1
|
Luyen ND, Huong LM, Ha NTT, Tra NT, Anh LTT, Tuyen NV, Posta K, Son NT, Pham-The H. Chemical Profile and Biological Activities of Fungal Strains Isolated from Piper nigrum Roots: Experimental and Computational Approaches. Chem Biodivers 2023; 20:e202200456. [PMID: 36564341 DOI: 10.1002/cbdv.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
The current report describes the chemical investigation and biological activity of extracts produced by three fungal strains Fusarium oxysporum, Penicillium simplicissimum, and Fusarium proliferatum isolated from the roots of Piper nigrum L. growing in Vietnam. These fungi were namely determined by morphological and DNA analyses. GC/MS identification revealed that the EtOAc extracts of these fungi were associated with the presence of saturated and unsaturated fatty acids. These EtOAc extracts showed cytotoxicity towards cancer cell lines HepG2, inhibited various microbacterial organisms, especially fungus Aspergillus niger and yeast Candida albicans (the MIC values of 50-100 μg/mL). In α-glucosidase inhibitory assay, they induced the IC50 values of 1.00-2.53 μg/mL were better than positive control acarbose (169.80 μg/mL). The EtOAc extract of F. oxysporum also showed strong anti-inflammatory activity against NO production and PGE-2 level. Four major compounds linoleic acid (37.346 %), oleic acid (27.520 %), palmitic acid (25.547 %), and stearic acid (7.030 %) from the EtOAc extract of F. oxysporum were selective in molecular docking study, by which linoleic and oleic acids showed higher binding affinity towards α-glucosidase than palmitic and stearic acids. In subsequent docking assay with inducible nitric oxide synthase (iNOS), palmitic acid, oleic acid and linoleic acid could be moderate inhibitors.
Collapse
Affiliation(s)
- Nguyen Dinh Luyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Le Mai Huong
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Thi Thu Ha
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Thanh Tra
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Le Thi Tu Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Katalin Posta
- Hungarian University of Agriculture and Life Sciences, Institute of Genetics and Biotechnology, Pater str 1., Godollo, H-2103, Hungary
| | - Ninh The Son
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, 10000, Vietnam
| | - Hai Pham-The
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 10000, Vietnam. or
| |
Collapse
|
2
|
Schreider K, Boy J, Sauheitl L, Figueiredo AF, Andrino A, Guggenberger G. Designing a Robust and Versatile System to Investigate Nutrient Exchange in, and Partitioning by, Mycorrhiza ( Populus x canesces x Paxillus involutus) Under Axenic or Greenhouse Conditions. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:907563. [PMID: 37746230 PMCID: PMC10512296 DOI: 10.3389/ffunb.2022.907563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 09/26/2023]
Abstract
Phosphorus (P) bioavailability affects plant nutrition. P can be present in soils in different chemical forms that are not available for direct plant uptake and have to be acquired by different mechanisms, representing different resource niches. These mechanisms, of which many seem to be attributed to mycorrhiza, likely influence the diversity and stability of plant communities in natural ecosystems, as they also might help to overcome a future shortage of P supply in agro-ecosystems. In order to understand the mechanisms of P acquisition, the associated carbon costs, and the resource partitioning by mycorrhizal fungi, the ecosystem situation has to be mimicked in smaller scaled experiments. Here, different experimental setups are evaluated using plantlets of Populus x canescens and its functional ectomycorrhizal (ECM) fungus Paxillus involututs strain MAJ. To investigate resource partitioning involving mycorrhizae, the protocols of this study describe preparation of an in vitro and a rhizotrone culture systems for studies under axenic conditions as well as a mesocosm culture system for greenhouse conditions. We also describe the construction of separate compartments containing nutrients and excluding plant roots as well as the progress that has been made in in vitro propagation of plant and ECM fungal material. The practical experience made in our study shows that the in vitro culture system is prone to desiccation and its construction and maintenance are more time consuming and complicated. In contrast, with the axenic rhizotrone culture system and the mesocosms we have created more robust and very versatile systems that are also suitable for greenhouse conditions.
Collapse
Affiliation(s)
| | - Jens Boy
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | - Leopold Sauheitl
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | | | - Alberto Andrino
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| | - Georg Guggenberger
- Institute of Soil Science, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
3
|
Fazenda ML, Seviour R, McNeil B, Harvey LM. Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:33-103. [DOI: 10.1016/s0065-2164(07)00002-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|