1
|
Buhusi M, Griffin D, Buhusi CV. Brain-Derived Neurotrophic Factor Val66Met Genotype Modulates Latent Inhibition: Relevance for Schizophrenia. Schizophr Bull 2023; 49:626-634. [PMID: 36484490 PMCID: PMC10154718 DOI: 10.1093/schbul/sbac188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND HYPOTHESIS Latent inhibition (LI) is a measure of selective attention and learning relevant to Schizophrenia (SZ), with 2 abnormality poles: Disrupted LI in acute SZ, thought to underlie positive symptoms, and persistent LI (PLI) in schizotypy and chronic SZ under conditions where normal participants fail to show LI. We hypothesized that Brain-Derived Neurotrophic Factor (BDNF)-Met genotype shifts LI toward the PLI pole. STUDY DESIGN We investigated the role of BDNF-Val66Met polymorphism and neural activation in regions involved in LI in mice, and the interaction between the BDNF and CHL1, a gene associated with SZ. STUDY RESULTS No LI differences occurred between BDNF-wild-type (WT) (Val/Val) and knock-in (KI) (Met/Met) mice after weak conditioning. Chronic stress or stronger conditioning disrupted LI in WT but not KI mice. Behavior correlated with activation in infralimbic and orbitofrontal cortices, and nucleus accumbens. Examination of LI in CHL1-KO mice revealed no LI with no Met alleles (BDNF-WTs), PLI in CHL1-WT mice with 1 Met allele (BDNF-HETs), and PLI in both CHL1-WTs and CHL1-KOs with 2 Met alleles (BDNF-KIs), suggesting a shift to LI persistence with the number of BDNF-Met alleles in the CHL1 model of acute SZ. CONCLUSIONS Results support a role for BDNF polymorphisms in gene-gene and gene-environment interactions relevant to SZ. BDNF-Met allele may reduce expression of some acute SZ symptoms, and may increase expression of negative symptoms in individuals with chronic SZ. Evaluation of (screening for) SZ phenotypes associated with mutations at a particular locus (eg, CHL1), may be masked by strong effects at different loci (eg, BDNF).
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Daniel Griffin
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| |
Collapse
|
2
|
Myles L, Garrison J, Cheke L. Latent Inhibition in Schizophrenia and Schizotypy. SCHIZOPHRENIA BULLETIN OPEN 2023; 4:sgad026. [PMID: 39145328 PMCID: PMC11207691 DOI: 10.1093/schizbullopen/sgad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background The Salience Hypothesis posits that aberrations in the assignment of salience culminate in hallucinations and unusual beliefs, the "positive symptoms" of schizophrenia. Evidence for this comes from studies on latent inhibition (LI), referring to the phenomenon that prior exposure to a stimulus impedes learning about the relationship between that stimulus and an outcome. Design This article reviewed all published studies examining the relationship between LI and both schizophrenia and schizotypy. Results Contemporary literature suggests that LI is attenuated in both people with schizophrenia and those loading highly on measures of schizotypy, the multidimensional derivative of schizophrenia. This suggests that these individuals assign greater salience to stimuli than healthy controls and people scoring low on measures of schizotypy, respectively. However, several confounds limit these conclusions. Studies on people with schizophrenia are limited by the confounding effects of psychotropic medications, idiosyncratic parsing of samples, variation in dependent variables, and lack of statistical power. Moreover, LI paradigms are limited by the confounding effects of learned irrelevance, conditioned inhibition, negative priming, and novel pop-out effects. Conclusions This review concludes with the recommendation that researchers develop novel paradigms that overcome these limitations to evaluate the predictions of the Salience Hypothesis.
Collapse
Affiliation(s)
- Liam Myles
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jane Garrison
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Lucy Cheke
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Sabe M, Pillinger T, Kaiser S, Chen C, Taipale H, Tanskanen A, Tiihonen J, Leucht S, Correll CU, Solmi M. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci Biobehav Rev 2022; 136:104608. [PMID: 35303594 DOI: 10.1016/j.neubiorev.2022.104608] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
Abstract
Changes over 50 years of research on antipsychotics in schizophrenia have occurred. A scientometric synthesis of such changes over time and a measure of researchers' networks and scientific productivity is currently lacking. We searched Web of Science Core Collection from inception until November 5, 2021, using the appropriate key. Our primary objective was to conduct systematic mapping with CiteSpace to show how clusters of keywords have evolved over time and obtain clusters' structure and credibility. Our secondary objective was to measure research network performance (countries, institutions, and authors) using CiteSpace, VOSviewer, and Bibliometrix. We included 32,240 studies published between 1955 and 2021. The co-cited reference network identified 25 clusters with a well-structured network (Q=0.8166) and highly credible clustering (S=0.91). The main trends of research were: 1) antipsychotic efficacy; 2) cognition in schizophrenia; 3) side effects of antipsychotics. Last five years research trends were: 'ultra-resistance schizophrenia' (S=0.925), 'efficacy/dose-response' (S=0.775), 'evidence-synthesis' (S=0.737), 'real-world effectiveness' (S=0.794), 'cannabidiol' (S=0.989), and 'gut microbiome' (S=0.842). These results can inform funding agencies and research groups' future directions.
Collapse
Affiliation(s)
- Michel Sabe
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland.
| | - Toby Pillinger
- Institute of Psychiatry, Psychology and Neuroscience, Department of Psychosis Studies, King's College of London, London, UK; Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland
| | - Chaomei Chen
- College of Computing & Informatics, Drexel University, Philadelphia, PA, USA
| | - Heidi Taipale
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; University of Eastern Finland, School of Pharmacy, Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| | - Antti Tanskanen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden
| | - Jari Tiihonen
- Department of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, Finland; Department of Clinical Neuroscience, Karolinska Institutet and Center for Psychiatry Research, Stockholm City Council, Stockholm, Sweden; Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christoph U Correll
- Department of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA; Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ontario, Ottawa
| |
Collapse
|
4
|
Granger KT, Talwar A, Barnett JH. Latent inhibition and its potential as a biomarker for schizophrenia. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Nikolaus S, Mamlins E, Hautzel H, Müller HW. Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction. Rev Neurosci 2019; 30:381-426. [PMID: 30269107 DOI: 10.1515/revneuro-2018-0037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/30/2018] [Indexed: 11/15/2022]
Abstract
Dopamine (DA) receptor and transporter dysfunctions play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) in the manic (BDman) or depressive (BDdep) state and schizophrenia (SZ). We performed a PUBMED search, which provided a total of 239 in vivo imaging studies with either positron emission tomography (PET) or single-proton emission computed tomography (SPECT). In these studies, DA transporter binding, D1 receptor (R) binding, D2R binding, DA synthesis and/or DA release in patients with the primary diagnosis of acute AD (n=310), MDD (n=754), BDman (n=15), BDdep (n=49) or SZ (n=1532) were compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BDman, BDdep and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and/or receptor binding sites. In contrast to AD and SZ, in MDD, BDman and BDdep, neostriatal DA function was normal, whereas MDD, BDman, and BDdep were characterized by the increased availability of prefrontal and frontal DA. In contrast to AD, MDD, BDman and BDdep, DA function in SZ was impaired throughout the nigrostriatal and mesolimbocortical system with an increased availability of DA in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
6
|
Perez SM, Donegan JJ, Boley AM, Aguilar DD, Giuffrida A, Lodge DJ. Ventral hippocampal overexpression of Cannabinoid Receptor Interacting Protein 1 (CNRIP1) produces a schizophrenia-like phenotype in the rat. Schizophr Res 2019; 206:263-270. [PMID: 30522798 PMCID: PMC6525642 DOI: 10.1016/j.schres.2018.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Adolescent cannabis use has been implicated as a risk factor for schizophrenia; however, it is neither necessary nor sufficient. Previous studies examining this association have focused primarily on the role of the cannabinoid receptor 1 (CB1R) with relatively little known about a key regulatory protein, the cannabinoid receptor interacting protein 1 (CNRIP1). CNRIP1 is an intracellular protein that interacts with the C-terminal tail of CB1R and regulates its intrinsic activity. Previous studies have demonstrated aberrant CNRIP1 DNA promoter methylation in post-mortem in human patients with schizophrenia, and we have recently reported decreased methylation of the CNRIP1 DNA promoter in the ventral hippocampus (vHipp) of a rodent model of schizophrenia susceptibility. To examine whether augmented CNRIP1 expression could contribute to the pathology of schizophrenia, we performed viral-mediated overexpression of CNRIP1 in the vHipp of Sprague Dawley rats. We then tested these rats for behavioral correlates of schizophrenia symptoms, followed by electrophysiology to determine the effects on the dopamine system, known to underlie psychosis. Here, we report that overexpression of vHipp CNRIP1 induces impairments in latent inhibition and social interaction, similar to those observed in individuals with schizophrenia and in rodent models of the disease. Furthermore, rats overexpressing vHipp CNRIP1 displayed a significant increase in ventral tegmental area (VTA) dopamine neuron population activity, a putative correlate of psychosis. These data provide evidence that alterations in CNRIP1 may contribute to the pathophysiology of schizophrenia, as overexpression is sufficient to produce neurophysiological and behavioral correlates consistently observed in rodent models of the disease.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - Angela M Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - David D Aguilar
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA; VA Boston Healthcare System and Harvard Medical School Department of Psychiatry, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Andrea Giuffrida
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Young spontaneously hypertensive rats (SHRs) display prodromal schizophrenia-like behavioral abnormalities. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:169-176. [PMID: 30500412 DOI: 10.1016/j.pnpbp.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/05/2018] [Accepted: 11/24/2018] [Indexed: 11/24/2022]
Abstract
The Spontaneously Hypertensive Rat (SHR) strain has been suggested as an animal model of schizophrenia, considering that adult SHRs display behavioral abnormalities that mimic the cognitive, psychotic and negative symptoms of the disease and are characteristic of its animal models. SHRs display: (I) deficits in fear conditioning and latent inhibition (modeling cognitive impairments), (II) deficit in prepulse inhibition of startle reflex (reflecting a deficit in sensorimotor gating, and associated with psychotic symptoms), (III) diminished social behavior (modeling negative symptoms) and (IV) hyperlocomotion (modeling the hyperactivity of the dopaminergic mesolimbic system/ psychotic symptoms). These behavioral abnormalities are reversed specifically by the administration of antipsychotic drugs. Here, we performed a behavioral characterization of young (27-50 days old) SHRs in order to investigate potential early behavioral abnormalities resembling the prodromal phase of schizophrenia. When compared to Wistar rats, young SHRs did not display hyperlocomotion or PPI deficit, but exhibited diminished social interaction and impaired fear conditioning and latent inhibition. These findings are in accordance with the clinical course of schizophrenia: manifestation of social and cognitive impairments and absence of full-blown psychotic symptoms in the prodromal phase. The present data reinforce the SHR strain as a model of schizophrenia, expanding its validity to the prodromal phase of the disorder.
Collapse
|
8
|
Abstract
Latent inhibition (LI) is a startlingly simple effect in which preexposure of a stimulus without consequence retards subsequent responding to a stimulus-consequence relation. The effect was first demonstrated with Pavlovian conditioning in animals and was later suggested to be a marker of human psychopathology such as schizophrenia. Individual differences in LI has supported the continued use of animal models to understand human mental health. In this review, we ask whether there is sufficient evidence to support the continued application of LI from animal models to human psychopathology because of the weak evidence for LI in humans. There is considerable variability in the methods used to assess LI, sustaining different theoretical accounts of the effects observed, which differ from the accepted accounts of LI as demonstrated in animals. The review shows that although there have been many experiments testing human LI, none provide the necessary experimental controls to support the conclusion that retarded responding is caused simply by preexposure to a stimulus, as has been demonstrated with animal models. Establishing this conflict, we set out a framework for future research.
Collapse
|
9
|
Buhusi M, Brown CK, Buhusi CV. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress. Front Behav Neurosci 2017; 11:177. [PMID: 29066960 PMCID: PMC5641315 DOI: 10.3389/fnbeh.2017.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS) alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF) is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI), a measure of selective attention and learning, in GDNF-heterozygous (HET) mice and their wild-type (WT) littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons) in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Colten K Brown
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
10
|
Kraus M, Rapisarda A, Lam M, Thong JYJ, Lee J, Subramaniam M, Collinson SL, Chong SA, Keefe RSE. Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis. SCHIZOPHRENIA RESEARCH-COGNITION 2016; 6:1-8. [PMID: 28740818 PMCID: PMC5514297 DOI: 10.1016/j.scog.2016.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 11/29/2022]
Abstract
The addition of off-the-shelf cognitive measures to established prodromal criteria has resulted in limited improvement in the prediction of conversion to psychosis. Tests that assess cognitive processes central to schizophrenia might better identify those at highest risk. The latent inhibition paradigm assesses a subject's tendency to ignore irrelevant stimuli, a process integral to healthy perceptual and cognitive function that has been hypothesized to be a key deficit underlying the development of schizophrenia. In this study, 142 young people at ultra high-risk for developing psychosis and 105 controls were tested on a within-subject latent inhibition paradigm. Additionally, we later inquired about the strategy that each subject employed to complete the test, and further investigated the relationship between reported strategy and the extent of latent inhibition exhibited. Unlike controls, ultra high-risk subjects did not demonstrate a significant latent inhibition effect. This difference between groups became greater when controlling for strategy. The lack of latent inhibition effect in our ultra high-risk sample suggests that individuals at ultra high-risk for psychosis are impaired in their allocation of attentional resources based on past predictive value of repeated stimuli. This fundamental deficit in the allocation of attention may contribute to the broader array of cognitive impairments and clinical symptoms displayed by individuals at ultra high-risk for psychosis.
Collapse
Affiliation(s)
- Michael Kraus
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, 200 Trent Drive, Durham, NC, 27710
| | - Attilio Rapisarda
- Research Division, Institute of Mental Health, Buangkok Green Medical Park, 10 Buangkok View, Singapore, 539747.,Neuroscience & Behavioral Disorders, Duke-National University of Singapore, Graduate Medical School, 8 College Road, Singapore, 169857
| | - Max Lam
- Research Division, Institute of Mental Health, Buangkok Green Medical Park, 10 Buangkok View, Singapore, 539747
| | - Jamie Y J Thong
- Department of Bioengineering, National University of Singapore, Block E4, #04-08, 4 Engineering Drive 3, Singapore, 117583
| | - Jimmy Lee
- Research Division, Institute of Mental Health, Buangkok Green Medical Park, 10 Buangkok View, Singapore, 539747.,Department of General Psychiatry 1, Institute of Mental Health, Buangkok Green Medical Park, 10 Buangkok View, Singapore, 539747.,Office of Clinical Sciences, Duke-National University of Singapore, Graduate Medical School, National University of Singapore, 8 College Road, Singapore, 169857
| | - Mythily Subramaniam
- Research Division, Institute of Mental Health, Buangkok Green Medical Park, 10 Buangkok View, Singapore, 539747
| | - Simon L Collinson
- Neuroscience & Behavioral Disorders, Duke-National University of Singapore, Graduate Medical School, 8 College Road, Singapore, 169857
| | - Siow Ann Chong
- Research Division, Institute of Mental Health, Buangkok Green Medical Park, 10 Buangkok View, Singapore, 539747
| | - Richard S E Keefe
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, 200 Trent Drive, Durham, NC, 27710.,Neuroscience & Behavioral Disorders, Duke-National University of Singapore, Graduate Medical School, 8 College Road, Singapore, 169857
| |
Collapse
|
11
|
Abboud R, Roiser JP, Khalifeh H, Ali S, Harrison I, Killaspy HT, Joyce EM. Are persistent delusions in schizophrenia associated with aberrant salience? SCHIZOPHRENIA RESEARCH-COGNITION 2016; 4:32-38. [PMID: 27284531 PMCID: PMC4884769 DOI: 10.1016/j.scog.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 10/25/2022]
Abstract
OBJECTIVE It has been suggested that positive psychotic symptoms reflect 'aberrant salience'. Previously we provided support for this hypothesis in first-episode schizophrenia patients, demonstrating that delusional symptoms were associated with aberrant reward processing, indexed by the Salience Attribution Test (SAT). Here we tested whether salience processing is abnormal in schizophrenia patients with long-standing treatment-refractory persistent delusions (TRS). METHOD Eighteen medicated TRS patients and 31 healthy volunteers completed the SAT, on which participants made a speeded response to earn money in the presence of cues. Each cue comprised two visual dimensions, colour and form. Reinforcement probability varied over one of these dimensions (task-relevant), but not the other (task-irrelevant). RESULTS Participants responded significantly faster on high-probability relative to low-probability trials, representing implicit adaptive salience; this effect was intact in TRS patients. By contrast, TRS patients were impaired on the explicit adaptive salience measure, rating high-probability stimuli less likely to be associated with reward than controls. There was little evidence for elevated aberrant salience in the TRS group. CONCLUSION These findings do not support the hypothesis that persistent delusions are related to aberrant motivational salience processing in TRS patients. However, they do support the view that patients with schizophrenia have impaired reward learning.
Collapse
Affiliation(s)
- Rafeef Abboud
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK
| | - Hind Khalifeh
- Camden and Islington NHS Foundation Trust, St Pancras Hospital, 4 St. Pancras Way, London, NW1 0PE, UK; Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK; Institute of Psychiatry, Psychology and Neuroscience, Kings College London, De Crespigny Park, London, SE5 8AF
| | - Sheila Ali
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC1N 3AZ, UK
| | - Isobel Harrison
- Camden and Islington NHS Foundation Trust, St Pancras Hospital, 4 St. Pancras Way, London, NW1 0PE, UK; Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Helen T Killaspy
- Camden and Islington NHS Foundation Trust, St Pancras Hospital, 4 St. Pancras Way, London, NW1 0PE, UK; Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London, W1T 7NF, UK
| | - Eileen M Joyce
- Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
12
|
Waterhouse U, Roper VE, Brennan KA, Ellenbroek BA. Nicotine ameliorates schizophrenia-like cognitive deficits induced by maternal LPS exposure: a study in rats. Dis Model Mech 2016; 9:1159-1167. [PMID: 27483346 PMCID: PMC5087828 DOI: 10.1242/dmm.025072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022] Open
Abstract
Maternal exposure to infectious agents is a predisposing factor for schizophrenia with associated cognitive deficits in offspring. A high incidence of smoking in these individuals in adulthood might be, at least in part, due to the cognitive-enhancing effects of nicotine. Here, we have used prenatal exposure to maternal lipopolysaccharide (LPS, bacterial endotoxin) at different time points as a model for cognitive deficits in schizophrenia to determine whether nicotine reverses any associated impairments. Pregnant rats were treated subcutaneously with LPS (0.5 mg/kg) at one of three neurodevelopmental time periods [gestation days (GD) 10-11, 15-16, 18-19]. Cognitive assessment in male offspring commenced in early adulthood [postnatal day (PND) 60] and included: prepulse inhibition (PPI), latent inhibition (LI) and delayed non-matching to sample (DNMTS). Following PND 100, daily nicotine injections (0.6 mg/kg, subcutaneously) were administered, and animals were re-tested in the same tasks (PND 110). Only maternal LPS exposure early during fetal neurodevelopment (GD 10-11) resulted in deficits in all tests compared to animals that had been prenatally exposed to saline at the same gestational time point. Repeated nicotine treatment led to global (PPI) and selective (LI) improvements in performance. Early but not later prenatal LPS exposure induced consistent deficits in cognitive tests with relevance for schizophrenia. Nicotine reversed the LPS-induced deficits in selective attention (LI) and induced a global enhancement of sensorimotor gating (PPI).
Collapse
Affiliation(s)
- Uta Waterhouse
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Vic E Roper
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Katharine A Brennan
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
13
|
Cuenya L, Mustaca A, Kamenetzky G. Postweaning isolation affects responses to incentive contrast in adulthood. Dev Psychobiol 2015; 57:177-88. [PMID: 25604460 DOI: 10.1002/dev.21273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 11/24/2014] [Indexed: 11/09/2022]
Abstract
Adolescence is a time involving a series of changes in the use of appetitive reinforcers like food, as well as neuroendocrine changes like those taking place in the mesolimbic dopamine function. Social isolation from postnatal day 21 to 36 in rats leads to behavioral and neurophysiological alterations such as increased consumption of appetitive reinforcers. The work is focused on studying how exposure to chronic stress induced by social isolation during adolescence can have a long-lasting effect on responses to reinforcement shifts in adulthood. Two experiments were performed in rats in order to analyze the effect of adolescent isolation on the responses to unanticipated shifts in reinforcement during adulthood, in reinforcement devaluation (32-4% of sucrose solution), increase (4-32% of sucrose solution), and extinction (32-0% of sucrose solution) procedures. Adolescent isolation intensified the intake response resulting from a reinforcement increase (i.e., greater positive contrast), but had no effect on the response to reinforcement devaluation and omission. The implications of this procedure are discussed, along with the underlying behavioral and neurochemical mechanisms.
Collapse
Affiliation(s)
- Lucas Cuenya
- Laboratorio de Psicología Experimental y Aplicada, Instituto de Investigaciones Médicas Alfredo Lanari, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | |
Collapse
|
14
|
Peripherally administered oxytocin modulates latent inhibition in a manner consistent with antipsychotic drugs. Behav Brain Res 2014; 278:424-8. [PMID: 25447298 DOI: 10.1016/j.bbr.2014.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Peripherally administered oxytocin (OT) has produced antipsychotic drug (APD)-like effects in animal tests that are predictive of APD efficacy. However, these effects have mainly been demonstrated using animal models of schizophrenia-like deficits in prepulse inhibition (PPI) of the startle reflex. Another schizophrenia-relevant abnormality that is the basis of a predictive animal test for APD efficacy is deficient latent inhibition (LI). LI is the normal suppression of a classically conditioned response when the subject is pre-exposed to the conditioned stimulus (CS) before it is paired with the unconditioned stimulus (UCS). Conditioned taste aversion (CTA), the normal avoidance of ingesting a food or liquid by animals when its taste is associated with an aversive experience, was used to test whether OT facilitates LI consistent with APDs. METHODS Brown Norway rats, known to naturally display attenuated LI, were aversively conditioned on two consecutive exposures to flavored drinking water (0.1% saccharin) by pairing it with malaise-inducing lithium chloride injections. Concurrent with conditioning, rats received subcutaneous OT (0.02, 0.1, 0.5mg/kg) or saline. Some rats were pre-exposed to the flavored water prior to its aversive conditioning (pre-exposed) while others were not (non pre-exposed). Two days after aversive conditioning the amount of flavored water consumed during a 20-min session was recorded. RESULTS As expected, LI, defined as greater consumption by pre-exposed vs. non pre-exposed rats was only weakly exhibited in Brown Norway rats and OT enhanced LI by reducing CTA in pre-exposed rats in a dose-dependent manner, with the 0.02 mg/kg dose producing the strongest effect. CONCLUSIONS The facilitation of LI by OT is consistent with the effects produced by APDs and provides further support for the notion that OT has therapeutic potential for schizophrenia.
Collapse
|
15
|
Ouhaz Z, Ba-M’hamed S, Bennis M. Haloperidol treatment at pre-exposure phase reduces the disturbance of latent inhibition in rats with neonatal ventral hippocampus lesions. C R Biol 2014; 337:561-70. [DOI: 10.1016/j.crvi.2014.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/10/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
|
16
|
Prefrontal cortical GABA transmission modulates discrimination and latent inhibition of conditioned fear: relevance for schizophrenia. Neuropsychopharmacology 2014; 39:2473-84. [PMID: 24784549 PMCID: PMC4138759 DOI: 10.1038/npp.2014.99] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/11/2014] [Accepted: 04/28/2014] [Indexed: 02/07/2023]
Abstract
Inhibitory gamma-aminobutyric acid (GABA) transmission within the prefrontal cortex (PFC) regulates numerous functions, and perturbations in GABAergic transmission within this region have been proposed to contribute to some of the cognitive and behavioral abnormalities associated with disorders such as schizophrenia. These abnormalities include deficits in emotional regulation and aberrant attributions of affective salience. Yet, how PFC GABA regulates these types of emotional processes are unclear. To address this issue, we investigated the contribution of PFC GABA transmission to different aspects of Pavlovian emotional learning in rats using translational discriminative fear conditioning and latent inhibition (LI) assays. Reducing prelimbic PFC GABAA transmission via infusions of the antagonist bicuculline before the acquisition or expression of fear conditioning eliminated the ability to discriminate between an aversive conditioned stimulus (CS+) paired with footshock vs a neutral CS-, resembling similar deficits observed in schizophrenic patients. In a separate experiment, blockade of PFC GABAA receptors before CS preexposure (PE) and conditioning did not affect subsequent expression of LI, but did enhance fear in rats that were not preexposed to the CS. In contrast, PFC GABA-blockade before a fear expression test disrupted the recall of learned irrelevance and abolished LI. These data suggest that normal PFC GABA transmission is critical for regulating and mitigating multiple aspects of aversive learning, including discrimination between fear vs safety signals and recall of information about the irrelevance of stimuli. Furthermore, they suggest that similar deficits in emotional regulation observed in schizophrenia may be driven in part by deficient PFC GABA activity.
Collapse
|
17
|
Meyer F, Louilot A. Consequences at adulthood of transient inactivation of the parahippocampal and prefrontal regions during early development: new insights from a disconnection animal model for schizophrenia. Front Behav Neurosci 2014; 8:118. [PMID: 24778609 PMCID: PMC3985036 DOI: 10.3389/fnbeh.2014.00118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/21/2014] [Indexed: 11/16/2022] Open
Abstract
The psychic disintegration characteristic of schizophrenia is thought to result from a defective connectivity, of neurodevelopmental origin, between several integrative brain regions. The parahippocampal region and the prefrontal cortex are described as the main regions affected in schizophrenia. Interestingly, latent inhibition (LI) has been found to be reduced in patients with schizophrenia, and the existence of a dopaminergic dysfunction is also generally well accepted in this disorder. In the present review, we have integrated behavioral and neurochemical data obtained in a LI protocol involving adult rats subjected to neonatal functional inactivation of the entorhinal cortex, the ventral subiculum or the prefrontal cortex. The data discussed suggest a subtle and transient functional blockade during early development of the aforementioned brain regions is sufficient to induce schizophrenia-related behavioral and dopaminergic abnormalities in adulthood. In summary, these results support the view that our conceptual and methodological approach, based on functional disconnections, is valid for modeling some aspects of the pathophysiology of schizophrenia from a neurodevelopmental perspective.
Collapse
Affiliation(s)
- Francisca Meyer
- 1Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| | - Alain Louilot
- 2INSERM U 1114, Faculty of Medicine, FMTS, University of Strasbourg Strasbourg, France
| |
Collapse
|
18
|
Leung HT, Killcross AS, Westbrook RF. Error correction in latent inhibition and its disruption by opioid receptor blockade with naloxone. Neuropsychopharmacology 2013; 38:2439-45. [PMID: 23748224 PMCID: PMC3799063 DOI: 10.1038/npp.2013.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/12/2013] [Accepted: 06/04/2013] [Indexed: 11/09/2022]
Abstract
Latent inhibition refers to the retardation in the development of conditioned responding when a pre-exposed stimulus is used to signal an unconditioned stimulus. This effect is described by error-correction models as an attentional deficit and is commonly used as an animal model of schizophrenia. A series of experiments studied the role of error-correction mechanism in latent inhibition and its interaction with the endogenous opioid system. Systemic administration of the competitive opioid receptor antagonist naloxone before rats were pre-exposed to a target stimulus prevented latent inhibition of its subsequent fear conditioning; it was without effect on a non-pre-exposed stimulus and did not produce state-dependent learning (Experiments 1a and 1b). Naloxone did not reverse the latent inhibitory effect already accrued to a pre-exposed target. However, it did prevent the enhancement of latent inhibition by a long retention interval interpolated between its initial exposure and re-exposure (Experiment 2) or by a novel stimulus compounded with the pre-exposed target during re-exposure (Experiment 3). These results provide evidence that attentional loss in latent inhibition is instructed by an opioid-mediated error signal which diminishes with repeated stimulus exposures but recovers with the passage of time or reintroduction of novelty.
Collapse
Affiliation(s)
- Hiu T Leung
- School of Psychology, University of New South Wales, Sydney, NSW, Australia,School of Psychology, University of New South Wales, Sydney NSW 2052, Australia, Tel: +61 2 9385 2441, Fax: +61 2 9385 3641, E-mail:
| | - A S Killcross
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | | |
Collapse
|
19
|
Reichelt AC, Lee JLC. Memory reconsolidation in aversive and appetitive settings. Front Behav Neurosci 2013; 7:118. [PMID: 24058336 PMCID: PMC3766793 DOI: 10.3389/fnbeh.2013.00118] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/20/2013] [Indexed: 11/16/2022] Open
Abstract
Memory reconsolidation has been observed across species and in a number of behavioral paradigms. The majority of memory reconsolidation studies have been carried out in Pavlovian fear conditioning and other aversive memory settings, with potential implications for the treatment of post-traumatic stress disorder. However, there is a growing literature on memory reconsolidation in appetitive reward-related memory paradigms, including translational models of drug addiction. While there appears to be substantial similarity in the basic phenomenon and underlying mechanisms of memory reconsolidation across unconditioned stimulus valence, there are also notable discrepancies. These arise both when comparing aversive to appetitive paradigms and also across different paradigms within the same valence of memory. We review the demonstration of memory reconsolidation across different aversive and appetitive memory paradigms, the commonalities and differences in underlying mechanisms and the conditions under which each memory undergoes reconsolidation. We focus particularly on whether principles derived from the aversive literature are applicable to appetitive settings, and also whether the expanding literature in appetitive paradigms is informative for fear memory reconsolidation.
Collapse
Affiliation(s)
- Amy C Reichelt
- School of Psychology, University of Birmingham Birmingham, UK
| | | |
Collapse
|
20
|
Byrom NC. Accounting for individual differences in human associative learning. Front Psychol 2013; 4:588. [PMID: 24027551 PMCID: PMC3761215 DOI: 10.3389/fpsyg.2013.00588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 08/14/2013] [Indexed: 11/13/2022] Open
Abstract
Associative learning has provided fundamental insights to understanding psychopathology. However, psychopathology occurs along a continuum and as such, identification of disruptions in processes of associative learning associated with aspects of psychopathology illustrates a general flexibility in human associative learning. A handful of studies have looked specifically at individual differences in human associative learning, but while much work has concentrated on accounting for flexibility in learning caused by external factors, there has been limited work considering how to model the influence of dispositional factors. This review looks at the range of individual differences in human associative learning that have been explored and the attempts to account for, and model, this flexibility. To fully understand human associative learning, further research needs to attend to the causes of variation in human learning.
Collapse
Affiliation(s)
- Nicola C. Byrom
- Department of Experimental Psychology, University of OxfordOxford, UK
| |
Collapse
|
21
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
22
|
Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning. Behav Brain Res 2012; 242:54-61. [PMID: 23276608 DOI: 10.1016/j.bbr.2012.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/15/2012] [Indexed: 02/07/2023]
Abstract
Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia.
Collapse
|
23
|
Schmidt-Hansen M, Le Pelley M. The positive symptoms of acute schizophrenia and latent inhibition in humans and animals: underpinned by the same process(es)? Cogn Neuropsychiatry 2012; 17:473-505. [PMID: 22443090 DOI: 10.1080/13546805.2012.667202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION It has been suggested that the positive symptoms of acute schizophrenia are a consequence of a disruption of the process that produces latent inhibition (slower acquisition of conditioned responding after preexposure to the conditioned stimulus) and that this effect can be modelled by pro- and antipsychotic compounds in healthy participants and in nonhuman animals. This idea assumes that latent inhibition in humans and animals is underpinned by the same process(es). METHOD First, we question the equivalence of human and animal latent inhibition. Second, we review the studies that have examined latent inhibition in populations with schizophrenia and in healthy populations after administration of amphetamine or haloperidol. RESULTS Theoretical analysis of the similarities and differences in latent inhibition effects, and the procedures used to generate them, in humans and animals renders the suggested equivalence between them unconvincing. The studies examining latent inhibition in populations with schizophrenia and in healthy populations after administration of amphetamine or haloperidol are marked by a number of methodological shortcomings and reveal discrepant results. CONCLUSIONS The theoretical and empirical analyses provide little support for a common process underlying deficits of latent inhibition in patients exhibiting positive symptoms of acute schizophrenia, and such deficits in experimental models in healthy humans and infrahumans.
Collapse
|
24
|
A preclinical assessment of d.l-govadine as a potential antipsychotic and cognitive enhancer. Int J Neuropsychopharmacol 2012; 15:1441-55. [PMID: 22071247 DOI: 10.1017/s146114571100157x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetrahydroprotoberberines (THPBs) are compounds derived from traditional Chinese medicine and increasing preclinical evidence suggests efficacy in treatment of a wide range of symptoms observed in schizophrenia. A receptor-binding profile of the THPB, d.l-govadine (d.l-Gov), reveals high affinity for dopamine and noradrenaline receptors, efficacy as a D2 receptor antagonist, brain penetrance in the 10-300 ng/g range, and thus motivated an assessment of the antipsychotic and pro-cognitive properties of this compound in the rat. Increased dopamine efflux in the prefrontal cortex and nucleus accumbens, measured by microdialysis, is observed following subcutaneous injection of the drug. d.l-Gov inhibits both conditioned avoidance responding (CAR) and amphetamine-induced locomotion (AIL) at lower doses than clozapine (CAR ED50: d.l-Gov 0.72 vs. clozapine 7.70 mg/kg; AIL ED50: d.l-Gov 1.70 vs. clozapine 4.27 mg/kg). Catalepsy is not detectable at low biologically relevant doses, but is observed at higher doses. Consistent with previous reports, acute d-amphetamine disrupts latent inhibition (LI) while a novel finding of enhanced LI is observed in sensitized animals. Treatment with d.l-Gov prior to conditioned stimulus (CS) pre-exposure restores LI to levels observed in controls in both sensitized animals and those treated acutely with d-amphetamine. Finally, possible pro-cognitive properties of d.l-Gov are assessed with the spatial delayed win-shift task. Subcutaneous injection of 1.0 mg/kg d.l-Gov failed to affect errors at a 30-min delay, but decreased errors observed at a 12-h delay. Collectively, these data provide the first evidence that d.l-Gov may have antipsychotic properties in conjunction with pro-cognitive effects, lending further support to the hypothesis that THPBs are a class of compounds which merit serious consideration as novel treatments for schizophrenia.
Collapse
|
25
|
Early prefrontal functional blockade in rats results in schizophrenia-related anomalies in behavior and dopamine. Neuropsychopharmacology 2012; 37:2233-43. [PMID: 22588351 PMCID: PMC3422488 DOI: 10.1038/npp.2012.74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growing evidence suggests schizophrenia may arise from abnormalities in early brain development. The prefrontal cortex (PFC) stands out as one of the main regions affected in schizophrenia. Latent inhibition, an interesting cognitive marker for schizophrenia, has been found in some studies to be reduced in acute patients. It is generally widely accepted that there is a dopaminergic dysfunctioning in schizophrenia. Moreover, several authors have reported that the psychostimulant, D-amphetamine (D-AMP), exacerbates symptoms in patients with schizophrenia. We explored in rats the effects in adulthood of neonatal transient inactivation of the PFC on behavioral and neurochemical anomalies associated with schizophrenia. Following tetrodotoxin (TTX) inactivation of the left PFC at postnatal day 8, latent inhibition-related dopaminergic responses and dopaminergic reactivity to D-AMP were monitored using in vivo voltammetry in the left core part of the nucleus accumbens in adult freely moving rats. Dopaminergic responses and behavioral responses were followed in parallel. Prefrontal neonatal inactivation resulted in disrupted behavioral responses of latent inhibition and latent inhibition-related dopaminergic responses in the core subregion. After D-AMP challenge, the highest dose (1.5 mg/kg i.p.) induced a greater dopamine increase in the core in rats microinjected with TTX, and a parallel increase in locomotor activity, suggesting that following prefrontal neonatal TTX inactivation animals display a greater behavioral and dopaminergic reactivity to D-AMP. Transitory inactivation of the PFC early in the postnatal developmental period leads to behavioral and neurochemical changes in adulthood that are meaningful for schizophrenia modeling. The data obtained may help our understanding of the pathophysiology of this disabling disorder.
Collapse
|
26
|
Granger K, Prados J, Young A. Disruption of overshadowing and latent inhibition in high schizotypy individuals. Behav Brain Res 2012; 233:201-8. [DOI: 10.1016/j.bbr.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/29/2022]
|
27
|
Abstract
The aim of this study was to investigate selected measures of creativity in schizophrenic patients and their relationship with neurocognitive executive functions Forty-three inpatients with paranoid schizophrenia who were in symptomatic remission (a total of 60) and 45 healthy control participants were included. Creativity was assessed using the Barron-Welsh Art Scale (BWAS) and the inventiveness part of the Berlin Intelligence Structure Test (BIS). Executive functions were measured by means of the Wisconsin Card Sorting Test (WCST). Schizophrenic patients gave responses on the BWAS, had lower total score on the BIS and in the figural test, and performed worse on all domains of the WCST compared with control subjects. Their lower scores on the BIS correlated with lower scores on the WCST. Our results indicate that remitted schizophrenic patients perform worse on selected measures of creativity than healthy subjects and that executive dysfunctions may partially explain these deficits.
Collapse
|
28
|
Buckingham R, Kiernan M, Ainsworth S. Fluid insight moderates the relationship between psychoticism and crystallized intelligence. PERSONALITY AND INDIVIDUAL DIFFERENCES 2012. [DOI: 10.1016/j.paid.2011.10.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Orosz AT, Feldon J, Simon AE, Hilti LM, Gruber K, Yee BK, Cattapan-Ludewig K. Learned irrelevance and associative learning is attenuated in individuals at risk for psychosis but not in asymptomatic first-degree relatives of schizophrenia patients: translational state markers of psychosis? Schizophr Bull 2011; 37:973-81. [PMID: 20080901 PMCID: PMC3160228 DOI: 10.1093/schbul/sbp165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Learned irrelevance (LIrr) refers to a form of selective learning that develops as a result of prior noncorrelated exposures of the predicted and predictor stimuli. In learning situations that depend on the associative link between the predicted and predictor stimuli, LIrr is expressed as a retardation of learning. It represents a form of modulation of learning by selective attention. Given the relevance of selective attention impairment to both positive and cognitive schizophrenia symptoms, the question remains whether LIrr impairment represents a state (relating to symptom manifestation) or trait (relating to schizophrenia endophenotypes) marker of human psychosis. We examined this by evaluating the expression of LIrr in an associative learning paradigm in (1) asymptomatic first-degree relatives of schizophrenia patients (SZ-relatives) and in (2) individuals exhibiting prodromal signs of psychosis ("ultrahigh risk" [UHR] patients) in each case relative to demographically matched healthy control subjects. There was no evidence for aberrant LIrr in SZ-relatives, but LIrr as well as associative learning were attenuated in UHR patients. It is concluded that LIrr deficiency in conjunction with a learning impairment might be a useful state marker predictive of psychotic state but a relatively weak link to a potential schizophrenia endophenotype.
Collapse
Affiliation(s)
- Ariane T. Orosz
- Laboratory of Behavioural Biology, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland,Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland,To whom correspondence should be addressed; tel: +41-31-932-83-52, fax: +41-31-930-99-61, e-mail:
| | - Joram Feldon
- Laboratory of Behavioural Biology, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
| | - Andor E. Simon
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland,Specialised Outpatient Service for Early Psychosis, Department of Psychiatric Neurophysiology, Bruderholz, Switzerland
| | - Leonie M. Hilti
- Institute of Psychology, University of Bern, Bern, Switzerland,Neuropsychology Unit, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Kerstin Gruber
- Specialised Outpatient Service for Early Psychosis, Department of Psychiatric Neurophysiology, Bruderholz, Switzerland
| | - Benjamin K. Yee
- Laboratory of Behavioural Biology, Swiss Federal Institute of Technology Zürich, Zurich, Switzerland
| | - Katja Cattapan-Ludewig
- Department of Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland,Sanatorium Kilchberg, Switzerland
| |
Collapse
|
30
|
Lazar NL, Neufeld RWJ, Cain DP. Contribution of nonprimate animal models in understanding the etiology of schizophrenia. J Psychiatry Neurosci 2011; 36:E5-29. [PMID: 21247514 PMCID: PMC3120891 DOI: 10.1503/jpn.100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelop mental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neuro transmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans.
Collapse
Affiliation(s)
- Noah L Lazar
- Department of Psychology, University of Western Ontario, London, Ont.
| | | | | |
Collapse
|
31
|
Latent inhibition-related dopaminergic responses in the nucleus accumbens are disrupted following neonatal transient inactivation of the ventral subiculum. Neuropsychopharmacology 2011; 36:1421-32. [PMID: 21430650 PMCID: PMC3096811 DOI: 10.1038/npp.2011.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Schizophrenia would result from a defective connectivity between several integrative regions as a consequence of neurodevelopmental failure. Various anomalies reminiscent of early brain development disturbances have been observed in patients' left ventral subiculum of the hippocampus (SUB). Numerous data support the hypothesis of a functional dopaminergic dysregulation in schizophrenia. The common target structure for the action of antipsychotics appears to be a subregion of the ventral striatum, the dorsomedial shell part of the nucleus accumbens. Latent inhibition, a cognitive marker of interest for schizophrenia, has been found to be disrupted in acute patients. The present study set out to investigate the consequences of a neonatal functional inactivation of the left SUB by tetrodotoxin (TTX) in 8-day-old rats for the latent inhibition-related dopaminergic responses, as monitored by in vivo voltammetry in freely moving adult animals (11 weeks) in the left core and dorsomedial shell parts of the nucleus accumbens in an olfactory aversion procedure. Results obtained during the retention session of a three-stage latent inhibition protocol showed that the postnatal unilateral functional blockade of the SUB was followed in pre-exposed TTX-conditioned adult rats by a disruption of the behavioral expression of latent inhibition and induced a total and a partial reversal of the latent inhibition-related dopaminergic responses in the dorsomedial shell and core parts of the nucleus accumbens, respectively. The present data suggest that neonatal inactivation of the SUB has more marked consequences for the dopaminergic responses recorded in the dorsomedial shell part, than in the core part of the nucleus accumbens. These findings may provide new insight into the pathophysiology of schizophrenia.
Collapse
|
32
|
Kaplan O, Lubow RE. Ignoring irrelevant stimuli in latent inhibition and Stroop paradigms: the effects of schizotypy and gender. Psychiatry Res 2011; 186:40-5. [PMID: 20797796 DOI: 10.1016/j.psychres.2010.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 07/19/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Latent inhibition (LI), poor evidence of learning following preexposure to a task-irrelevant stimulus, reflects the ability to ignore inconsequential events. Stroop interference represents a failure to inhibit processing of a task-irrelevant word when it is incongruent with the required naming of the word's print color. The apparent commonality between the two effects is in contradiction to the literature, which indicates that LI is affected by schizotypy and schizophrenia, and perhaps gender, while Stroop interference generated by the trial-to-trial procedure is unaltered by those variables. In the present experiment, low schizotypal healthy males, but not females, exhibited LI. The same groups did not differ on Stroop interference. The results are discussed in terms of different processing requirements for task-irrelevant stimuli that are an integral part of the task-relevant target stimulus (as in Stroop) or separated from it in space (as in LI).
Collapse
Affiliation(s)
- Oren Kaplan
- School of Business, The College of Management, Rishon Lezion 75490, Israel.
| | | |
Collapse
|
33
|
Sex-dependent antipsychotic capacity of 17β-estradiol in the latent inhibition model: a typical antipsychotic drug in both sexes, atypical antipsychotic drug in males. Neuropsychopharmacology 2010; 35:2179-92. [PMID: 20613719 PMCID: PMC3055319 DOI: 10.1038/npp.2010.89] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The estrogen hypothesis of schizophrenia suggests that estrogen is a natural neuroprotector in women and that exogenous estrogen may have antipsychotic potential, but results of clinical studies have been inconsistent. We have recently shown using the latent inhibition (LI) model of schizophrenia that 17β-estradiol exerts antipsychotic activity in ovariectomized (OVX) rats. The present study sought to extend the characterization of the antipsychotic action of 17β-estradiol (10, 50 and 150 μg/kg) by testing its capacity to reverse amphetamine- and MK-801-induced LI aberrations in gonadally intact female and male rats. No-drug controls of both sexes showed LI, ie, reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, if conditioned with two but not five tone-shock pairings. In both sexes, amphetamine (1 mg/kg) and MK-801 (50 μg/kg) produced disruption (under weak conditioning) and persistence (under strong conditioning) of LI, modeling positive and negative/cognitive symptoms, respectively. 17β-estradiol at 50 and 150 μg/kg potentiated LI under strong conditioning and reversed amphetamine-induced LI disruption in both males and females, mimicking the action of typical and atypical antipsychotic drugs (APDs) in the LI model. 17β-estradiol also reversed MK-induced persistent LI, an effect mimicking atypical APDs and NMDA receptor enhancers, but this effect was observed in males and OVX females but not in intact females. These findings indicate that in the LI model, 17β-estradiol exerts a clear-cut antipsychotic activity in both sexes and, remarkably, is more efficacious in males and OVX females where it also exerts activity considered predictive of anti-negative/cognitive symptoms.
Collapse
|
34
|
Modeling psychotic and cognitive symptoms of affective disorders: Disrupted latent inhibition and reversal learning deficits in highly stress reactive mice. Neurobiol Learn Mem 2010; 94:145-52. [DOI: 10.1016/j.nlm.2010.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/20/2010] [Accepted: 04/30/2010] [Indexed: 11/22/2022]
|
35
|
Lee HJ, Telch MJ. Differences in latent inhibition as a function of the autogenous–reactive OCD subtype. Behav Res Ther 2010; 48:571-9. [DOI: 10.1016/j.brat.2010.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
36
|
Contrasting effects of increased and decreased dopamine transmission on latent inhibition in ovariectomized rats and their modulation by 17beta-estradiol: an animal model of menopausal psychosis? Neuropsychopharmacology 2010; 35:1570-82. [PMID: 20237462 PMCID: PMC3055453 DOI: 10.1038/npp.2010.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Women with schizophrenia have later onset and better response to antipsychotic drugs (APDs) than men during reproductive years, but the menopausal period is associated with increased symptom severity and reduced treatment response. Estrogen replacement therapy has been suggested as beneficial but clinical data are inconsistent. Latent inhibition (LI), the capacity to ignore irrelevant stimuli, is a measure of selective attention that is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis-inducing drug amphetamine and can be reversed by typical and atypical APDs. Here we used amphetamine (1 mg/kg)-induced disrupted LI in ovariectomized rats to model low levels of estrogen along with hyperfunction of the dopaminergic system that may be occurring in menopausal psychosis, and tested the efficacy of APDs and estrogen in reversing disrupted LI. 17beta-Estradiol (50, 150 microg/kg), clozapine (atypical APD; 5, 10 mg/kg), and haloperidol (typical APD; 0.1, 0.3 mg/kg) effectively reversed amphetamine-induced LI disruption in sham rats, but were much less effective in ovariectomized rats; 17beta-estradiol and clozapine were effective only at high doses (150 microg/kg and 10 mg/kg, respectively), whereas haloperidol failed at both doses. Haloperidol and clozapine regained efficacy if coadministered with 17beta-estradiol (50 microg/kg, an ineffective dose). Reduced sensitivity to dopamine (DA) blockade coupled with spared/potentiated sensitivity to DA stimulation after ovariectomy may provide a novel model recapitulating the combination of increased vulnerability to psychosis with reduced response to APD treatment in female patients during menopause. In addition, our data show that 17beta-estradiol exerts antipsychotic activity.
Collapse
|
37
|
Lester DB, Rogers TD, Blaha CD. Acetylcholine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 2010; 16:137-62. [PMID: 20370804 PMCID: PMC6493877 DOI: 10.1111/j.1755-5949.2010.00142.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic neurons in the substantia nigra pars compacta and ventral tegmental area of the midbrain form the nigrostriatal and mesocorticolimbic dopaminergic pathways that, respectively, project to dorsal and ventral striatum (including prefrontal cortex). These midbrain dopaminergic nuclei and their respective forebrain and cortical target areas are well established as serving a critical role in mediating voluntary motor control, as evidenced in Parkinson's disease, and incentive-motivated behaviors and cognitive functions, as exhibited in drug addiction and schizophrenia, respectively. Although it cannot be disputed that excitatory and inhibitory amino acid-based neurotransmitters, such as glutamate and GABA, play a vital role in modulating activity of midbrain dopaminergic neurons, recent evidence suggests that acetylcholine may be as important in regulating dopaminergic transmission. Midbrain dopaminergic cell tonic and phasic activity is closely dependent upon projections from hindbrain pedunculopontine and the laterodorsal tegmental nuclei, which comprises the only known cholinergic inputs to these neurons. In close coordination with glutamatergic and GABAergic activity, these excitatory cholinergic projections activate nicotinic and muscarinic acetylcholine receptors within the substantia nigra and ventral tegmental area to modulate dopamine transmission in the dorsal/ventral striatum and prefrontal cortex. Additionally, acetylcholine-containing interneurons in the striatum also constitute an important neural substrate to provide further cholinergic modulation of forebrain striatal dopaminergic transmission. In this review, we examine neurological and psychopathological conditions associated with dysfunctions in the interaction of acetylcholine and dopamine and conventional and new pharmacological approaches to treat these disorders.
Collapse
Affiliation(s)
- Deranda B Lester
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| | - Tiffany D. Rogers
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| | - Charles D. Blaha
- Department of Psychology, The University of Memphis, Memphis, TN, USA
| |
Collapse
|
38
|
Mazzoncini R, Zoli M, Tosato S, Lasalvia A, Ruggeri M. Can the role of genetic factors in schizophrenia be enlightened by studies of candidate gene mutant mice behaviour? World J Biol Psychiatry 2010; 10:778-97. [PMID: 19396727 DOI: 10.1080/15622970902875152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is one of the most severe psychiatric disorders. Despite the knowledge accumulated over years, aetiology and pathophysiology remain uncertain. Research on families and twins suggests that genetic factors are largely responsible for the disease and implies specific genes as risk factors. Genetic epidemiology indicates a complex transmission mode, compatible with a multi-locus model, with single genes accounting for specific traits rather than for the entire phenotype. To better understand every single gene contribution to schizophrenia, the use of intermediate endophenotypes has been proposed. A straight communication between preclinical and clinical researchers could facilitate research on the association between genes and endophenotypes. Many behavioural tasks are available for humans and animals to measure endophenotypes. Here, firstly, we reviewed the most promising mouse behavioural tests modelling human behavioural tasks altered in schizophrenia. Secondly, we systematically reviewed animal models availability for a selection of candidate genes, derived from linkage and association studies. Thirdly, we systematically reviewed the studies which tested mutant mice in the above behavioural tasks. Results indicate a large mutant mice availability for schizophrenia candidate genes but they have been insufficiently tested in behavioural tasks. On the other hand, multivariate and translational approach should be implemented in several behavioural domains.
Collapse
Affiliation(s)
- Rodolfo Mazzoncini
- Department of Medicine and Public Health, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
39
|
Schmidt K, Roiser JP. Assessing the construct validity of aberrant salience. Front Behav Neurosci 2009; 3:58. [PMID: 20057930 PMCID: PMC2802547 DOI: 10.3389/neuro.08.058.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/03/2009] [Indexed: 11/18/2022] Open
Abstract
We sought to validate the psychometric properties of a recently developed paradigm that aims to measure salience attribution processes proposed to contribute to positive psychotic symptoms, the Salience Attribution Test (SAT). The “aberrant salience” measure from the SAT showed good face validity in previous results, with elevated scores both in high-schizotypy individuals, and in patients with schizophrenia suffering from delusions. Exploring the construct validity of salience attribution variables derived from the SAT is important, since other factors, including latent inhibition/learned irrelevance (LIrr), attention, probabilistic reward learning, sensitivity to probability, general cognitive ability and working memory could influence these measures. Fifty healthy participants completed schizotypy scales, the SAT, a LIrr task, and a number of other cognitive tasks tapping into potentially confounding processes. Behavioural measures of interest from each task were entered into a principal components analysis, which yielded a five-factor structure accounting for ∼75% of the variance in behaviour. Implicit aberrant salience was found to load onto its own factor, which was associated with elevated “Introvertive Anhedonia” schizotypy, replicating our previous finding. LIrr loaded onto a separate factor, which also included implicit adaptive salience, but was not associated with schizotypy. Explicit adaptive and aberrant salience, along with a measure of probabilistic learning, loaded onto a further factor, though this also did not correlate with schizotypy. These results suggest that the measures of LIrr and implicit adaptive salience might be based on similar underlying processes, which are dissociable both from implicit aberrant salience and explicit measures of salience.
Collapse
Affiliation(s)
- Kristin Schmidt
- Institute of Cognitive Neuroscience, University College London London, UK
| | | |
Collapse
|
40
|
Diaconescu AO, Menon M, Jensen J, Kapur S, McIntosh AR. Dopamine-induced changes in neural network patterns supporting aversive conditioning. Brain Res 2009; 1313:143-61. [PMID: 19961836 DOI: 10.1016/j.brainres.2009.11.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 11/30/2022]
Abstract
The aim of the present paper is to assess the effects of altered dopamine (DA) transmission on the functional connectivity among brain regions mediating aversive conditioning in humans. To this aim, we analyzed a previous published data set from a double-blind design combined with functional magnetic resonance imaging (fMRI) recordings in which healthy volunteers were randomly assigned to one of three drug groups: amphetamine (an indirect DA agonist), haloperidol (DA D2 receptor antagonist), and placebo. Participants were exposed to an aversive classical conditioning paradigm using cutaneous electrical stimulation as the unconditioned stimulus (US), and visual cues as the conditioned stimuli (CS) where one colour (CS+) was followed by the US in 33% of the trials and another colour (CS-) had no consequences. All participants reported awareness of stimulus contingencies. Group analysis of fMRI data revealed that the left ventral striatum (VS) and amygdala activated in response to the CS+ in all the three groups. Because of their activation patterns and documented involvement in aversive conditioning, both regions were used as seeds in the functional connectivity analysis. To constrain the functional networks obtained to relate to the conditioned response, we also correlated seed activity with the Galvanic Skin Response (GSR). In the placebo group, the right ventral tegmental area/substantia nigra (VTA/SN), bilateral caudate, right parahippocampal gyrus, left inferior parietal lobule (IPL), bilateral postcentral gyrus, bilateral middle frontal (BA 46), orbitofrontal, and ventromedial prefrontal cortices (PFC, BA 10/11) correlated with the VS and amygdala seeds in response to the CS+ compared to the CS-. Enhancing dopamine transmission via amphetamine was associated with reduced task differences and significant functional connectivity for both CS+ and CS- conditions between the left VS seed and regions modulated by DA, such as the left VTA/SN, right caudate, left amygdala, left middle frontal gyrus (BA 46), and bilateral ventromedial PFC (BA 10). Blocking dopamine transmission via haloperidol was associated with significant functional connectivity across an alternate network of regions including the left amygdala seed and the right insula, the left ACC (BA 24/32), bilateral IPL (BA 40), precuneus (BA 7), post-central gyrus, middle frontal gyrus (BA 46), and supplementary motor area (SMA, BA 6) to the CS+ versus the CS-. These data provide insight into the distinct effects of DA agents on the functional connectivity between striatal, limbic, and prefrontal areas.
Collapse
|
41
|
Nikolaus S, Antke C, Müller HW. In vivo imaging of synaptic function in the central nervous system: II. Mental and affective disorders. Behav Brain Res 2009; 204:32-66. [DOI: 10.1016/j.bbr.2009.06.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/27/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
42
|
Arad M, Weiner I. Disruption of latent inhibition induced by ovariectomy can be reversed by estradiol and clozapine as well as by co-administration of haloperidol with estradiol but not by haloperidol alone. Psychopharmacology (Berl) 2009; 206:731-40. [PMID: 19169876 DOI: 10.1007/s00213-009-1464-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/05/2009] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Epidemiological and clinical life cycle studies have indicated that the more favorable illness course and the better response to antipsychotic drugs (APDs) in women with schizophrenia correlate with high levels of estrogen, whereas increased vulnerability to exacerbation and relapse and reduced sensitivity to treatment are associated with low estrogen levels. Accordingly, the estrogen hypothesis of schizophrenia proposes that estrogen has a neuroprotective effect in women vulnerable to schizophrenia. MATERIALS AND METHODS Latent inhibition (LI), the capacity to ignore stimuli that received nonreinforced preexposure prior to conditioning, is disrupted in acute schizophrenia patients and in rats and humans treated with the psychosis inducing drug amphetamine. Disruption of LI is reversible by typical and atypical APDs. The present study tested whether low levels of estrogen induced by ovariectomy (OVX) would lead to disruption of LI in female rats and whether such disruption would be normalized by estrogen replacement treatment and/or APDs. RESULTS Results showed that OVX led to LI disruption, which was reversed by 17beta-estradiol (150 microg/kg) and the atypical APD clozapine (5 mg/kg), but not by the typical APD haloperidol (0.1, 0.2, 0.3 mg/kg). Haloperidol regained efficacy when administered with 17beta-estradiol (50 microg/kg). DISCUSSION These results provide the first demonstration in rats that low levels of hormones can induce a pro-psychotic state that is resistant to at least typical antipsychotic treatment. This constellation may mimic states seen in schizophrenic women during periods associated with low levels of hormones such as the menopause.
Collapse
Affiliation(s)
- Michal Arad
- Department of Psychology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
43
|
Meyer F, Peterschmitt Y, Louilot A. Postnatal functional inactivation of the entorhinal cortex or ventral subiculum has different consequences for latent inhibition-related striatal dopaminergic responses in adult rats. Eur J Neurosci 2009; 29:2035-48. [DOI: 10.1111/j.1460-9568.2009.06755.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Arad M, Weiner I. Fluctuation of latent inhibition along the estrous cycle in the rat: modeling the cyclicity of symptoms in schizophrenic women? Psychoneuroendocrinology 2008; 33:1401-10. [PMID: 18819755 DOI: 10.1016/j.psyneuen.2008.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/03/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Latent inhibition (LI) is a cross-species selective attention phenomenon manifested as poorer conditioning of stimuli that had been experienced as irrelevant prior to conditioning. Disruption of LI by pro-psychotic agents such as amphetamine and its restoration by antipsychotic drugs (APDs) is a well-established model of psychotic symptoms of schizophrenia. There is evidence that in schizophrenic women symptom severity and treatment response fluctuate along the menstrual cycle. Here we tested whether hormonal fluctuation along the estrous cycle in female rats (as determined indirectly via the cellular composition of the vaginal smears) would modulate the expression of LI and its response to APDs. The results showed that LI was seen if rats were in estrus during pre-exposure stage and in metestrus during the conditioning stage of the LI procedure (estrus-metestrus) but not along the remaining sequential phases of the cycle (metestrus-diestrus, diestrus-proestrus and proestrus-estrus). Additionally, the efficacy of typical and atypical APDs, haloperidol and clozapine, respectively, in restoring LI depended on estrous condition. Only LI disruption in proestrus-estrus exhibited sensitivity to both APDs, whereas LI disruption in the other two phases was alleviated by clozapine but not haloperidol. Our results show for the first time that both the expression of LI and its sensitivity to APDs are modulated along the estrous cycle, consistent with fluctuations in psychotic symptoms and response to APDs seen along women's menstrual cycle. Importantly, the results indicate that although both low and high levels of hormones may give rise to psychotic-like behavior as manifested in LI loss, the pro-psychotic state associated with low hormonal level is more severe due to reduced sensitivity to typical APDs. The latter constellation may mimic states of increased vulnerability to psychosis coupled with reduced treatment response documented in schizophrenic women during periods associated with low levels of hormones.
Collapse
Affiliation(s)
- Michal Arad
- Department of Psychology, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
45
|
Amphetamine sensitization in rats as an animal model of schizophrenia. Behav Brain Res 2008; 191:190-201. [DOI: 10.1016/j.bbr.2008.03.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 11/18/2022]
|
46
|
Abstract
Animal models of schizophrenia may increase the understanding of the neurological abnormalities associated with the disorder and aid in the development of rational pharmacological treatments. Rather than attempting to model the entire syndrome of schizophrenia, a more biologically oriented approach to animal models has been to focus on specific symptoms of schizophrenia that are more objectively measured in the clinical population and more directly translatable to animals (e.g., observables or endophenotypes). This overview focuses on behavioral measures that have been investigated in rodent models of schizophrenia with varying degrees of predictive, etiological, and construct validity. Because of the severity of cognitive deficits in schizophrenia and their resistance to current treatments, there is a need to develop animal models specific to the cognitive symptoms of schizophrenia. In light of this need, this overview discusses rodent models of cognition with relevance to the core cognitive deficits observed in schizophrenia.
Collapse
Affiliation(s)
- Susan B Powell
- University of California, San Diego, La Jolla, California, USA
| | | |
Collapse
|
47
|
Orosz AT, Feldon J, Gal G, Simon AE, Cattapan-Ludewig K. Deficient associative learning in drug-naive first-episode schizophrenia: results obtained using a new visual within-subjects learned irrelevance paradigm. Behav Brain Res 2008; 193:101-7. [PMID: 18555542 DOI: 10.1016/j.bbr.2008.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
One of the key features of schizophrenia is the inability to filter out irrelevant stimuli which consequently leads to stimulus overload. There are different methods which aim at investigating these deficient filter mechanisms; one of these is the learned irrelevance (LIrr) paradigm. LIrr refers to the retardation of associative learning that occurs if the conditioned stimulus (CS) and the unconditioned stimulus (US) are preexposed in an explicitly unpaired manner prior to the establishment of the association between the stimuli. In the present study we used a recently developed computerized within-subject visual LIrr test. We measured 11 drug-naive first-episode schizophrenia patients and compared their performance to that of 17 healthy control subjects. LIrr was observed to be intact in normal individuals but disrupted in drug-naive first-episode schizophrenia patients. After one month elapsed, 5 of the 11 patients and 16 of the 17 control subjects were retested in a follow-up study. By this time, patients had been medicated with antipsychotic drugs for at least 3 weeks. While healthy controls exhibited a robust LIrr effect, patients still failed to show LIrr. Correlations were found between the performance of unmedicated patients and the depression component of the PANSS psychopathology scale.
Collapse
Affiliation(s)
- Ariane T Orosz
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
48
|
Peterschmitt Y, Meyer F, Louilot A. Differential influence of the ventral subiculum on dopaminergic responses observed in core and dorsomedial shell subregions of the nucleus accumbens in latent inhibition. Neuroscience 2008; 154:898-910. [PMID: 18486351 DOI: 10.1016/j.neuroscience.2008.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 02/29/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
It has previously been reported that dopamine (DA) responses observed in the core and dorsomedial shell parts of the nucleus accumbens (Nacc) in latent inhibition (LI) are dependent on the left entorhinal cortex (ENT). The present study was designed to investigate the influence of the left ventral subiculum (SUB) closely linked to the ENT on the DA responses obtained in the Nacc during LI, using an aversive conditioned olfactory paradigm and in vivo voltammetry in freely moving rats. In the first (pre-exposure) session, functional blockade of the left SUB was achieved by local microinjection of tetrodotoxin (TTX). In the second session, rats were aversively conditioned to banana odor, the conditional stimulus (CS). In the retention (test) session the results were as follows: (1) pre-exposed (PE) conditioned animals microinjected with TTX, displayed aversion toward the CS; (2) in the core part of the Nacc, for PE-TTX-conditioned rats as for non-pre-exposed (NPE) conditioned animals, DA levels remained close to the baseline whereas DA variations in both groups were significantly different from the DA increases observed in PE-conditioned rats microinjected with the solvent (phosphate-buffered saline (PBS)); (3) in the shell part of the Nacc, for PE-TTX-conditioned rats, DA variations were close to or above the baseline. They were situated between the rapid DA increases observed in NPE-conditioned animals and the transient DA decreases obtained in PE-PBS-conditioned animals. These findings suggest that, in parallel to the left ENT, the left SUB controls DA LI-related responses in the Nacc. The present data may also offer new insight into the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Y Peterschmitt
- INSERM U 666 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg Cedex, France
| | | | | |
Collapse
|
49
|
Fone KCF, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 2008; 32:1087-102. [PMID: 18423591 DOI: 10.1016/j.neubiorev.2008.03.003] [Citation(s) in RCA: 652] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Exposing mammals to early-life adverse events, including maternal separation or social isolation, profoundly affects brain development and adult behaviour and may contribute to the occurrence of psychiatric disorders, such as depression and schizophrenia in genetically predisposed humans. The molecular mechanisms underlying these environmentally induced developmental adaptations are unclear and best evaluated in animal paradigms with translational salience. Rearing rat pups from weaning in isolation, to prevent social contact with conspecifics, produces reproducible, long-term changes including; neophobia, impaired sensorimotor gating, aggression, cognitive rigidity, reduced prefrontal cortical volume and decreased cortical and hippocampal synaptic plasticity. These alterations are associated with hyperfunction of mesolimbic dopaminergic systems, enhanced presynaptic dopamine (DA) and serotonergic (5-HT) function in the nucleus accumbens (NAcc), hypofunction of mesocortical DA and attenuated 5-HT function in the prefrontal cortex and hippocampus. These behavioural, morphological and neurochemical abnormalities, as reviewed herein, strongly resemble core features of schizophrenia. Therefore unravelling the mechanisms that trigger these sequelae will improve our knowledge of the aetiology of neurodevelopmental psychiatric disorders, enable identification of longitudinal biomarkers of dysfunction and permit predictive screening for novel compounds with potential antipsychotic efficacy.
Collapse
Affiliation(s)
- Kevin C F Fone
- Institute of Neuroscience, School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
50
|
Peterschmitt Y, Meyer F, Louilot A. Neonatal functional blockade of the entorhinal cortex results in disruption of accumbal dopaminergic responses observed in latent inhibition paradigm in adult rats. Eur J Neurosci 2007; 25:2504-13. [PMID: 17445246 DOI: 10.1111/j.1460-9568.2007.05503.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Latent inhibition (LI) has been found to be disrupted in non-treated patients with schizophrenia. Dopaminergic (DAergic) dysfunctioning is generally acknowledged to occur in schizophrenia. Various abnormalities in the entorhinal cortex (ENT) have been described in patients with schizophrenia. Numerous data also suggest that schizophrenia has a neurodevelopmental origin. The present study was designed to test the hypothesis that reversible inactivation of the ENT during neonatal development results in disrupted DA responses characteristic of LI in adult rats. Tetrodotoxin (TTX) was microinjected locally in the left ENT at postnatal day 8 (PND8). DA variations were recorded in the dorsomedial shell and core parts of the nucleus accumbens (Nacc) using in vivo voltammetry in freely-moving grown-up rats in a LI paradigm. In the first session the animals were pre-exposed (PE) to the conditional stimulus (banana odour) alone. In the second they were aversively conditioned to banana odour. In the third (test) session the following results were obtained in PE animals subjected to temporary inactivation of the ENT at PND8: (1) aversive behaviour was observed in TTX-PE conditioned animals; (2) DA variations in the dorsomedial shell and core parts of the Nacc were similar in TTX-PE and non-pre-exposed conditioned rats. These findings strongly suggest that neonatal disconnection of the ENT disrupts LI in adult animals. They may further our understanding of the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Y Peterschmitt
- INSERM U 666 and Institute of Physiology, Louis Pasteur University, Faculty of Medicine, 11 rue Humann, 67085 Strasbourg CEDEX, France
| | | | | |
Collapse
|