1
|
Briot J, Pons C, Foucher A, Goudounèche D, Gaudenzio N, Donovan M, Bernard D, Méchin MC, Simon M. Prolyl Endopeptidase Is Involved in Filaggrinolysis and Cornification. J Invest Dermatol 2025; 145:98-108.e15. [PMID: 38879153 DOI: 10.1016/j.jid.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 08/12/2024]
Abstract
FLG is a well-known biomarker of atopic dermatitis and skin dryness. Its full proteolysis (or filaggrinolysis) produces the major constituents of the natural moisturizing factor. Some proteases/peptidases remain to be identified in this multistep process. Mining 16 omics analyses, we identified prolyl endopeptidase (PREP) as a candidate peptidase. Indirect immunofluorescence and confocal analysis demonstrated its localization in the granular and deep cornified layers, where it colocalized with FLG. Tandem mass spectroscopy and fluorescent quenching activity assays showed that PREP cleaved several synthetic peptides derived from the FLG sequence, at the carboxyl side of an internal proline. Deimination of these peptides increased PREP enzymatic efficiency. Specific inhibition of PREP in reconstructed human epidermis using benzyloxycarbonyl-pro-prolinal induced the accumulation of FLG monomers. Downregulation of PREP expression in reconstructed human epidermis using RNA interference confirmed the impact of PREP on FLG metabolism and highlighted a more general role of PREP in keratinocyte differentiation. Indeed, quantitative global proteomic, western blotting, and RT-qPCR analyses showed a strong reduction in the expression of bleomycin hydrolase, known to be involved in filaggrinolysis, and of several other actors of cornification such as loricrin. Consequently, at the functional level, the transepidermal electric resistance was drastically reduced.
Collapse
Affiliation(s)
- Julie Briot
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Carole Pons
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Aude Foucher
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Dominique Goudounèche
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Toulouse III University, Toulouse, France
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France; Genoskin SAS, Toulouse, France
| | - Mark Donovan
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | | | - Marie-Claire Méchin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France
| | - Michel Simon
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), University of Toulouse, INSERM UMR1291 - CNRS UMR5051, Toulouse, France.
| |
Collapse
|
2
|
Prolyl oligopeptidase and its role in the organism: attention to the most promising and clinically relevant inhibitors. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prolyl oligopeptidase (POP), also called prolyl endopeptidase, is a cytosolic enzyme investigated by several research groups. It has been proposed to play an important role in physiological processes such as modulation of the levels of several neuronal peptides and hormones containing a proline residue. Due to its proteolytic activity and physiological role in cell signaling pathways, inhibition of POP offers an emerging approach for the treatment of Alzheimer's and Parkinson's diseases as well as other diseases related to cognitive impairment. Furthermore, it may also represent an interesting target for treatment of neuropsychiatric disorders, and as an antiangiogenesis or antineoplastic agent. In this review paper, we summarized naturally occurring POP inhibitors together with peptide-like inhibitors and their biological effects. Some of them have shown promising results and interesting pharmacological profiles. However, to date, there is no POP inhibitor available on the market although several clinical trials have been undertaken.
Collapse
|
3
|
Kocadag Kocazorbaz E, Zihnioglu F. Purification, characterization and the use of recombinant prolyl oligopeptidase from Myxococcus xanthus for gluten hydrolysis. Protein Expr Purif 2016; 129:101-107. [PMID: 27693621 DOI: 10.1016/j.pep.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 11/16/2022]
Abstract
Prolyl oligopeptidase (POP, EC 3.4.21.26) is a cytosolic serine protease that hydrolyses proline containing small peptides. The members of prolyl oligopeptidase family play important roles in many physiological processes such as neurodegenerative diseases, maturation and degradation of peptide hormones. Thus the enzyme has been purified and characterized from various sources to elucidate the potential use as therapeutics. In this study recombinant Myxococcus xanthus prolyl oligopeptidase expressed in E. coli was purified 60.3 fold, using metal-chelate affinity and gel permeation chromatography. The recombinant enzyme had a monomeric molecular weight of 70 kDa. Isoelectric point of the enzyme was found to be approximately 6.3 by two-dimensional polyacrylamide gel electrophoresis. The optimum pH and temperature was estimated as 7.5 and 37 °C, respectively. The purified enzyme was stable in a pH range of 6.0-8.5 and thermally stable up to 37 °C. The Km and Vmax values were 0.2 mM and 3.42 μmol/min/mg. The proteolytic activity was inhibited by active-site inhibitors of serine protease, Z-Pro-Prolinal, PMSF, and metal ions, Cd2+, and Hg2+. Furthermore, the hydrolysis efficiency of the recombinant prolyl oligopeptidase was investigated with wheat gluten.
Collapse
Affiliation(s)
| | - Figen Zihnioglu
- Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova, İzmir, Turkey
| |
Collapse
|
4
|
Waumans Y, Baerts L, Kehoe K, Lambeir AM, De Meester I. The Dipeptidyl Peptidase Family, Prolyl Oligopeptidase, and Prolyl Carboxypeptidase in the Immune System and Inflammatory Disease, Including Atherosclerosis. Front Immunol 2015; 6:387. [PMID: 26300881 PMCID: PMC4528296 DOI: 10.3389/fimmu.2015.00387] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/13/2015] [Indexed: 12/19/2022] Open
Abstract
Research from over the past 20 years has implicated dipeptidyl peptidase (DPP) IV and its family members in many processes and different pathologies of the immune system. Most research has been focused on either DPPIV or just a few of its family members. It is, however, essential to consider the entire DPP family when discussing any one of its members. There is a substantial overlap between family members in their substrate specificity, inhibitors, and functions. In this review, we provide a comprehensive discussion on the role of prolyl-specific peptidases DPPIV, FAP, DPP8, DPP9, dipeptidyl peptidase II, prolyl carboxypeptidase, and prolyl oligopeptidase in the immune system and its diseases. We highlight possible therapeutic targets for the prevention and treatment of atherosclerosis, a condition that lies at the frontier between inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Yannick Waumans
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Lesley Baerts
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Kaat Kehoe
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
5
|
García-Horsman JA, Männistö PT, Venäläinen JI. On the role of prolyl oligopeptidase in health and disease. Neuropeptides 2007; 41:1-24. [PMID: 17196652 DOI: 10.1016/j.npep.2006.10.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 10/10/2006] [Accepted: 10/17/2006] [Indexed: 11/18/2022]
Abstract
Prolyl oligopeptidase (POP) is a serine peptidase which digests small peptide-like hormones, neuroactive peptides, and various cellular factors. Therefore, this peptidase has been implicated in many physiological processes as well as in some psychiatric disorders, most probably through interference in inositol cycle. Intense research has been performed to elucidate, on the one hand, the basic structure, ligand binding, and kinetic properties of POP, and on the other, the pharmacology of its inhibitors. There is fairly strong evidence of in vivo importance of POP on substance P, arginine vasopressin, thyroliberin and gonadoliberin metabolism. However, information about the biological relevance of POP is not yet conclusive. Evidence regarding the physiological role of POP is lacking, which is surprising considering that peptidase inhibitors have been exploited for drug development, some of which are currently in clinical trials as memory enhancers for the aged and in a variety of neurological disorders. Here we review the recent progress on POP research and evaluate the relevance of the peptidase in the metabolism of various neuropeptides. The recognition of novel forms and relatives of POP may improve our understanding of how this family of proteins functions in normal and in neuropathological conditions.
Collapse
Affiliation(s)
- J A García-Horsman
- Centro de Investigación Príncipe Felipe, Neurobiology, Av. Autopista del Saler 16, 46013 Valencia, Spain.
| | | | | |
Collapse
|
6
|
Brandt I, Scharpé S, Lambeir AM. Suggested functions for prolyl oligopeptidase: a puzzling paradox. Clin Chim Acta 2006; 377:50-61. [PMID: 17034776 DOI: 10.1016/j.cca.2006.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 10/24/2022]
Abstract
Prolyl oligopeptidase (PO, E.C. 3.4.21.26) is a post-proline cleaving enzyme with endopeptidase activity towards peptides not longer than 30 amino acids. It has been purified and characterized from various mammalian and bacterial sources, but despite its thorough enzymological and structural characterization, the exact function of PO remains obscure. Many investigations have addressed the physiological role of this enzyme, mainly by the use of specific PO inhibitors, activity measurements in clinical samples and (neuro)peptide degradation studies. From the combined results emerges a puzzling paradox: how can an intracellular, cytoplasmatic oligopeptidase affect not only the amount of extracellular neuropeptides but also signal transduction and secretion? This report provides a review of the literature on the suggested functions for PO, highlighting possible pitfalls and contradictions.
Collapse
Affiliation(s)
- Inger Brandt
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences University of Antwerp, Universiteitsplein 1, Blg S6 B-2610 Antwerp (Wilrijk), Belgium
| | | | | |
Collapse
|
7
|
|
8
|
Quinto BM, Juliano MA, Hirata I, Carmona AK, Juliano L, Casarini DE. Characterization of a prolyl endopeptidase (kininase) from human urine using fluorogenic quenched substrates. Int J Biochem Cell Biol 2000; 32:1161-72. [PMID: 11137456 DOI: 10.1016/s1357-2725(00)00060-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A prolyl endopeptidase (PE) was purified 83 times from human urine by DEAE-cellulose and Sepharose Mercurial chromatographies. In this work we studied the specificity of PE using different fluorogenics substrates. Further characterization of the enzyme was carried out using BK and it's analogue, Abz-RPPGFSPFRQ-EDDnp and Abz-FPQ-EDDnp, for measure of enzymatic activity of prolyl endopeptidase (Abz=ortho-aminobenzoic acid; EDDnp=N-[2, 4-dinitrophenyl]ethylenediamine). The substrate Abz-FPQ-EDDnp was considered as specific for PE. The endopeptidase PE, with a molecular weight of 45 kDa, was inhibited 100% by EDTA and pOHMB and resistant to PMSF, thyorphan, E64 and phosphoramidon, when we used the mentioned substrates. These results suggest that PE is a metallo endopeptidase that contains a thiol group important for it's activity. It was also able to hydrolyze in Abz-RPPGFSPFRQ-EDDnp the F-R peptide bound, differing from those obtained upon BK molecule, where the enzyme prefer the peptide bound located after double proline. In the substrate Abz-FPQ-EDDnp PE hydrolyzes the P-Q peptide bound. Furthermore the urinary PE is particularly unable to hydrolyze peptides with single prolines such as substance P, neurotensin and LHRH. The determined K(m) for Abz-RPPGFSPFRQ-EDDnp and Abz-FPQ-EDDnp were 0.74 and 0.65 uM, respectively. The optimum pH for the PE activity, using the substrate Abz-RPPGFSPFRQ-EDDnp was approximately 9.0, but using the specific substrate Abz-FPQ-EDDnp was 6.5 and 8.0. Endopeptidases, which are situated at brush border surface from proximal tubules, have an important role in kidney handling of many peptides, which are filtered by the glomerulus. The prolyl endopeptidase located at distal tubule could have an important physiological function in control of kinin formed in this portion. It's known that all components from kallicrein-kinin system like low molecular weigh kininogen and kallikrein are presents in this portion.
Collapse
Affiliation(s)
- B M Quinto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Disciplina de Nefrologia, Rua Botucatu, 740, CEP 04023-900 São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Kimura A, Takahashi T. cDNA cloning of rat prolyl oligopeptidase and its expression in the ovary during the estrous cycle. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/(sici)1097-010x(20000501)286:6<656::aid-jez13>3.0.co;2-m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Cunningham DF, O'Connor B. A study of prolyl endopeptidase in bovine serum and its relevance to the tissue enzyme. Int J Biochem Cell Biol 1998; 30:99-114. [PMID: 9597757 DOI: 10.1016/s1357-2725(97)00076-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prolyl endopeptidase (PE) belongs to a group of enzymes that specifically recognise the imino acid proline. The characterisation of bovine serum PE was undertaken so that its relationship to its tissue counterparts could be considered. Using various chromatographic methods, PE was partially purified from bovine serum. This preparation was deemed to be enzymatically pure, based on its failure to hydrolyse a wide range of fluorimetric substrates. A native molecular mass of 69.7 kDa was estimated for the enzyme. PE was optimally active at pH 8.0-8.5, demonstrated a preference for phosphate buffer and remained stable over a pH range of 5.0-9.0. A narrowly focused optimal assay temperature of 37 degrees C was evident. Functional reagent studies indicated that this enzyme was a serine protease with a cysteine residue located near or at the active site. The enzyme was also sensitive to heavy metal inhibition. Substrate specificity investigations revealed that the bioactive peptides angiotensin II, bradykinin, luliberin and substance P were hydrolysed by the enzyme preparation, but lower specificities were evident towards these peptides in comparison with the enzyme's tissue counterparts. Specific inhibitor studies, using a range of compounds previously untested against a single PE source, indicated that alpha-ketobenzothiazole was the most effective PE inhibitor, with an IC50 value of 41 pM. In conclusion, the results presented in this paper indicate that bovine serum PE shares many of the characteristics associated with its tissue counterparts, with the exception of its specificity towards certain bioactive peptides.
Collapse
Affiliation(s)
- D F Cunningham
- School of Biological Sciences, Dublin City University, Ireland
| | | |
Collapse
|
11
|
Abstract
Proline is unique among the 20 amino acids due to its cyclic structure. This specific conformation imposes many restrictions on the structural aspects of peptides and proteins and confers particular biological properties upon a wide range of physiologically important biomolecules. In order to adequately deal with such peptides, nature has developed a group of enzymes that recognise this residue specifically. These peptidases cover practically all situations where a proline residue might occur in a potential substrate. In this paper we endeavour to discuss these enzymes, particularly those responsible for peptide or protein hydrolysis at proline sites. We have detailed their discovery, biochemical attributes and substrate specificities and have provided information as to the methodology used to detect and manipulate their activities. We have also described the roles, or potential roles that these enzymes may play physiologically and the consequences of their dysfunction in varied disease states.
Collapse
Affiliation(s)
- D F Cunningham
- School of Biological Sciences, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
12
|
Noula C, Kokotos G, Barth T, Tzougraki C. New fluorogenic substrates for the study of secondary specificity of prolyl oligopeptidase. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 49:46-51. [PMID: 9128099 DOI: 10.1111/j.1399-3011.1997.tb01119.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The secondary specificity of prolyl oligopeptidase (POP) has been studied by using a series of fluorogenic substrates containing the highly fluorescent 7-amino-4-methyl-2-quinolinone (AMeq) marker. The substrates were dipeptides of the general formula Z-X-Pro-NH-Meq, bearing amino acid residues with variable functional groups [Met, Lys(Boc), Lys, His, Ser, Leu, Glu(OMe), Glu, Cys(Bzl)] at the P2 position, and the tripeptide Z-Asn-Cys(Bzl)-Pro-NH-Meq. The kinetic parameters for their hydrolysis by porcine kidney POP were determined at lambda ex = 360 nm and lambda em = 430 nm. All the dipeptide substrates showed a high affinity to the enzyme and could be used for its fluorometric determination. The S2 binding subsite of POP can accommodate amino acid residues with a bulky side group, while it prefers a positively charged group (free Lys) instead of a negatively charged one (free Glu).
Collapse
Affiliation(s)
- C Noula
- Department of Chemistry, University of Athens, Greece
| | | | | | | |
Collapse
|