Lin WW, Chang SH, Wang SM. Roles of atypical protein kinase C in lysophosphatidic acid-induced type II adenylyl cyclase activation in RAW 264.7 macrophages.
Br J Pharmacol 1999;
128:1189-98. [PMID:
10578131 PMCID:
PMC1571751 DOI:
10.1038/sj.bjp.0702906]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 Lysophosphatidic acid (LPA) has been widely studied as a naturally occurring and multifunctional phospholipid messenger in diverse tissue and cell types and shown to inhibit adenylyl cyclase (AC) by a G protein-mediated mechanism. 2 In type II AC-expressing mouse RAW 264.7 macrophages, we showed that LPA at 3-50 microM increased cyclic AMP formation in a concentration-dependent manner, the effect being additive with that of forskolin or cholera toxin, and synergistic with that of prostaglandin E1 (PGE1) or isoproterenol. 3 The potentiation effect of LPA was unaffected by the removal of serum or pertussis toxin treatment. 4 Both colchicine and cytochalasin B potentiated the cyclic AMP response to PGE1, the effect being additive to that of LPA. 5 On studying the regulation of type II AC by protein kinase C (PKC), phorbol 12-myristate-13 acetate (PMA) potentiated the PGE1-elicited cyclic AMP response, this effect being non-additive to that of LPA, suggesting that PKC activation was the common mechanism involved in AC potentiation by LPA and PMA. 6 PKC inhibitor Ro 31-8220, but not Go 6976, significantly inhibited the LPA-induced cyclic AMP potentiation. 7 The potentiation effect of LPA was unaffected by long-term treatment with PMA, which resulted in the down-regulation of PKCalpha, betaI, betaII and PKCdelta, but not PKCepsilon, mu, lambda and zeta. 8 By in situ kinase assay, we found a marked increase in atypical PKC activity after LPA treatment. 9 Taken together, we conclude that LPA can elicit a unique signalling cascade in RAW 264.7 macrophages and increase type II AC activity via the activation of atypical PKC.
Collapse