate matter less than 10 mum in diameter (PM(10)), and nitrogen dioxide (NO(2)) and lung function growth in Mexico City schoolchildren. METHODS A dynamic cohort of 3,170 children aged 8 years at baseline was followed from April 23, 1996, through May 19, 1999. The children attended 39 randomly selected elementary schools located near 10 air quality monitoring stations and were visited every 6 months. Statistical analyses were performed using general linear mixed models. MEASUREMENTS AND MAIN RESULTS After adjusting for acute exposure and other potential confounding factors, deficits in FVC and FEV(1) growth over the 3-year follow-up period were significantly associated with exposure to O(3), PM(10), and NO(2). In multipollutant models, an interquartile range (IQR) increase in mean O(3) concentration (IQR, 11.3 ppb) was associated with an annual deficit in FEV(1) of 12 ml in girls and 4 ml in boys, an IQR range (IQR, 36.4 microg/m(3)) increase in PM(10) with an annual deficit in FEV(1) of 11 ml in girls and 15 ml in boys, and an IQR range (IQR, 12.0 ppb) increase in NO(2) with an annual deficit in FEV(1) of 30 ml in girls and 25 ml in boys. CONCLUSIONS We conclude that long-term exposure to O(3), PM(10), and NO(2) is associated with a deficit in FVC and FEV(1) growth among schoolchildren living in Mexico City.
Collapse
Affiliation(s)
- Rosalba Rojas-Martinez
- Instituto Nacional de Salud Publica, 655 Avenida Universidad, Col. Santa Maria Ahuacatitlán, Cuernavaca, Morelos 62508, México
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wilson M, Widdicombe JH, Gohil K, Burtis KC, Reznick AZ, Cross CE, Eiserich JP. Are Drosophila a useful model for understanding the toxicity of inhaled oxidative pollutants: a review. Inhal Toxicol 2006; 17:765-74. [PMID: 16195212 DOI: 10.1080/08958370500225141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxidative atmospheric pollutants represent a significant stress and cause injury to both vertebrate and invertebrate species. In both, the biosurfaces of their respiratory apparatus are directly exposed to oxidizing pollutant-induced stresses. Respiratory-tract surfaces contain integrated antioxidant systems that appear to provide a primary defense against environmental insults caused by inhaled atmospheric reactive oxygen species (ROS) and reactive nitrogen species (RNS), whether gaseous or particulate. When the biosurface antioxidant defenses are overwhelmed, oxidative and nitrosative stress to the acellular and cellular components of the exposed biosurfaces can ensue via direct chemical reactions that lead to the induction of inflammatory, adaptive, injurious, and reparative processes. The study of model invertebrates (e.g., Drosophila) has a long history of yielding valuable insights into both fundamental biology and pathobiology. Mutants and/or transgenic insects, with specific alterations in key components of innate and/or adaptive antioxidant defense systems and immune genes, offer opportunities to dissect the complex systems that maintain respiratory tract surface defenses against environmental oxidants and the ensuing host responses. In this article, we use a comparative absfont approach to consider interactions of atmospheric oxidant pollutants with selected biosystems. We focused primarily on ozone (O(3)) as the pollutant, vertebrate and invertebrate respiratory tracts as the exposed biosystems, and nonenzymatic micronutrient antioxidants as significant contributors to overall antioxidant defense strategies. We present parallels among these diverse organisms with regard to their protective strategies against environmental atmospheric oxidants, with particular focus given to using the invertebrate Drosophila as a potentially useful model for vertebrate respiratory-tract responses to inhaled oxidants specifically and pollutants in general. We conclude that the insect respiratory system has considerable promise toward understanding novel aspects of vertebrate respiratory tract responses to inhaled oxidative environmental challenges.
Collapse
Affiliation(s)
- Malinda Wilson
- Division of Pulmonary Medicine, University of California, Davis, California 95817, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Riihimäki V, Toppila A, Piirilä P, Kuosma E, Pfäffli P, Tuomela P. Respiratory Health in Aseptic Packaging with Hydrogen Peroxide: A Report of Two Cases. J Occup Health 2003. [DOI: 10.1539/joh.44.433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Vesa Riihimäki
- Finnish Institute of Occupational HealthDepartment of Industrial Hygiene and Toxicology
| | | | - Päivi Piirilä
- Helsinki University Central HospitalDept, of Clinical Physiology
| | - Eeva Kuosma
- Finnish Institute of Occupational HealthDepartment of Epidemiology and BiostatisticsFinland
| | - Pirkko Pfäffli
- Finnish Institute of Occupational HealthDepartment of Industrial Hygiene and Toxicology
| | | |
Collapse
|
8
|
Delaunois A, Segura P, Montaño LM, Vargas MH, Ansay M, Gustin P. Comparison of ozone-induced effects on lung mechanics and hemodynamics in the rabbit. Toxicol Appl Pharmacol 1998; 150:58-67. [PMID: 9630453 DOI: 10.1006/taap.1998.8397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of rabbit exposure to ozone (O3)(0.4 ppm for 4 h) on pulmonary mechanical properties and hemodynamics have been investigated on the isolated perfused lung model. Tracheal pressure, airflow, and tidal volume were measured in order to calculate lung resistance (RL) and dynamic compliance (Cdyn). Using the arterial/venous/double occlusion method, the total pressure gradient (deltaPT) was partitioned into four components (arterial, pre-, postcapillary and venous). Dose-response curves to acetylcholine (ACh), substance P (SP), and histamine were constructed in lungs isolated from rabbits immediately or 48 h after air or O3 exposure O3 induced a significant increase in the baseline value of deltaPt, more markedly 48 h after the exposure. Immediately after the exposure, O3 partly inhibited the ACh-, SP-, and histamine-induced decreases in Cdyn and increases in RL. This inhibitory effect was still in part present 48 h after O3 treatment. In the groups studied immediately after exposure, O3 did not significantly modify the ACh-, SP-, and histamine-induced vasoconstriction. Forty-eight hours after exposure, O3 induced a contractile response to ACh and SP in the arterial segment but decreased the response to histamine. We conclude that O3 can induce direct vascular constriction. Directly, but also 48 h after exposure, O3 can inhibit the ACh-, SP-, and histamine-induced changes in lung mechanical properties. Ozone can also induce some changes in the intensity and in the location of the vascular responses to ACh, SP, and histamine.
Collapse
Affiliation(s)
- A Delaunois
- Department of Pharmacology-Toxicology, Faculty of Veterinary Medicine, Université de Liège, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Delaunois A, Segura P, Dessy-Doizé C, Ansay M, Montaño LM, Vargas MH, Gustin P. Ozone-induced stimulation of pulmonary sympathetic fibers: a protective mechanism against edema. Toxicol Appl Pharmacol 1997; 147:71-82. [PMID: 9356309 DOI: 10.1006/taap.1997.8266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tropospheric ozone exerts well-described toxic effects on the respiratory tract. Less documented, by contrast, is the ability of ozone to induce protective mechanisms against agents that are toxic to the lungs. In particular, interactions between ozone and the sympathetic nervous system have never been considered. Using a model of permeability edema in isolated perfused rabbit lungs, we report here that, immediately after exposure of rabbits to 0.4 ppm ozone for 4 hr, the pulmonary microvascular responses to acetylcholine and substance P are completely blocked. Several lines of evidence, including partial inhibition of the ozone-induced protective effect by several drugs (alpha2- and beta-adrenergic antagonists, neuropeptide Y antagonist, guanethidine), measured levels of released catecholamines in blood and urine and the in vitro response of isolated lungs exposed to 0.4 ppm ozone all seem to suggest that ozone can stimulate pulmonary adrenergic fibers and induce the local release of catecholamines and neuropeptide Y, this resulting in transient protection against pulmonary edema. We also showed that, 48 hr after the exposure, ozone increased the baseline microvascular permeability and the response to low concentrations of acetylcholine.
Collapse
Affiliation(s)
- A Delaunois
- Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster B41, Liège, B-4000, Belgium
| | | | | | | | | | | | | |
Collapse
|