1
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
2
|
Besleaga I, Stepanenko I, Petrasheuskaya TV, Darvasiova D, Breza M, Hammerstad M, Marć MA, Prado-Roller A, Spengler G, Popović-Bijelić A, Enyedy EA, Rapta P, Shutalev AD, Arion VB. Triapine Analogues and Their Copper(II) Complexes: Synthesis, Characterization, Solution Speciation, Redox Activity, Cytotoxicity, and mR2 RNR Inhibition. Inorg Chem 2021; 60:11297-11319. [PMID: 34279079 PMCID: PMC8335727 DOI: 10.1021/acs.inorgchem.1c01275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Three new thiosemicarbazones
(TSCs) HL1–HL3 as triapine
analogues bearing a redox-active phenolic moiety at the terminal nitrogen
atom were prepared. Reactions of HL1–HL3 with CuCl2·2H2O in anoxic methanol afforded three copper(II)
complexes, namely, Cu(HL1)Cl2 (1), [Cu(L2)Cl] (2′), and Cu(HL3)Cl2 (3), in good yields. Solution
speciation studies revealed that the metal-free ligands are stable
as HL1–HL3 at pH 7.4, while being air-sensitive in
the basic pH range. In dimethyl sulfoxide they exist as a mixture
of E and Z isomers. A mechanism
of the E/Z isomerization with an inversion at the
nitrogen atom of the Schiff base imine bond is proposed. The monocationic
complexes [Cu(L1–3)]+ are the most abundant
species in aqueous solutions at pH 7.4. Electrochemical and spectroelectrochemical
studies of 1, 2′, and 3 confirmed their redox activity in both the cathodic and the anodic
region of potentials. The one-electron reduction was identified as
metal-centered by electron paramagnetic resonance spectroelectrochemistry.
An electrochemical oxidation pointed out the ligand-centered oxidation,
while chemical oxidations of HL1 and HL2 as well as 1 and 2′ afforded several two-electron and four-electron
oxidation products, which were isolated and comprehensively characterized.
Complexes 1 and 2′ showed an antiproliferative
activity in Colo205 and Colo320 cancer cell lines with half-maximal
inhibitory concentration values in the low micromolar concentration
range, while 3 with the most closely related ligand to
triapine displayed the best selectivity for cancer cells versus normal
fibroblast cells (MRC-5). HL1 and 1 in the presence of 1,4-dithiothreitol are as
potent inhibitors of mR2 ribonucleotide reductase as triapine. Three triapine analogues HL1−HL3 bearing a
phenolic redox-active moiety showed moderate antiproliferative activity,
while one of the oxidation products HL2c′·CH3COOH revealed
high cytotoxicity in Colo205 and Colo320 cancer cell lines. Coordination
of HL1−HL3 to copper(II) increased strongly the cytotoxicity,
with complex 2′ showing IC50 values
of 0.181 and 0.159, respectively. The highest cytotoxicity of 2′ is likely due to the highest thermodynamic stability,
more negative reduction potential, and the lowest rate of reduction
by GSH.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Iryna Stepanenko
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Tatsiana V Petrasheuskaya
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Denisa Darvasiova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Martin Breza
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Małgorzata A Marć
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Dóm tér 10, 6725 Szeged, Hungary
| | - Alexander Prado-Roller
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Dóm tér 10, 6725 Szeged, Hungary
| | - Ana Popović-Bijelić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Eva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Anatoly D Shutalev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russian Federation
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Moridani MY, Cheon SS, Khan S, O'Brien PJ. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes. Chem Biol Interact 2003; 142:317-33. [PMID: 12453669 DOI: 10.1016/s0009-2797(02)00125-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tyrosinase-directed therapeutic approach for malignant melanoma therapy uses the depigmenting phenolic agents such as 4-hydroxyanisole (4-HA) to form cytotoxic o-quinones. However, renal and hepatic toxicity was reported as side effects in a recent 4-HA clinical trial. In search of novel therapeutics, the cytotoxicity of the isomers 4-HA, 3-HA and 2-HA were investigated. In the following, the order of the HAs induced hepatotoxicity in mice, as measured by increased in vivo plasma transaminase activity, or in isolated rat hepatocytes, as measured by trypan blue exclusion, was 3-HA > 2-HA > 4-HA. Hepatocyte GSH depletion preceded HA induced cytotoxicity and a 4-MC-SG conjugate was identified by LC/MS/MS mass spectrometry analysis when 3-HA was incubated with NADPH/microsomes/GSH. 3-HA induced hepatocyte GSH depletion or GSH depletion when 3-HA was incubated with NADPH/microsomes was prevented by CYP 2E1 inhibitors. Dicumarol (an NAD(P)H: quinone oxidoreductase inhibitor) potentiated 3-HA- or 4-methoxycatechol (4-MC) induced toxicity whereas sorbitol (an NADH generating nutrient) greatly prevented cytotoxicity indicating a quinone-mediated cytotoxic mechanism. Ethylendiamine (an o-quinone trap) largely prevented 3-HA and 4-MC-induced cytotoxicity indicating that o-quinone was involved in cytotoxicity. Dithiothreitol (DTT) greatly reduced 3-HA and 4-MC induced toxicity. The ferric chelator deferoxamine slightly decreased 3-HA and 4-MC induced cytotoxicity whereas the antioxidants pyrogallol or TEMPOL greatly prevented the toxicity suggesting that oxidative stress contributed to 3-HA induced cytotoxicity. In summary, ring hydroxylation but not O-demethylation/epoxidation seems to be the bioactivation pathway for 3-HA in rat liver. The cytotoxic mechanism for 3-HA and its metabolite 4-MC likely consists cellular protein alkylation and oxidative stress. These results suggest that 3-HA is not suitable for treatment of melanoma.
Collapse
Affiliation(s)
- Majid Y Moridani
- Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ont, Canada M5S 2S2
| | | | | | | |
Collapse
|
5
|
Thomas PD, Kishi H, Cao H, Ota M, Yamashita T, Singh S, Jimbow K. Selective incorporation and specific cytocidal effect as the cellular basis for the antimelanoma action of sulphur containing tyrosine analogs. J Invest Dermatol 1999; 113:928-34. [PMID: 10594732 DOI: 10.1046/j.1523-1747.1999.00781.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine analogs are good candidates for developing melanoma chemotherapy because melanogenesis is inherently toxic and uniquely expressed in melanocytic cells. Sulphur containing substrate (tyrosine) analogs, N-acetyl-4-S-cysteaminylphenol (NAcCAP) and N-propionyl-4-S-cysteaminylphenol (NPrCAP), have been shown to have potent antimelanoma activity in mice bearing melanoma. Both NAcCAP and NPrCAP show selective cytotoxicity towards melanoma cell lines. But the mechanism leading to selectivity is not clear as these drugs are also toxic to other cell lines to a lesser extent. Here we show that these drugs have both cytostatic and cytocidal effects, which could account for this. Cytostatic effect is suggested by DNA flow cytometry. The drug causes cell cycle changes in four human cell lines (normal skin fibroblasts, HeLa cells, and melanoma cell lines, C32 and SK-MEL-23) in a dose-dependent manner blocking cells in S phase with concomitant decrease in the number of cells in G1 phase. There is also a gradual decrease in cells in G2 + M phases. The dose-concentration curves give IC50 values in the range of 50-400 microM and the melanotic melanoma cell line SK-MEL-23 has the lowest IC50 value consistent with our hypothesis that these drugs are selective towards melanoma cells. The concentration-dependent accumulation of cells in S phase suggest a cytostatic effect as a consequence of inhibition of DNA synthesis in agreement with [3H] thymidine incorporation assay. There is a highly specific uptake of [14C]NAcCAP and irreversible damage to DNA synthesis machinery in SK-MEL-23 cells, indicating a melanotic-specific cytocidal effect as well. Trypan blue exclusion study and competitive inhibition assay indicated that visible cytocidal effect occurs slowly and oxidative stress resulting from tyrosinase mediated oxidation of the drug appears to be the underlying mechanism. The primary antimelanoma effect of cysteaminylphenols derives from a selective cytostatic effect, but is followed by a specific cytocidal action rendering the drugs useful for targeted melanoma chemotherapy.
Collapse
Affiliation(s)
- P D Thomas
- Division of Dermatology & Cutaneous Sciences, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|