1
|
Miguez-Cabello F, Wang XT, Yan Y, Brake N, Alexander RPD, Perozzo AM, Khadra A, Bowie D. GluA2-containing AMPA receptors form a continuum of Ca 2+-permeable channels. Nature 2025; 641:537-544. [PMID: 40108453 DOI: 10.1038/s41586-025-08736-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025]
Abstract
Fast excitatory neurotransmission in the mammalian brain is mediated by cation-selective AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors (AMPARs)1. AMPARs are critical for the learning and memory mechanisms of Hebbian plasticity2 and glutamatergic synapse homeostasis3, with recent work establishing that AMPAR missense mutations can cause autism and intellectual disability4-7. AMPARs have been grouped into two functionally distinct tetrameric assemblies based on the inclusion or exclusion of the GluA2 subunit that determines Ca2+ permeability through RNA editing8,9. GluA2-containing AMPARs are the most abundant in the central nervous system and considered to be Ca2+ impermeable10. Here we show this is not the case. Contrary to conventional understanding, GluA2-containing AMPARs form a continuum of polyamine-insensitive ion channels with varying degrees of Ca2+ permeability. Their ability to transport Ca2+ is shaped by the subunit composition of AMPAR tetramers as well as the spatial orientation of transmembrane AMPAR regulatory proteins and cornichon auxiliary subunits. Ca2+ crosses the ion-conduction pathway by docking to an extracellular binding site that helps funnel divalent ions into the pore selectivity filter. The dynamic range in Ca2+ permeability, however, arises because auxiliary subunits primarily modify the selectivity filter. Taken together, our work proposes a broader role for AMPARs in Ca2+ signalling in the mammalian brain and offers mechanistic insight into the pathogenic nature of missense mutations.
Collapse
Affiliation(s)
| | - Xin-Tong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Yuhao Yan
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Niklas Brake
- Department of Physiology, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences PhD program, McGill University, Montreal, Quebec, Canada
| | - Ryan P D Alexander
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Amanda M Perozzo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Derek Bowie
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Koesters AG, Rich MM, Engisch KL. Homeostatic Synaptic Plasticity of Miniature Excitatory Postsynaptic Currents in Mouse Cortical Cultures Requires Neuronal Rab3A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.14.544980. [PMID: 39071374 PMCID: PMC11275788 DOI: 10.1101/2023.06.14.544980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Following prolonged activity blockade, amplitudes of miniature excitatory postsynaptic currents (mEPSCs) increase, a form of plasticity termed "homeostatic synaptic plasticity." We previously showed that a presynaptic protein, the small GTPase Rab3A, is required for full expression of the increase in miniature endplate current amplitudes following prolonged blockade of action potential activity at the mouse neuromuscular junction in vivo, where an increase in postsynaptic receptors does not contribute (Wang et al., 2005; Wang et al., 2011). It is unknown whether this form of Rab3A-dependent homeostatic plasticity at the neuromuscular junction shares any characteristics with central synapses. We show here that homeostatic synaptic plasticity of mEPSCs is impaired in mouse cortical neuron cultures prepared from Rab3A-/- and mutant mice expressing a single point mutation of Rab3A, Rab3A Earlybird mice. To determine if Rab3A is involved in the well-established homeostatic increase in postsynaptic AMPA-type receptors (AMPARs), we performed a series of experiments in which electrophysiological recordings of mEPSCs and confocal imaging of synaptic AMPAR immunofluorescence were assessed within the same cultures. We found that the increase in postsynaptic AMPAR levels in wild type cultures was more variable than that of mEPSC amplitudes, which might be explained by a presynaptic contribution, but we cannot rule out variability in the measurement. Finally, we demonstrate that Rab3A is acting in neurons because only selective loss of Rab3A in neurons, not glia, disrupted the homeostatic increase in mEPSC amplitudes. This is the first demonstration that a protein thought to function presynaptically is required for homeostatic synaptic plasticity of quantal size in central neurons.
Collapse
Affiliation(s)
- Andrew G. Koesters
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345
| | - Kathrin L. Engisch
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and the College of Science and Mathematics, Wright State University, Dayton, OH 45435
| |
Collapse
|
3
|
Gangwar SP, Yen LY, Yelshanskaya MV, Korman A, Jones DR, Sobolevsky AI. Modulation of GluA2-γ5 synaptic complex desensitization, polyamine block and antiepileptic perampanel inhibition by auxiliary subunit cornichon-2. Nat Struct Mol Biol 2023; 30:1481-1494. [PMID: 37653241 PMCID: PMC10584687 DOI: 10.1038/s41594-023-01080-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
Synaptic complexes of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) with auxiliary subunits mediate most excitatory neurotransmission and can be targeted to treat neuropsychiatric and neurological disorders, including epilepsy. Here we present cryogenic-electron microscopy structures of rat GluA2 AMPAR complexes with inhibitory mouse γ5 and potentiating human cornichon-2 (CNIH2) auxiliary subunits. CNIH2 appears to destabilize the desensitized state of the complex by reducing the separation of the upper lobes in ligand-binding domain dimers. At the same time, CNIH2 stabilizes binding of polyamine spermidine to the selectivity filter of the closed ion channel. Nevertheless, CNIH2, and to a lesser extent γ5, attenuate polyamine block of the open channel and reduce the potency of the antiepileptic drug perampanel that inhibits the synaptic complex allosterically by binding to sites in the ion channel extracellular collar. These findings illustrate the fine-tuning of synaptic complex structure and function in an auxiliary subunit-dependent manner, which is critical for the study of brain region-specific neurotransmission and design of therapeutics for disease treatment.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Aryeh Korman
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Purkey AM, Dell’Acqua ML. Phosphorylation-Dependent Regulation of Ca 2+-Permeable AMPA Receptors During Hippocampal Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:8. [PMID: 32292336 PMCID: PMC7119613 DOI: 10.3389/fnsyn.2020.00008] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 01/28/2023] Open
Abstract
Experience-dependent learning and memory require multiple forms of plasticity at hippocampal and cortical synapses that are regulated by N-methyl-D-aspartate receptors (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian input-specific mechanisms that rapidly increase or decrease AMPAR synaptic strength at specific inputs, and homeostatic plasticity that globally scales-up or -down AMPAR synaptic strength across many or even all inputs. Frequently, these changes in synaptic strength are also accompanied by a change in the subunit composition of AMPARs at the synapse due to the trafficking to and from the synapse of receptors lacking GluA2 subunits. These GluA2-lacking receptors are most often GluA1 homomeric receptors that exhibit higher single-channel conductance and are Ca2+-permeable (CP-AMPAR). This review article will focus on the role of protein phosphorylation in regulation of GluA1 CP-AMPAR recruitment and removal from hippocampal synapses during synaptic plasticity with an emphasis on the crucial role of local signaling by the cAMP-dependent protein kinase (PKA) and the Ca2+calmodulin-dependent protein phosphatase 2B/calcineurin (CaN) that is coordinated by the postsynaptic scaffold protein A-kinase anchoring protein 79/150 (AKAP79/150).
Collapse
Affiliation(s)
| | - Mark L. Dell’Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Limon A, Delbruck E, Yassine A, Pandya D, Myers RM, Barchas JD, Lee F, Schatzberg, Watson SJ, Akil H, Bunney WE, Vawter MP, Sequeira A. Electrophysiological evaluation of extracellular spermine and alkaline pH on synaptic human GABA A receptors. Transl Psychiatry 2019; 9:218. [PMID: 31488811 PMCID: PMC6728327 DOI: 10.1038/s41398-019-0551-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 01/25/2023] Open
Abstract
Polyamines have fundamental roles in brain homeostasis as key modulators of cellular excitability. Several studies have suggested alterations in polyamine metabolism in stress related disorders, suicide, depression, and neurodegeneration, making the pharmacological modulation of polyamines a highly appealing therapeutic strategy. Polyamines are small aliphatic molecules that can modulate cationic channels involved in neuronal excitability. Previous indirect evidence has suggested that polyamines can modulate anionic GABAA receptors (GABAARs), which mediate inhibitory signaling and provide a direct route to reduce hyperexcitability. Here, we attempted to characterize the effect that spermine, the polyamine with the strongest reported effect on GABAARs, has on human postmortem native GABAARs. We microtransplanted human synaptic membranes from the dorsolateral prefrontal cortex of four cases with no history of mental or neurological disorders, and directly recorded spermine effects on ionic GABAARs responses on microtransplanted oocytes. We show that in human synapses, inhibition of GABAARs by spermine was better explained by alkalization of the extracellular solution. Additionally, spermine had no effect on the potentiation of GABA-currents by diazepam, indicating that even if diazepam binding is enhanced by spermine, it does not translate to changes in functional activity. Our results clearly demonstrate that while extracellular spermine does not have direct effects on human native synaptic GABAARs, spermine-mediated shifts of pH inhibit GABAARs. Potential spermine-mediated increase of pH in synapses in vivo may therefore participate in increased neuronal activity observed during physiological and pathological states, and during metabolic alterations that increase the release of spermine to the extracellular milieu.
Collapse
Affiliation(s)
- A. Limon
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA ,0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - E. Delbruck
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Yassine
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - D. Pandya
- 0000 0001 1547 9964grid.176731.5Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch at Galveston, Galveston, USA
| | - R. M. Myers
- 0000 0004 0408 3720grid.417691.cHudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - J. D. Barchas
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - F. Lee
- 000000041936877Xgrid.5386.8Department of Psychiatry, Weill Cornell Medical College, New York, NY USA
| | - Schatzberg
- 0000000419368956grid.168010.eDepartment of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA USA
| | - S. J. Watson
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - H. Akil
- 0000000086837370grid.214458.eMolecular and Behavioral Neurosciences Institute, University of Michigan, Ann Arbor, MI USA
| | - W. E. Bunney
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - M. P. Vawter
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| | - A. Sequeira
- 0000 0001 0668 7243grid.266093.8Department of Psychiatry and Human Behavior. School of Medicine, University of California Irvine, Irvine, USA
| |
Collapse
|
6
|
Affiliation(s)
- Olena Filchakova
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
7
|
Bowie D. Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins. J Biol Chem 2018; 293:18789-18802. [PMID: 30333231 DOI: 10.1074/jbc.tm118.003794] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most excitatory neurotransmission in the mammalian brain is mediated by a family of plasma membrane-bound signaling proteins called ionotropic glutamate receptors (iGluRs). iGluRs assemble at central synapses as tetramers, forming a central ion-channel pore whose primary function is to rapidly transport Na+ and Ca2+ in response to binding the neurotransmitter l-glutamic acid. The pore of iGluRs is also accessible to bulkier cytoplasmic cations, such as the polyamines spermine, spermidine, and putrescine, which are drawn into the permeation pathway, but get stuck and block the movement of other ions. The degree of this polyamine-mediated channel block is highly regulated by processes that control the free cytoplasmic polyamine concentration, the membrane potential, or the iGluR subunit composition. Recently, an additional regulation by auxiliary proteins, most notably transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory proteins (TARPs), cornichons, and neuropilin and tolloid-like proteins (NETOs), has been identified. Here, I review what we have learned of polyamine block of iGluRs and its regulation by auxiliary subunits. TARPs, cornichons, and NETOs attenuate the channel block by enabling polyamines to exit the pore. As a result, polyamine permeation occurs at more negative and physiologically relevant membrane potentials. The structural basis for enhanced polyamine transport remains unresolved, although alterations in both channel architecture and charge-screening mechanisms have been proposed. That auxiliary subunits can attenuate the polyamine block reveals an unappreciated impact of polyamine permeation in shaping the signaling properties of neuronal AMPA- and kainate-type iGluRs. Moreover, enhanced polyamine transport through iGluRs may have a role in regulating cellular polyamine levels.
Collapse
Affiliation(s)
- Derek Bowie
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
8
|
Twomey EC, Yelshanskaya MV, Vassilevski AA, Sobolevsky AI. Mechanisms of Channel Block in Calcium-Permeable AMPA Receptors. Neuron 2018; 99:956-968.e4. [PMID: 30122377 PMCID: PMC6181147 DOI: 10.1016/j.neuron.2018.07.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
Abstract
AMPA receptors mediate fast excitatory neurotransmission and are critical for CNS development and function. Calcium-permeable subsets of AMPA receptors are strongly implicated in acute and chronic neurological disorders. However, despite the clinical importance, the therapeutic landscape for specifically targeting them, and not the calcium-impermeable AMPA receptors, remains largely undeveloped. To address this problem, we used cryo-electron microscopy and electrophysiology to investigate the mechanisms by which small-molecule blockers selectively inhibit ion channel conductance in calcium-permeable AMPA receptors. We determined the structures of calcium-permeable GluA2 AMPA receptor complexes with the auxiliary subunit stargazin bound to channel blockers, including the orb weaver spider toxin AgTx-636, the spider toxin analog NASPM, and the adamantane derivative IEM-1460. Our structures provide insights into the architecture of the blocker binding site and the mechanism of trapping, which are critical for development of small molecules that specifically target calcium-permeable AMPA receptors.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast 141700, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Wen X, Cahill AL, Barta C, Thoreson WB, Nawy S. Elevated Pressure Increases Ca 2+ Influx Through AMPA Receptors in Select Populations of Retinal Ganglion Cells. Front Cell Neurosci 2018; 12:162. [PMID: 29950974 PMCID: PMC6008319 DOI: 10.3389/fncel.2018.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The predominate type of AMPA receptor expressed in the CNS is impermeable to Ca2+ (CI-AMPAR). However, some AMPA receptors are permeable to Ca2+ (CP-AMPAR) and play important roles in development, plasticity and disease. In the retina, ganglion cells (RGCs) are targets of disease including glaucoma and diabetic retinopathy, but there are many types of RGCs and not all types are targeted equally. In the present study, we sought to determine if there are differences in expression of AMPARs amongst RGC subtypes, and if these differences might contribute to differential vulnerability in a model of stress. Using cultured RGCs we first show that acute exposure to elevated pressure increased expression of Ca2+-permeable AMPA receptors (CP-AMPARs) in some, but not all classes of RGCs. When RGCs were sampled without regard to subtype, AMPA currents, measured using patch clamp recording, were blocked by the CP-AMPAR blocker PhTX-74 to a greater extent in pressure-treated RGCs vs. control. Furthermore, imaging experiments revealed an increase in Ca2+ influx during AMPA application in pressure-treated RGCs. However, examination of specific RGC subtypes using reporter lines revealed striking differences in both baseline AMPAR composition and modulation of this baseline composition by stress. Notably, ON alpha RGCs identified using the Opn4 mouse line and immunohistochemistry, had low expression of CP-AMPARs. Conversely, an ON-OFF direction selective RGC and putative OFF alpha RGC each expressed high levels of CP-AMPARs. These differences between RGC subtypes were also observed in RGCs from whole retina. Elevated pressure further lowered expression of CP-AMPARs in ON alpha RGCs, but raised expression in ON-OFF and OFF RGCs. Changes in CP-AMPAR expression following challenge with elevated pressure were correlated with RGC survival: ON alpha RGCs were unaffected by application of pressure, while the number of putative OFF alpha RGCs declined by approximately 50% following challenge with pressure. Differences in expression of CP-AMPARs between RGC subtypes may form the underpinnings for subtype-specific synaptic plasticity. Furthermore, the differential responses of these RGC subtypes to elevated pressure may contribute to the reported resistance of ON alpha, and susceptibility of OFF and ON-OFF RGCs to injury in models of glaucoma.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Asia L. Cahill
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Cody Barta
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Scott Nawy
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
10
|
Kopach O, Krotov V, Goncharenko J, Voitenko N. Inhibition of Spinal Ca(2+)-Permeable AMPA Receptors with Dicationic Compounds Alleviates Persistent Inflammatory Pain without Adverse Effects. Front Cell Neurosci 2016; 10:50. [PMID: 26973464 PMCID: PMC4770326 DOI: 10.3389/fncel.2016.00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/13/2016] [Indexed: 11/17/2022] Open
Abstract
Upregulation of Ca2+-permeable AMPA receptors (CP-AMPARs) in the dorsal horn (DH) neurons of the spinal cord has been causally linked to the maintenance of persistent inflammatory pain. Therefore, inhibition of CP-AMPARs could potentially alleviate an, otherwise, poorly treatable chronic pain. However, a loss of CP-AMPARs could produce considerable side effects because of the crucial role of CP-AMPARs in synaptic plasticity. Here we have tested whether the inhibition of spinal CP-AMPARs with dicationic compounds, the open-channel antagonists acting in an activity-dependent manner, can relieve inflammatory pain without adverse effects being developed. Dicationic compounds, N1-(1-phenylcyclohexyl)pentane-1,5-diaminium bromide (IEM-1925) and 1-trimethylammonio-5-1-adamantane-methyl-ammoniopentane dibromide (IEM-1460) were applied intrathecally (i.t.) as a post-treatment for inflammatory pain in the model of complete Freund’s adjuvant (CFA)-induced long-lasting peripheral inflammation. The capability of dicationic compounds to ameliorate inflammatory pain was tested in rats in vivo using the Hargreaves, the von Frey and the open-field tests. Treatment with IEM-1460 or IEM-1925 resulted in profound alleviation of inflammatory pain. The pain relief appeared shortly after compound administration. The effects were concentration-dependent, displaying a high potency of dicationic compounds for alleviation of inflammatory hyperalgesia in the micromolar range, for both acute and long-lasting responses. The period of pain maintenance was shortened following treatment. Treatment with IEM-1460 or IEM-1925 changed neither thermal and mechanical basal sensitivities nor animal locomotion, suggesting that inhibition of CP-AMPARs with dicationic compounds does not give rise to detectable side effects. Thus, the ability of dicationic compounds to alleviate persistent inflammatory pain may provide new routes in the treatment of chronic pain.
Collapse
Affiliation(s)
- Olga Kopach
- Laboratory of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine; Laboratory of Synaptic Imaging, Institute of Neurology, University College LondonLondon, UK
| | - Volodymyr Krotov
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Julia Goncharenko
- Laboratory of Sensory Signaling, Bogomoletz Institute of Physiology Kyiv, Ukraine
| | - Nana Voitenko
- Laboratory of Sensory Signaling, Bogomoletz Institute of PhysiologyKyiv, Ukraine; International Center for Molecular Physiology, Bogomoletz Institute of PhysiologyKyiv, Ukraine
| |
Collapse
|
11
|
Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors. Proc Natl Acad Sci U S A 2015; 112:6182-7. [PMID: 25918369 DOI: 10.1073/pnas.1500458112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila larval neuromuscular junction (NMJ), at which glutamate acts as the excitatory neurotransmitter, is a widely used model for genetic analysis of synapse function and development. Despite decades of study, the inability to reconstitute NMJ glutamate receptor function using heterologous expression systems has complicated the analysis of receptor function, such that it is difficult to resolve the molecular basis for compound phenotypes observed in mutant flies. We find that Drosophila Neto functions as an essential component required for the function of NMJ glutamate receptors, permitting analysis of glutamate receptor responses in Xenopus oocytes. In combination with a crystallographic analysis of the GluRIIB ligand binding domain, we use this system to characterize the subunit dependence of assembly, channel block, and ligand selectivity for Drosophila NMJ glutamate receptors.
Collapse
|
12
|
Structure-Activity Relationship Study of Spider Polyamine Toxins as Inhibitors of Ionotropic Glutamate Receptors. ChemMedChem 2014; 9:2661-70. [DOI: 10.1002/cmdc.201402278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 12/14/2022]
|
13
|
Binding of ArgTX-636 in the NMDA receptor ion channel. J Mol Biol 2014; 427:176-89. [PMID: 24862283 DOI: 10.1016/j.jmb.2014.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 12/16/2022]
Abstract
The N-methyl-d-aspartate receptors (NMDARs) constitute an important class of ligand-gated cation channels that are involved in the majority of excitatory neurotransmission in the human brain. Compounds that bind in the NMDAR ion channel and act as blockers are use- and voltage-dependent inhibitors of NMDAR activity and have therapeutic potential for treatment of a variety of brain diseases or as pharmacological tools for studies of the neurobiological role of NMDARs. We have performed a kinetic analysis of the blocking mechanism of the prototypical polyamine toxin NMDAR ion channel blocker argiotoxin-636 (ArgTX-636) at recombinant GluN1/2A receptors to provide detailed information on the mechanism of block. The predicted binding site of ArgTX-636 is in the pore region of the NMDAR ion channel formed by residues in the transmembrane M3 and the M2 pore-loop segments of the GluN1 and GluN2A subunits. To assess the predicted binding mode in further detail, we performed an alanine- and glycine-scanning mutational analysis of this pore-loop segment to systematically probe the role of pore-lining M2 residues in GluN1 and GluN2A in the channel block by ArgTX-636. Comparison of M2 positions in GluN1 and GluN2A where mutation influences ArgTX-636 potency suggests differential contribution of the M2-loops of GluN1 and GluN2A to binding of ArgTX-636. The results of the mutational analysis are highly relevant for the future structure-based development of argiotoxin-derived NMDAR channel blockers.
Collapse
|
14
|
Inhibition of AMPA receptors by polyamine toxins is regulated by agonist efficacy and stargazin. Neurochem Res 2014; 39:1906-13. [PMID: 24557991 DOI: 10.1007/s11064-014-1258-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 12/18/2022]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are glutamate-gated cation channels mediating the majority of fast excitatory synaptic transmission in the central nervous system (CNS). Polyamine toxins derived from spiders and wasps are use- and voltage-dependent channel blockers of Ca(2+)-permeable AMPARs. Recent studies have suggested that AMPAR block by polyamine toxins is modulated by auxiliary subunits from the class of transmembrane AMPAR regulatory proteins (TARPs), which may have implications for their use as tool compounds in native systems. We have explored the effect of the TARP γ-2 (also known as stargazin) on the inhibitory potency of three structurally different polyamine toxins at Ca(2+)-permeable homomeric GluA1 AMPARs expressed in oocytes. We find that polyamine toxin IC50 is differentially affected by presence of stargazin depending on the efficacy of the agonists used to activate GluA1. Co-assembly of GluA1 receptors with stargazin increases the potency of the polyamine toxins when activated by the weak partial agonist kainate, but has no effect in presence of full-agonist L-glutamate (Glu) and partial agonist (RS)-willardiine.
Collapse
|
15
|
Poulsen MH, Lucas S, Strømgaard K, Kristensen AS. Evaluation of PhTX-74 as subtype-selective inhibitor of GluA2-containing AMPA receptors. Mol Pharmacol 2014; 85:261-8. [PMID: 24220009 DOI: 10.1124/mol.113.089961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are glutamate-gated cation channels that mediate fast excitatory synaptic transmission in the central nervous system. AMPARs are tetramers formed by homo- or heteromeric assembly of GluA1-4 subunits to produce multiple subtypes with varying biophysical properties. Polyamine toxins such as joro spider toxins, philanthotoxins (PhTXs), and argiotoxins are use-dependent ion channel blockers of AMPARs widely employed as highly potent antagonists of GluA2-lacking receptor subtypes. In addition to this use, recent findings have indicated that a philanthotoxin analog, PhTX-74, can distinguish among GluA2-containing AMPAR subtypes in the presence of the prototypical transmembrane AMPAR regulatory protein γ-2 (or stargazin). Thus, PhTX-74 may be of potential use in studies of the neurobiological role of GluA2-containing subtypes. We have evaluated the pharmacological profile of PhTX-74 and related polyamine toxins at homo- and heteromeric AMPARs in the presence and absence of γ-2. Determination of IC(50) values for inhibition of glutamate-evoked currents from Xenopus oocytes expressing recombinant homo- or heteromeric combinations of GluA1, GluA2, and GluA3 in the presence of γ-2 shows that PhTX-74 inhibits homomeric GluA1 and GluA3 receptors nonselectively, with IC(50) values in the nanomolar range (252-356 nM), and heteromeric GluA1/A2 and GluA2/A3 receptors nonselectively, with IC(50) values in the micromolar range (22 μM). Thus, in contrast to earlier findings, we find that PhTX-74 cannot pharmacologically discriminate between GluA2-containing AMPAR subtypes.
Collapse
Affiliation(s)
- Mette H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Abushik PA, Sibarov DA, Eaton MJ, Skatchkov SN, Antonov SM. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium 2013; 54:95-104. [PMID: 23721822 DOI: 10.1016/j.ceca.2013.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/25/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023]
Abstract
Whereas kainate (KA)-induced neurodegeneration has been intensively investigated, the contribution of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in neuronal Ca2+ overload ([Ca2+]i) is still controversial. Using Ca2+ imaging and patch-clamp techniques, we found different types of Ca2+ entry in cultured rat cortical neurons. The presence of Ca2+ in the extracellular solution was required to generate the [Ca2+]i responses to 30 μM N-methyl-d-aspartate (NMDA) or KA. The dynamics of NMDA-induced [Ca2+]i responses were fast, while KA-induced responses developed slower reaching high [Ca2+]i. Ifenprodil, a specific inhibitor of the GluN2B subunit of NMDARs, reduced NMDA-induced [Ca2+]i responses suggesting expression of GluN1/GluN2B receptors. Using IEM-1460, a selective blocker of Ca(2+)-permeable GluA2-subunit lacking AMPARs, we found three neuronal responses to KA: (i) IEM-1460 resistant neurons which are similar to pyramidal neurons expressing Ca(2+)-impermeable GluA2-rich AMPARs; (ii) Neurons exhibiting nearly complete block of both KA-induced currents and [Ca2+]i signals by IEM-1460 may represent interneurons expressing GluA2-lacking AMPARs and (iii) neurons with moderate sensitivity to IEM-1460. Ouabain at 1 nM prevented the neuronal Ca2+ overload induced by KA. The data suggest, that cultured rat cortical neurons maintain functional phenotypes of the adult brain cortex, and demonstrate the key contribution of the Na/K-ATPase in neuroprotection against KA excitotoxicity.
Collapse
Affiliation(s)
- Polina A Abushik
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | | | | | | | | |
Collapse
|
17
|
Poulsen MH, Lucas S, Bach TB, Barslund AF, Wenzler C, Jensen CB, Kristensen AS, Strømgaard K. Structure-activity relationship studies of argiotoxins: selective and potent inhibitors of ionotropic glutamate receptors. J Med Chem 2013; 56:1171-81. [PMID: 23320429 DOI: 10.1021/jm301602d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Argiotoxin-636 (ArgTX-636), a natural product from the spider Argiope lobata, is a potent but nonselective open-channel blocker of ionotropic glutamate (iGlu) receptors. Here, three series of analogues were designed to exploit selectivity among iGlu receptors, taking advantage of a recently developed solid-phase synthetic methodology for the synthesis of ArgTX-636 and analogues. Initially, the importance of secondary amino groups in the polyamine chain was studied by the synthesis of systematically modified ArgTX-636 analogues, which were evaluated for pharmacological activity at NMDA and AMPA receptors. This led to the identification of two compounds with preference for NMDA and AMPA receptors, respectively. These were further elaborated by systematically changing the aromatic headgroup and linker amino acid leading to compounds with increased potency and selectivity for NMDA and AMPA receptors, respectively. Thus, the first structure-activity relationship study of ArgTX-636 has been carried out and has provided lead compounds for probing the ion channel region of iGlu receptors.
Collapse
Affiliation(s)
- Mette H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zaitsev AV, Kim KK, Magazanik LG. The role of calcium-permeable AMPA receptors in disynaptic feedforward inhibition in the rat prefrontal cortex. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747812010163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Streit AK, Decher N. A-to-I RNA editing modulates the pharmacology of neuronal ion channels and receptors. BIOCHEMISTRY (MOSCOW) 2012; 76:890-9. [PMID: 22022962 DOI: 10.1134/s0006297911080049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The regulation of neuronal excitability is complex, as ion channels and neurotransmitter receptors are underlying a large variety of modulating effects. Alterations in the expression patterns of receptors or channel subunits as well as differential splicing contribute to the regulation of neuronal excitability. RNA editing is another and more recently explored mechanism to increase protein diversity, as the genomic recoding leads to new gene products with novel functional and pharmacological properties. In humans A-to-I RNA editing targets several neuronal receptors and channels, including GluR2/5/6 subunits, the Kv1.1 channel, and the 5-HT(2C) receptor. Our review summarizes that RNA editing of these proteins does not only change protein function, but also the pharmacology and presumably the drug therapy in human diseases.
Collapse
Affiliation(s)
- A K Streit
- Institute for Physiology and Pathophysiology, Vegetative Physiology, Philipps University Marburg, Marburg, 35037, Germany
| | | |
Collapse
|
20
|
Abstract
AMPA-type ionotropic glutamate receptors (iGluRs) represent the major excitatory neurotransmitter receptor in the developing and adult vertebrate CNS. They are crucial for the normal hardwiring of glutamatergic circuits but also fine tune synaptic strength by cycling into and out of synapses during periods of sustained patterned activity or altered homeostasis. AMPARs are grouped into two functionally distinct tetrameric assemblies based on the inclusion or exclusion of the GluA2 receptor subunit. GluA2-containing receptors are thought to be the most abundant AMPAR in the CNS, typified by their small unitary events, Ca(2+) impermeability and insensitivity to polyamine block. In contrast, GluA2-lacking AMPARs exhibit large unitary conductance, marked divalent permeability and nano- to micromolar polyamine affinity. Here, I review evidence for the existence of a third class of AMPAR which, though similarly Ca(2+) permeable, is characterized by its near-insensitivity to internal and external channel block by polyamines. This novel class of AMPAR is most notably found at multivesicular release synapses found in the avian auditory brainstem and mammalian retina. Curiously, these synapses lack NMDA-type iGluRs, which are conventionally associated with controlling AMPAR insertion. The lack of NMDARs suggests that a different set of rules may govern AMPAR cycling at these synapses. AMPARs with similar functional profiles are also found on some glial cells suggesting they may have a more widespread distribution in the mammalian CNS. I conclude by noting that modest changes to the ion-permeation pathway might be sufficient to retain divalent permeability whilst eliminating polyamine sensitivity. Consequently, this emerging AMPAR subclass need not be assembled from novel subunits, yet to be cloned, but could simply occur by varying the stoichiometry of existing proteins.
Collapse
Affiliation(s)
- Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
21
|
Barygin OI, Grishin EV, Tikhonov DB. Argiotoxin in the closed AMPA receptor channel: experimental and modeling study. Biochemistry 2011; 50:8213-20. [PMID: 21842876 DOI: 10.1021/bi200617v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Binding of argiotoxin in the closed state of Ca(2+)-permeable AMPA receptor channels was studied using electrophysiological and molecular modeling approaches. Experimental study unambiguously revealed that argiotoxin is trapped in the closed AMPA receptor channels after agonist dissociation. Docking of the argiotoxin to the channel model based on recently published X-ray structure demonstrated that the drug can be effectively accommodated in the cavity of the closed channel only if the terminal moiety of the molecule penetrates in the narrow portion of the pore below the selectivity filter. Combining these results, we conclude that the selectivity filter of the AMPA receptor channels is not sterically occluded in the closed state.
Collapse
Affiliation(s)
- Oleg I Barygin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|
22
|
Zaitsev AV, Kim KK, Fedorova IM, Dorofeeva NA, Magazanik LG, Tikhonov DB. Specific mechanism of use-dependent channel block of calcium-permeable AMPA receptors provides activity-dependent inhibition of glutamatergic neurotransmission. J Physiol 2011; 589:1587-601. [PMID: 21486838 DOI: 10.1113/jphysiol.2011.204362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study examined the blocking action of the selective channel blocker of calcium-permeable (CP) AMPA receptors, N1-(1-phenylcyclohexyl)pentane-1,5-diaminium bromide (IEM-1925), on excitatory postsynaptic currents in rat neostriatal and cortical neurons and in fly neuromuscular junctions. In both preparations, the blocking of CP-AMPA receptor currents increased along with the stimulation frequency. The continuous presence of kainate, which activates AMPA receptors, in the external solution also caused an enhanced blocking effect. Likewise, decrease of the synaptic release by lowering calcium concentration resulted in significant reduction of the blocking action. The activity dependence of the block is explained using the guarded receptor model. The drug molecule can only bind if the channel is open. After the channel has closed, the drug molecule remains trapped inside. However, the trapped molecule slowly egresses from closed channels to the cytoplasm. The total block effect is determined by the equilibrium between accumulation of the drug in the open channels and relief from the closed channels. Therefore, the conditions that favour the open state result in enhanced inhibition. This significant finding reveals a new way to modulate CP-AMPAR-mediated transmission using a physiologically relevant approach. Moreover, it allows the involvement of CP-AMPARs in the physiological and pathological processes – such as high-frequency synaptic activity or increase of the steady-state glutamate concentration – to be examined.
Collapse
Affiliation(s)
- A V Zaitsev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44, Toreza Prospect, Saint-Petersburg, 194223 Russia.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
The properties of synaptic AMPA receptors (AMPARs) depend on their subunit composition and association with transmembrane AMPAR regulatory proteins (TARPs). Although both GluA2 incorporation and TARP association have been shown to influence AMPAR channel conductance, the manner in which different TARPs modulate the mean channel conductance of GluA2-containing AMPARs is unknown. Using ultrafast agonist application and nonstationary fluctuation analysis, we found that TARP subtypes differentially increase the mean channel conductance, but not the peak open probability, of recombinant GluA2-containing AMPARs. TARP γ-8, in particular, enhances mean channel conductance to a greater degree than γ-2, γ-3, or γ-4. We then examined the action of a use-dependent antagonist of GluA2-containing AMPARs, philanthotoxin-74 (PhTx-74), on recombinant AMPARs and on GluA2-containing AMPARs in cerebellar granule neurons from stargazer mice transfected with TARPs. We found that the rate and extent of channel block varies with TARP subtype, in a manner that correlates linearly with mean channel conductance. Furthermore, block of GluA2-containing AMPARs by polyamine toxins varied depending on whether channels were activated by the full agonist glutamate or the partial agonist kainate, consistent with conductance state-dependent block. Block of GluA2-lacking AMPARs by PhTx-433 is also modulated by TARP association and is a function of agonist efficacy. Our data indicate that channel block by polyamine toxins is sensitive to the mean channel conductance of AMPARs, which varies with TARP subtype and agonist efficacy. Furthermore, our results illustrate the utility of polyamine toxins as sensitive probes of AMPAR channel conductance and suggest the possibility that TARPs may influence their channel properties by selectively stabilizing specific channel conformations, rather than altering the pore structure.
Collapse
|
24
|
Stargazin (TARP gamma-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. J Neurosci 2011; 31:3939-52. [PMID: 21411637 DOI: 10.1523/jneurosci.5134-10.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the cerebellar cortex, parallel fiber-to-stellate cell (PF-SC) synapses exhibit a form of synaptic plasticity manifested as a switch in the subunit composition of synaptic AMPA receptors (AMPARs) from calcium-permeable, GluA2-lacking to calcium-impermeable, GluA2-containing receptors. Here, we examine the role of stargazin (γ-2), canonical member of the transmembrane AMPAR regulatory protein (TARP) family, in the regulation of GluA2-lacking AMPARs and synaptic plasticity in SCs from epileptic and ataxic stargazer mutant mice. We found that AMPAR-mediated synaptic transmission is severely diminished in stargazer SCs, and that the rectification index (RI) of AMPAR current is reduced. Activity-dependent plasticity in the rectification of synaptic AMPARs is also impaired in stargazer SCs. Despite the dramatic loss in synaptic AMPARs, extrasynaptic AMPARs are preserved. We then examined the role of stargazin in regulating the rectification of extrasynaptic AMPARs in nucleated patches and found, in contrast to previous reports, that wild-type extrasynaptic AMPARs have moderate RI values (average RI = 0.38), while those in stargazer SCs are low (average RI = 0.24). The GluA2-lacking AMPAR blocker, philanthotoxin-433 (PhTx-433), was used as an alternative measure of GluA2 content in wild-type and stargazer SCs. Despite the difference in RI, PhTx-433 sensitivity of both synaptic and extrasynaptic AMPARs remains unchanged, suggesting that the dramatic changes in RI and the impairment in synaptic plasticity observed in the stargazer mouse are not the result of a specific impairment in GluA2 trafficking. Together, these data suggest that stargazin regulates compartment-specific AMPAR trafficking, as well as activity-dependent plasticity in synaptic AMPAR rectification at cerebellar PF-SC synapses.
Collapse
|
25
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2710] [Impact Index Per Article: 180.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fleming JJ, England PM. Developing a complete pharmacology for AMPA receptors: a perspective on subtype-selective ligands. Bioorg Med Chem 2010; 18:1381-7. [PMID: 20096591 DOI: 10.1016/j.bmc.2009.12.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/19/2009] [Accepted: 12/31/2009] [Indexed: 01/15/2023]
Abstract
AMPA receptors are a family of ligand-gated ion channels that play central roles in rapid neural signaling and in regulation of synaptic strength. Additionally, these receptors are implicated in a number of major psychiatric and neurological diseases. A comprehensive understanding of the roles that AMPA receptors play in the mammalian nervous system has been hampered by the dearth of ligands available to select between individual AMPA receptors subtypes. Here we provide a perspective on opportunities for developing a complete pharmacology for AMPA receptors.
Collapse
Affiliation(s)
- James J Fleming
- Department of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
27
|
|
28
|
Common Binding Site for Externally and Internally Applied AMPA Receptor Channel Blockers. J Mol Neurosci 2009; 39:169-74. [DOI: 10.1007/s12031-008-9172-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
|
29
|
Rossi B, Maton G, Collin T. Calcium-permeable presynaptic AMPA receptors in cerebellar molecular layer interneurones. J Physiol 2008; 586:5129-45. [PMID: 18772200 DOI: 10.1113/jphysiol.2008.159921] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Axons of cerebellar molecular layer interneurones (MLIs) bear ionotropic glutamate receptors. Here, we show that these receptors elicit cytosolic [Ca2+] transients in axonal varicosities following glutamate spillover induced by stimulation of parallel fibres (PFs). A spatial profile analysis indicates that these transients occur at the same locations when induced by PF stimulation or trains of action potentials. They are not affected by the NMDAR antagonist AP-V, but are abolished by the AMPAR inhibitor GYKI-53655. Mimicking glutamate spillover by a puff of AMPA triggers axonal [Ca2+]i transients even in the presence of TTX. Addition of specific voltage-dependent Ca2+ channel (VDCC) blockers such as omega-AGAIVA and omega-conotoxin GVIA or broad range inhibitors such as Cd2+ did not significantly inhibit the signal indicating the involvement of Ca2+-permeable AMPARs. This hypothesis is further supported by the finding that the subunit specific AMPAR antagonist IEM-1460 blocks 75% of the signal. Bath application of AMPA increases the frequency and mean peak amplitude of GABAergic mIPSCs, an effect that is blocked by philanthotoxin-433 (PhTx) and reinforced by facilitating concentrations of ryanodine. By contrast, a high concentration of ryanodine or dantrolene reduced the effects of AMPA on mIPSCs. Single-cell RT-PCR experiments show that all GluR1-4 subunits are potentially expressed in MLI. Taken together, the results suggest that Ca2+-permeable AMPARs are colocalized with VDCCs in axonal varicosities and can be activated by glutamate spillover through PF stimulation. The AMPAR-mediated Ca2+ signal is amplified by Ca2+-induced Ca2+ release from intracellular stores, leading to GABA release by MLIs.
Collapse
Affiliation(s)
- Bénédicte Rossi
- Laboratoire de Physiologie Cérébrale, CNRS-UMR 8118, Université Paris Descartes, 45 rue des Saints Pères, 75006 Paris, France
| | | | | |
Collapse
|
30
|
Tikhonova T, Barygin O, Gmiro V, Tikhonov D, Magazanik L. Organic blockers escape from trapping in the AMPA receptor channels by leaking into the cytoplasm. Neuropharmacology 2008; 54:653-64. [DOI: 10.1016/j.neuropharm.2007.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/22/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
31
|
Ni X, Sullivan GJ, Martin-Caraballo M. Developmental characteristics of AMPA receptors in chick lumbar motoneurons. Dev Neurobiol 2007; 67:1419-32. [PMID: 17497695 DOI: 10.1002/dneu.20517] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ca2+ fluxes through ionotropic glutamate receptors regulate a variety of developmental processes, including neurite outgrowth and naturally occurring cell death. In the CNS, NMDA receptors were originally thought to be the sole source of Ca2+ influx through glutamate receptors; however, AMPA receptors also allow a significant influx of Ca2+ ions. The Ca2+ permeability of AMPA receptors is regulated by the insertion of one or more edited GluR2 subunits. In this study, we tested the possibility that changes in GluR2 expression regulate the Ca2+ permeability of AMPA receptors during a critical period of neuronal development in chick lumbar motoneurons. GluR2 expression is absent between embryonic day (E) 5 and E7, but increases significantly by E8 in the chick ventral spinal cord. Increased GluR2 protein expression is correlated with parallel changes in GluR2 mRNA in the motoneuron pool. Electrophysiological recordings of kainate-evoked currents indicate a significant reduction in the Ca2(+)-permeability of AMPA receptors between E6 and E11. Kainate-evoked currents were sensitive to the AMPA receptor blocker GYKI 52466. Application of AMPA or kainate generates a significant increase in the intracellular Ca2+ concentration in E6 spinal motoneurons, but generates a small response in older neurons. Changes in the Ca(2+)-permeability of AMPA receptors are not mediated by age-dependent changes in the editing pattern of GluR2 subunits. These findings raise the possibility that Ca2+ influx through Ca(2+)-permeable AMPA receptors plays an important role during early embryonic development in chick spinal motoneurons.
Collapse
Affiliation(s)
- Xianglian Ni
- Department of Biology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | |
Collapse
|
32
|
Deng YP, Xie JP, Wang HB, Lei WL, Chen Q, Reiner A. Differential localization of the GluR1 and GluR2 subunits of the AMPA-type glutamate receptor among striatal neuron types in rats. J Chem Neuroanat 2007; 33:167-92. [PMID: 17446041 PMCID: PMC1993922 DOI: 10.1016/j.jchemneu.2007.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 02/26/2007] [Accepted: 02/27/2007] [Indexed: 01/05/2023]
Abstract
Differences among the various striatal projection neuron and interneuron types in cortical input, function, and vulnerability to degenerative insults may be related to differences among them in AMPA-type glutamate receptor abundance and subunit configuration. We therefore used immunolabeling to assess the frequency and abundance of GluR1 and GluR2, the most common AMPA subunits in striatum, in the main striatal neuron types. All neurons projecting to the external pallidum (GPe), internal pallidum (GPi) or substantia nigra, as identified by retrograde labeling, possessed perikaryal GluR2, while GluR1 was more common in striato-GPe than striato-GPi perikarya. The frequency and intensity of immunostaining indicated the rank order of their perikaryal GluR1:GluR2 ratio to be striato-GPe>striatonigral>striato-GPi. Ultrastructural studies suggested a differential localization of GluR1 and GluR2 to striatal projection neuron dendritic spines as well, with GluR1 seemingly more common in striato-GPe spines and GluR2 more common in striato-GPi and/or striatonigral spines. Comparisons among projection neurons and interneurons revealed GluR1 to be most common and abundant in parvalbuminergic interneurons, and GluR2 most common and abundant in projection neurons, with the rank order for the GluR1:GluR2 ratio being parvalbuminergic interneurons>calretinergic interneurons>cholinergic interneurons>projection neurons>somatostatinergic interneurons. Striosomal projection neurons had a higher GluR1:GluR2 ratio than did matrix projection neurons. The abundance of both GluR1 and GluR2 in striatal parvalbuminergic interneurons and projection neurons is consistent with their prominent cortical input and susceptibility to excitotoxic insult, while differences in GluR1:GluR2 ratio among projection neurons are likely to yield differences in Ca(2+) permeability, desensitization, and single channel current, which may contribute to differences among them in plasticity, synaptic integration, and excitotoxic vulnerability. The apparent association of the GluR1 subunit with synaptic plasticity, in particular, suggests striato-GPe neuron spines as a particular site of corticostriatal synaptic plasticity, presumably associated with motor learning.
Collapse
Affiliation(s)
- Y P Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
33
|
Isaac JTR, Ashby MC, McBain CJ. The Role of the GluR2 Subunit in AMPA Receptor Function and Synaptic Plasticity. Neuron 2007; 54:859-71. [PMID: 17582328 DOI: 10.1016/j.neuron.2007.06.001] [Citation(s) in RCA: 617] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The AMPA receptor (AMPAR) GluR2 subunit dictates the critical biophysical properties of the receptor, strongly influences receptor assembly and trafficking, and plays pivotal roles in a number of forms of long-term synaptic plasticity. Most neuronal AMPARs contain this critical subunit; however, in certain restricted neuronal populations and under certain physiological or pathological conditions, AMPARs that lack this subunit are expressed. There is a current surge of interest in such GluR2-lacking Ca2+-permeable AMPARs in how they affect the regulation of synaptic transmission. Here, we bring together recent data highlighting the novel and important roles of GluR2 in synaptic function and plasticity.
Collapse
Affiliation(s)
- John T R Isaac
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
34
|
Sobolevsky AI. Insights into structure and function of ionotropic glutamate receptor channels: Starting from channel block. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2007. [DOI: 10.1134/s1990747807010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Hoffmann J, Gorodetskaia A, Hollmann M. Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter. Mol Cell Neurosci 2006; 33:335-43. [PMID: 17010644 DOI: 10.1016/j.mcn.2006.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/02/2006] [Accepted: 08/17/2006] [Indexed: 11/30/2022] Open
Abstract
The canonical potassium channel selectivity filter motif TVGYG was transplanted into ionotropic glutamate receptors (iGluRs) of the AMPA and NMDA subtype to test whether it renders the iGluRs K(+) selective. The TVGYG motif modulated several ion pore properties of AMPA receptor as well as NMDA receptor mutants, e.g., the intra- and extracellular polyamine block, current/voltage relationships, open channel block by MK801 and Mg(2+), and permeability for divalent cations. However, introduction of the selectivity filter failed to increase the K(+) selectivity of homomeric AMPA and heteromeric NMDA receptor complexes, which may be due to absence of selectivity filter-stabilizing interaction sites in the iGluR pore domain. Our findings indicate that even if glutamate receptors appear to have the intrinsic capacity for K(+) permeability, as is demonstrated by the prokaryotic, glutamate-gated, K(+) selective GluR0, the isolated selectivity filter is not able to confer K(+) permeability to the relatively unselective iGluR cation pore.
Collapse
Affiliation(s)
- Jutta Hoffmann
- Dept. of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Building NC, Level 6, Rm. 170, D-44787 Bochum, Germany
| | | | | |
Collapse
|
36
|
Jensen LS, Bølcho U, Egebjerg J, Strømgaard K. Design, Synthesis, and Pharmacological Characterization of Polyamine Toxin Derivatives: Potent Ligands for the Pore-Forming Region of AMPA Receptors. ChemMedChem 2006; 1:419-28. [PMID: 16892377 DOI: 10.1002/cmdc.200500093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polyamine toxins, such as philanthotoxins, are low-molecular-weight compounds isolated from spiders and wasps, which modulate ligand-gated ion channels in the nervous system. Philanthotoxins bind to the pore-forming region of AMPA receptors, a subtype of glutamate receptors which are important for memory formation and are involved in neurodegenerative diseases. Previous studies have demonstrated that modification of the polyamine moiety of philanthotoxins can lead to very potent and highly selective ligands for the AMPA receptor, as exemplified with philanthotoxin-56. Much less attention has been paid to the importance of the aromatic head group of philanthotoxins, but herein we demonstrate that modification of this moiety leads to a significant improvement in potency relative to philanthotoxin-56 at cloned AMPA receptors. Interestingly, the incorporation of an adamantane moiety is particularly favorable, and the most potent compound has a Ki value of 2 nM, making it the most potent uncompetitive antagonist of AMPA receptors described to date. Such compounds are potentially useful as neuroprotective agents.
Collapse
Affiliation(s)
- Lars S Jensen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
37
|
Andersen TF, Vogensen SB, Jensen LS, Knapp KM, Strømgaard K. Design and synthesis of labeled analogs of PhTX-56, a potent and selective AMPA receptor antagonist. Bioorg Med Chem 2005; 13:5104-12. [PMID: 15990320 DOI: 10.1016/j.bmc.2005.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 05/19/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Polyamines and polyamine toxins are biologically important molecules, having modulatory effects on nucleotides and proteins. The wasp toxin, philanthotoxin-433 (PhTX-433), is a non-selective and uncompetitive antagonist of ionotropic receptors, such as ionotropic glutamate receptors and nicotinic acetylcholine receptors. Polyamine toxins are used for the characterization of subtypes of ionotropic glutamate receptors, the Ca2+-permeable AMPA and kainate receptors. A derivative of the native polyamine toxin, philanthotoxin-56 (PhTX-56), has recently been shown to be an exceptionally potent and selective antagonist of Ca2+-permeable AMPA receptors. PhTX-56 and its labeled derivatives are promising tools for structure-function studies of the ion channel of the AMPA receptor. We now describe the design and synthesis of 3H-, 13C-, and 15N-labeled derivatives of PhTX-56 for molecular level studies of AMPA receptors. [3H]PhTX-56 was prepared from a diiodo-precursor with high specific radioactivity, providing the first radiolabeled ligand binding to the pore-forming part of AMPA receptors. For advanced biological NMR studies, 13C and 15N-labeled PhTX-56 were synthesized using solid-phase synthesis. These analogs can provide detailed information on the ligand-receptor interaction. In conclusion, synthesis of labeled derivatives of PhTX-56 provides important tools for future studies of the pore-forming region of AMPA receptors.
Collapse
Affiliation(s)
- Trine F Andersen
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
38
|
Zalat S, Elbana S, Rizzoli S, Schmidt JO, Mellor IR. Modulation of nicotinic acetylcholine and N-methyl-d-aspartate receptors by some Hymenopteran venoms. Toxicon 2005; 46:282-90. [PMID: 15970304 DOI: 10.1016/j.toxicon.2005.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 04/14/2005] [Indexed: 11/28/2022]
Abstract
The effect of 19 venoms from solitary wasps, solitary bees, social wasps and ants were investigated for their effects on nicotinic acetylcholine receptors (nAChR) and ionotropic glutamate receptors (IGRs) of both the N-methyl-d-aspartate (NMDAR) and non-NMDAR type. Whole-cell patch clamp of human muscle TE671 cells was used to study nAChR, and of rat cortical and cerebellar granule cells for IGRs. Solitary wasp venoms caused significant voltage-dependent antagonism of nAChR responses to 10 microM ACh and NMDAR responses to 100 microM NMDA (+10 microM glycine) when co-applied at 1 microg/ml with the agonists. At positive holding potentials (V(H)) potentiation of these receptors was observed with some venoms. Solitary bee venoms only affected nAChR by causing either voltage-independent antagonism or potentiation of their responses to 10 microM ACh. Of four social wasp venoms, one acted on nAChR by potentiating responses to 10 ACh, while another generated an ACh-like response when applied alone. They had no effect on IGRs. Of the two ant venoms, one caused voltage-independent inhibition of nAChR. Neither affected IGRs. The data indicate the presence of nAChR agonists and antagonists and NMDAR antagonists in Hymenopteran venoms and warrant further investigation to separate and identify these venom components.
Collapse
Affiliation(s)
- Samy Zalat
- Department of Zoology, Suez Canal University, Ismailia, Egypt; School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
39
|
Van Damme P, Braeken D, Callewaert G, Robberecht W, Van Den Bosch L. GluR2 Deficiency Accelerates Motor Neuron Degeneration in a Mouse Model of Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2005; 64:605-12. [PMID: 16042312 DOI: 10.1097/01.jnen.0000171647.09589.07] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AMPA receptor-mediated excitotoxicity has been implicated in the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). Motor neurons in vitro are particularly vulnerable to excessive AMPA receptor stimulation and one of the factors underlying this selective vulnerability is the presence of a large proportion of Ca2+ -permeable (i.e. GluR2-lacking) AMPA receptors. However, the precise role of GluR2-lacking AMPA receptors in motor neuron degeneration remains to be defined. We therefore studied the impact of GluR2 deficiency on motor neuron death in vitro and in vivo. Cultured motor neurons from GluR2-deficient embryos displayed an increased Ca2+ influx through AMPA receptors and an increased vulnerability to AMPA receptor-mediated excitotoxicity. We deleted the GluR2 gene in mutant SOD1G93A mice by crossbreeding them with GluR2 knockout mice. GluR2 deficiency clearly accelerated the motor neuron degeneration and shortened the life span of mutant SOD1G93A mice. These findings indicate that GluR2 plays a pivotal role in the vulnerability of motor neurons in vitro and in vivo, and that therapies that limit Ca2+ entry through AMPA receptors might be beneficial in ALS patients.
Collapse
Affiliation(s)
- Philip Van Damme
- Laboratory of Neurobiology, K. U. Leuven, Campus Gasthuisberg, Leuven, Belgium
| | | | | | | | | |
Collapse
|
40
|
Salamoni SD, Costa da Costa J, Palma MS, Konno K, Nihei KI, Tavares AA, de Abreu DS, Venturin GT, de Borba Cunha F, de Oliveira RM, Breda RV. Antiepileptic effect of acylpolyaminetoxin JSTX-3 on rat hippocampal CA1 neurons in vitro. Brain Res 2005; 1048:170-6. [PMID: 15913572 DOI: 10.1016/j.brainres.2005.04.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 04/19/2005] [Accepted: 04/22/2005] [Indexed: 11/29/2022]
Abstract
The Joro spider toxin (JSTX-3), derived from Nephila clavata, has been found to block glutamate excitatory activity. Epilepsy has been studied in vitro, mostly on rat hippocampus, through brain slices techniques. The aim of this study is to verify the effect of the JSTX-3 on the epileptiform activity induced by magnesium-free medium in rat CA1 hippocampal neurons. Experiments were performed on hippocampus slices of control and pilocarpine-treated Wistar rats, prepared and maintained in vitro. Epileptiform activity was induced through omission of magnesium from the artificial cerebrospinal fluid (0-Mg2+ ACSF) superfusate and iontophoretic application of N-methyl-D-aspartate (NMDA). Intracellular recordings were obtained from CA1 pyramidal neurons both of control and epileptic rats. Passive membrane properties were analyzed before and after perfusion with the 0-Mg2+ ACSF and the application of toxin JSTX-3. During the ictal-like activity, the toxin JSTX-3 was applied by pressure ejection, abolishing this activity. This effect was completely reversed during the washout period when the slices were formerly perfused with artificial cerebrospinal fluid (ACSF) and again with 0-Mg2+ ACSF. Our results suggest that the toxin JSTX-3 is a potent blocker of induced epileptiform activity.
Collapse
Affiliation(s)
- Simone Denise Salamoni
- Laboratório de Neurociências, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de O Beleboni R, Pizzo AB, Fontana ACK, de O G Carolino R, Coutinho-Netto J, Dos Santos WF. Spider and wasp neurotoxins: pharmacological and biochemical aspects. Eur J Pharmacol 2004; 493:1-17. [PMID: 15189759 DOI: 10.1016/j.ejphar.2004.03.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Venoms from several arthropods are recognized as useful sources of bioactive substances, such as peptides, acylpolyamines, and alkaloids, which show a wide range of pharmacological effects on synaptic transmission. In this work, we summarize and compile several biochemical and pharmacological aspects related to spider and wasp neurotoxins. Their inhibitory and stimulatory actions on ion channels, receptors, and transporters involved in mammalian and insect neurotransmission are considered.
Collapse
Affiliation(s)
- Renê de O Beleboni
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Strømgaard K, Mellor I. AMPA receptor ligands: Synthetic and pharmacological studies of polyamines and polyamine toxins. Med Res Rev 2004; 24:589-620. [PMID: 15224382 DOI: 10.1002/med.20004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPAR), subtype of the ionotropic glutamate receptors (IGRs), mediate fast synaptic transmission in the central nervous system (CNS), and are involved in many neurological disorders, as well as being a key player in the formation of memory. Hence, ligands affecting AMPARs are highly important for the study of the structure and function of this receptor, and in this regard polyamine-based ligands, particularly polyamine toxins, are unique as they selectively block Ca2+ -permeable AMPARs. Indeed, endogenous intracellular polyamines are known to modulate the function of these receptors in vivo. In this study, recent developments in the medicinal chemistry of polyamine-based ligands are given, particularly focusing on the use of solid-phase synthesis (SPS) as a tool for the facile generation of libraries of polyamine toxin analogues. Moreover, the recent development of highly potent and very selective AMPAR ligands is described. Additionally, we provide a detailed account on the mechanism and site of action of AMPAR blockade by polyamine-based ligands, including examples of how these ligands are used as tools to study AMPAR, and a comparison with their action on other ionotropic receptors.
Collapse
Affiliation(s)
- Kristian Strømgaard
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen.
| | | |
Collapse
|
43
|
Abstract
This review summarises current knowledge of polyamine-containing spider toxins and their interactions with ionotropic receptors of invertebrate and vertebrate excitable cells. Their diverse actions on ionotropic glutamate and acetylcholine receptors, which include potentiation, closed channel block and open channel block, are discussed in the context of toxin and target structures. Factors that complicate attempts to identify and pharmacologically characterise the binding sites for these toxins include their ability to permeate channels of some ionotropic receptors and their apparent accumulation in a cellular compartment, possibly the membrane bilayer.
Collapse
Affiliation(s)
- Ian R Mellor
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | |
Collapse
|
44
|
Marino MJ, Valenti O, Conn PJ. Glutamate receptors and Parkinson's disease: opportunities for intervention. Drugs Aging 2004; 20:377-97. [PMID: 12696997 DOI: 10.2165/00002512-200320050-00006] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease is a debilitating neurodegenerative movement disorder that is the result of a degeneration of dopaminergic neurons in the substantia nigra pars compacta. The resulting loss of striatal dopaminergic tone is believed to underlie a series of changes in the circuitry of the basal ganglia that ultimately lead to severe motor disturbances due to excessive basal ganglia outflow. Glutamate plays a central role in the disruption of normal basal ganglia function, and it has been hypothesised that agents acting to restore normal glutamatergic function may provide therapeutic interventions that bypass the severe motor side effects associated with current dopamine replacement strategies. Analysis of the effects of glutamate receptor ligands in the basal ganglia circuit suggests that both ionotropic and metabotropic glutamate receptors could have antiparkinsonian actions. In particular, NMDA receptor antagonists that selectively target the NR2B subunit and antagonists of the metabotropic glutamate receptor mGluR5 appear to hold promise and deserve future attention.
Collapse
Affiliation(s)
- Michael J Marino
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486-0004, USA
| | | | | |
Collapse
|
45
|
Magazanik LG, Tikhonov DB, Bol'shakov KV, Gmiro VE, Buldakova SL, Samoilova MV. Studies of the structure of glutamate receptor ion channels and the mechanisms of their blockade by organic cations. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2003; 33:237-46. [PMID: 12762590 DOI: 10.1023/a:1022147230445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The structural determinants for blockade of the AMPA and NMDA subtypes of glutamate receptors were studied by analysis of structural-functional relationships in a series of mono- and dicationic compounds. The results showed that the hydrophobic and nucleophilic components of the blocker binding sites are located close to each other in the channel of the NMDA receptor, while they are spatially distant in the channel of the AMPA receptor. Molecular mechanical methods were used to construct models of these channels satisfying these topographic criteria and providing adequate descriptions of the binding of the channel blockers. According to the models, binding of blockers to the NMDA channel occurs in the selective filter of the channel (the N/Q/R site). The nucleophilic region of the AMPA channel is formed by the oxygen atoms of glycine residues in position +2 relative to the selective filter. Identification of the major relationships between the molecular structure of the ion channels of these glutamate receptor subtypes and their blockade by organic cations allows the further synthesis of AMPA and NMDA channel blockers with specified levels of activity and selectivity to be directed.
Collapse
MESH Headings
- Adamantane/analogs & derivatives
- Adamantane/pharmacology
- Amantadine/analogs & derivatives
- Amantadine/pharmacology
- Animals
- Animals, Newborn
- Brain/drug effects
- Brain/metabolism
- Cations/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Excitatory Amino Acid Antagonists/pharmacology
- In Vitro Techniques
- Ion Channels/antagonists & inhibitors
- Ion Channels/classification
- Models, Biological
- Models, Molecular
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Quaternary Ammonium Compounds/pharmacology
- Rats
- Rats, Wistar
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/chemistry
- Receptors, AMPA/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/physiology
Collapse
Affiliation(s)
- L G Magazanik
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Torez Prospekt, 194223 St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
46
|
Seifert G, Weber M, Schramm J, Steinhäuser C. Changes in splice variant expression and subunit assembly of AMPA receptors during maturation of hippocampal astrocytes. Mol Cell Neurosci 2003; 22:248-58. [PMID: 12676534 DOI: 10.1016/s1044-7431(03)00039-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Astrocytes in the hippocampus express glutamate receptors of the AMPA subtype. An increasing body of evidence suggests a contribution of astroglial AMPA receptors to a direct signaling between neurons and glial cells in vivo. Here, we have combined functional analysis with singlecell RT-PCR to investigate whether hippocampal astrocytes express Ca(2+)-permeable AMPA receptors. We show that by postnatal day 5, a mosaic of Ca(2+)-permeable and less Ca(2+)-permeable AMPA receptors coexists in individual astrocytes, while receptors with a more uniform, low divalent permeability dominate in older cells. Moreover, we report an upregulation of the flip form of the GluR2 subunit during maturation, while the splicing status of GluR1 and GluR4 remains unchanged. Due to its specific properties, Ca(2+)-permeable AMPA receptors in astrocytes might strengthen neuron-to-glia signaling and enable proper formation of structural and functional connections between glial cells and glutamatergic synapses in the developing hippocampus.
Collapse
Affiliation(s)
- Gerald Seifert
- Experimental Neurobiology, Neurosurgery, Bonn University, Sigmund-Freud-Str. 25, 53105, Bonn, Germany.
| | | | | | | |
Collapse
|
47
|
Kromann H, Krikstolaityte S, Andersen AJ, Andersen K, Krogsgaard-Larsen P, Jaroszewski JW, Egebjerg J, Strømgaard K. Solid-phase synthesis of polyamine toxin analogues: potent and selective antagonists of Ca2+-permeable AMPA receptors. J Med Chem 2002; 45:5745-54. [PMID: 12477358 DOI: 10.1021/jm020314s] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The wasp toxin philanthotoxin-433 (PhTX-433) is a nonselective and noncompetitive antagonist of ionotropic receptors, such as ionotropic glutamate receptors and nicotinic acetylcholine receptors. Polyamine toxins are extensively used for the characterization of subtypes of ionotropic glutamate receptors, in particular Ca(2+)-permeable AMPA and kainate receptors. We have previously shown that an analogue of PhTX-433 with one of the amino groups replaced by a methylene group, philanthotoxin-83 (PhTX-83) is a selective and potent antagonist of AMPA receptors. We now describe the solid-phase synthesis of analogues of PhTX-83 and the electrophysiological characterization of these analogues on cloned AMPA and kainate receptors. The polyamine portion of PhTX-83 was modified systematically by changing the position of the secondary amino group along the polyamine chain. In another series of analogues, the acyl moiety of PhTX-83 was replaced by acids of different size and lipophilicity. Using electrophysiological techniques, PhTX-56 was shown to be a highly potent (K(i) = 3.3 +/- 0.78 nM) and voltage-dependent antagonist of homomeric GluR1 receptors and was more than 1000-fold less potent when tested on heteromeric GluR1+GluR2, as well as homomeric GluR5(Q) receptors, thus being selective for Ca(2+)-permeable AMPA receptors. Variation of the acyl group of PhTX-83 had only minor effect on antagonist potency at homomeric GluR1 receptors but led to a significant decrease in the voltage-dependence. In conclusion, PhTX-56 is a novel, very potent, and selective antagonist of Ca(2+)-permeable AMPA receptors and is a promising tool for structure/function studies of the ion channel of the AMPA receptor.
Collapse
Affiliation(s)
- Hasse Kromann
- Department of Medicinal Chemistry and NeuroScience PharmaBiotec Research Center, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Damme P, Van Den Bosch L, Van Houtte E, Callewaert G, Robberecht W. GluR2-dependent properties of AMPA receptors determine the selective vulnerability of motor neurons to excitotoxicity. J Neurophysiol 2002; 88:1279-87. [PMID: 12205149 DOI: 10.1152/jn.2002.88.3.1279] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AMPA receptor-mediated excitotoxicity has been implicated in the selective motor neuron loss in amyotrophic lateral sclerosis. In some culture models, motor neurons have been shown to be selectively vulnerable to AMPA receptor agonists due to Ca(2+) influx through Ca(2+)-permeable AMPA receptors. Because the absence of GluR2 in AMPA receptors renders them highly permeable to Ca(2+) ions, it has been hypothesized that the selective vulnerability of motor neurons is due to their relative deficiency in GluR2. However, conflicting evidence exists about the in vitro and in vivo expression of GluR2 in motor neurons, both at the mRNA and at the protein level. In this study, we quantified electrophysiological properties of AMPA receptors, known to be dependent on the relative abundance of GluR2: sensitivity to external polyamines, rectification index, and relative Ca(2+) permeability. Cultured rat spinal cord motor neurons were compared with dorsal horn neurons (which are resistant to excitotoxicity) and with motor neurons that survived an excitotoxic insult. Motor neurons had a higher sensitivity to external polyamines, a lower rectification index, and a higher relative Ca(2+) permeability ratio than dorsal horn neurons. These findings confirm that motor neurons are relatively deficient in GluR2. The AMPA receptor properties correlated well with each other and with the selective vulnerability of motor neurons because motor neurons surviving an excitotoxic event had similar characteristics as dorsal horn neurons. These data indicate that the relative abundance of GluR2 in functional AMPA receptors may be a major determinant of the selective vulnerability of motor neurons to excitotoxicity in vitro.
Collapse
Affiliation(s)
- P Van Damme
- Laboratory for Neurobiology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Walker HC, Lawrence JJ, McBain CJ. Activation of kinetically distinct synaptic conductances on inhibitory interneurons by electrotonically overlapping afferents. Neuron 2002; 35:161-71. [PMID: 12123616 DOI: 10.1016/s0896-6273(02)00734-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mossy fiber (MF) and CA3 collateral (CL) axons activate common interneurons via synapses comprised of different AMPA receptors to provide feedforward and feedback inhibitory control of the CA3 hippocampal network. Because synapses potentially occur over variable electrotonic distances that distort somatically recorded synaptic currents, it is not known whether the underlying afferent-specific synaptic conductances are associated with different time courses. Using a somatic voltage jump technique to alter the driving force at the site of the synapse, we demonstrate that MF and CL synapses overlap in electrotonic location yet differ in conductance time course. Thus, afferent-specific conductance time courses allow single interneurons to differentially integrate feedforward and feedback information without the need to segregate distinct AMPA receptor subunits to different electrotonic domains.
Collapse
Affiliation(s)
- Harrison C Walker
- Laboratory of Cellular and Synaptic Neurophysiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
50
|
Essin K, Nistri A, Magazanik L. Evaluation of GluR2 subunit involvement in AMPA receptor function of neonatal rat hypoglossal motoneurons. Eur J Neurosci 2002; 15:1899-906. [PMID: 12099896 DOI: 10.1046/j.1460-9568.2002.02045.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AMPA receptors (AMPAr) mediate fast synaptic responses to glutamate and, when they lack the GluR2 subunit, are strongly Ca2+ permeable and may increase intracellular Ca2+ levels. Because hypoglossal motoneurons possess restricted ability to buffer internal Ca2+ and are vulnerable to Ca2+ excitotoxicity, we wondered if, in these cells, any significant Ca2+ influx could be generated via AMPAr activity. Using whole cell patch-clamp recording from neonatal rat hypoglossal motoneurons, we tested the AMPAr properties conferred by GluR2 subunits, namely Ca2+ permeability, current rectification and sensitivity to pentobarbital or to the subunit-specific channel blockers, IEM-1460 and IEM-1925. We recorded membrane currents generated by the agonist, kainate, and compared them with those obtained from hippocampal pyramidal neurons (expressing GluR2-containing AMPAr) and from striatal giant aspiny or hippocampal interneurons (with GluR2-lacking AMPAr). Ca2+ vs. Na+ permeability of motoneuron AMPAr was relatively low (0.25 +/- 0.05), although higher than that of pyramidal neurons. With intracellularly applied spermine, significant inward rectification was absent from motoneurons. These data indicated the prevalence of functional GluR2 subunits. However, the sensitivity of motoneuron AMPAr to pentobarbital did not differ from that of GluR2-lacking AMPAr on interneurons. Motoneurons possessed sensitivity to IEM-1460 (IC50 = 90 +/- 10 microm) approximately 10-fold lower than striatal interneurons, although 10-fold higher than hippocampal pyramidal cells. IEM-1925 also reduced the amplitude of excitatory synaptic currents in brainstem slice motoneurons. We hypothesize that hypoglossal motoneuron AMPAr (moderately Ca2+ permeable because they contain few GluR2 subunits) may contribute to intracellular Ca2+ rises especially if persistent AMPAr activation (or the pathological GluR2 down-regulation) occurs.
Collapse
Affiliation(s)
- K Essin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 193224 St. Petersburg, Russia
| | | | | |
Collapse
|