1
|
Liu G, Lin W, Zhang K, Chen K, Niu G, Zhu Y, Liu Y, Li P, Li Z, An Y. Elucidating the prognostic and therapeutic significance of TOP2A in various malignancies. Cancer Genet 2024; 288-289:68-81. [PMID: 39454521 DOI: 10.1016/j.cancergen.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Topoisomerase IIα (TOP2A) is a crucial enzyme that plays a vital role in DNA replication and transcription mechanisms. Dysregulated expression of TOP2A has been associated with various malignancies, including hepatocellular carcinoma, prostate cancer, colon cancer, lung cancer and breast cancer. In this review, we summarized the prognostic relevances of TOP2A in various types of cancer. The increased expression of TOP2A has been linked to resistance to therapy and reduced survival rates. Therefore, evaluating TOP2A levels could assist in identifying patients who may derive advantages from molecular targeted therapy. The amplification of TOP2A has been linked to a positive response to chemotherapy regimens that contain anthracycline. Nevertheless, the overexpression of TOP2A also indicates a heightened likelihood of disease recurrence and unfavorable prognosis. The prognostic significance of TOP2A has been extensively studied in various types of cancer. The increased expression of TOP2A is associated with poor clinical outcomes, indicating its potential as a valuable biomarker for assessing risk and stratifying treatment in these malignancies. However, further investigation is needed to elucidate the underlying mechanisms by which TOP2A influences cancer progression and to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Wenlong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kangxu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Guanglin Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Kim JS, Arango AS, Shah S, Arnold WR, Tajkhorshid E, Das A. Anthracycline derivatives inhibit cardiac CYP2J2. J Inorg Biochem 2022; 229:111722. [PMID: 35078036 PMCID: PMC8860876 DOI: 10.1016/j.jinorgbio.2022.111722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Anthracycline chemotherapeutics are highly effective, but their clinical usefulness is hampered by adverse side effects such as cardiotoxicity. Cytochrome P450 2J2 (CYP2J2) is a cytochrome P450 epoxygenase in human cardiomyocytes that converts arachidonic acid (AA) to cardioprotective epoxyeicosatrienoic acid (EET) regioisomers. Herein, we performed biochemical studies to understand the interaction of anthracycline derivatives (daunorubicin, doxorubicin, epirubicin, idarubicin, 5-iminodaunorubicin, zorubicin, valrubicin, and aclarubicin) with CYP2J2. We utilized fluorescence polarization (FP) to assess whether anthracyclines bind to CYP2J2. We found that aclarubicin bound the strongest to CYP2J2 despite it having large bulky groups. We determined that ebastine competitively inhibits anthracycline binding, suggesting that ebastine and anthracyclines may share the same binding site. Molecular dynamics and ensemble docking revealed electrostatic interactions between the anthracyclines and CYP2J2, contributing to binding stability. In particular, the glycosamine groups in anthracyclines are stabilized by binding to glutamate and aspartate residues in CYP2J2 forming salt bridge interactions. Furthermore, we used iterative ensemble docking schemes to gauge anthracycline influence on EET regioisomer production and anthracycline inhibition on AA metabolism. This was followed by experimental validation of CYP2J2-mediated metabolism of anthracycline derivatives using liquid chromatography tandem mass spectrometry fragmentation analysis and inhibition of CYP2J2-mediated AA metabolism by these derivatives. Taken together, we use both experimental and theoretical methodologies to unveil the interactions of anthracycline derivatives with CYP2J2. These studies will help identify alternative mechanisms of how anthracycline cardiotoxicity may be mediated through the inhibition of cardiac P450, which will aid in the design of new anthracycline derivatives with lower toxicity.
Collapse
Affiliation(s)
- Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Swapnil Shah
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Aditi Das
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
3
|
Hadavand Mirzaei H, Jassbi AR, Pirhadi S, Firuzi O. Study of the mechanism of action, molecular docking, and dynamics of anticancer terpenoids from Salvia lachnocalyx. J Recept Signal Transduct Res 2020; 40:24-33. [PMID: 31913736 DOI: 10.1080/10799893.2019.1710847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Among specialized metabolites, terpenoids are well-known for their cytotoxic activity. Several of them have been isolated from sage plants and assayed for their potential therapeutic use against cancer. In this study, we report the effects of three potent anticancer terpenoids previously isolated from Salvia lachnocalyx, including geranyl farnesol (1), sahandinone (2), and 4-dehydrosalvilimbinol (3) on cancer cell cycle alterations and reactive oxygen species (ROS) production. Interactions of compounds 1-3 with topoisomerase I were also investigated by using molecular docking and dynamics simulation. Accumulation of cells in sub-G1 phase of the cell cycle indicated that all tested compounds induce apoptosis in MOLT-4 cancer cells. Measurement of ROS production demonstrated that this mechanism is not involved in the induction of apoptosis. We suggest topoisomerase I inhibition as the mechanism of cytotoxic activity of compounds 1-3 based on docking and molecular dynamics (MD) calculations. These natural terpenoids could be considered as good candidates for further development as anticancer agents.
Collapse
Affiliation(s)
- Hossein Hadavand Mirzaei
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
de Camargo MS, De Grandis RA, da Silva MM, da Silva PB, Santoni MM, Eismann CE, Menegário AA, Cominetti MR, Zanelli CF, Pavan FR, Batista AA. Determination of in vitro absorption in Caco-2 monolayers of anticancer Ru(II)-based complexes acting as dual human topoisomerase and PARP inhibitors. Biometals 2018; 32:89-100. [PMID: 30506342 DOI: 10.1007/s10534-018-0160-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/28/2018] [Indexed: 11/27/2022]
Abstract
Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anticancer agents. Previous studies showed that three ruthenium(II) compounds: [Ru(pySH)(bipy)(dppb)]PF6 (1), [Ru(HSpym)(bipy)(dppb)]PF6 (2) and Ru[(SpymMe2)(bipy)(dppb)]PF6 (3) presented anticancer properties higher than doxorubicin and cisplatin and acted as human topoisomerase IB (Topo I) inhibitors. Here, we focused our studies on in vitro intestinal permeability and anticancer mechanisms of these three complexes. Caco-2 permeation studies showed that 1 did not permeate the monolayer of intestinal cells, suggesting a lack of absorption on oral administration, while 2 and 3 permeated the cells after 60 and 120 min, respectively. Complexes 2 and 3 fully inhibited Topo II relaxation activity at 125 µM. In previously studies, 3 was the most potent inhibitor of Topo I, here, we concluded that it is a dual topoisomerase inhibitor. Moreover, it presented selectivity to cancer cells when evaluated by clonogenic assay. Thus, 3 was selected to gene expression assay front MDA-MB-231 cells from triple-negative breast cancer (TNBC), which represents the highly aggressive subgroup of breast cancers with poor prognosis. The analyses revealed changes of 27 out of 84 sought target genes. PARP1 and PARP2 were 5.29 and 1.83 times down-regulated after treatment with 3, respectively. PARPs have been attractive antitumor drug targets, considering PARP inhibition could suppress DNA damage repair and sensitize tumor cells to DNA damage agents. Recent advances in DNA repair studies have shown that an approach that causes cell lethality using synthetic PARP-inhibiting drugs has produced promising results in TNBC.
Collapse
Affiliation(s)
- Mariana S de Camargo
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Rone A De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Monize M da Silva
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Patricia B da Silva
- Department of Genetics and Morphology, University of Brasilia, Federal District, DF, 70910-970, Brazil
| | - Mariana M Santoni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Carlos E Eismann
- Center of Environmental Studies, São Paulo State University, Rio Claro, SP, 13506-900, Brazil
| | - Amauri A Menegário
- Center of Environmental Studies, São Paulo State University, Rio Claro, SP, 13506-900, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Cleslei F Zanelli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Fernando R Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, 14800-903, Brazil
| | - Alzir A Batista
- Center of Exact Sciences and Technology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
5
|
Saleh A, ElFayoumi HM, Youns M, Barakat W. Rutin and orlistat produce antitumor effects via antioxidant and apoptotic actions. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:165-175. [PMID: 30465055 DOI: 10.1007/s00210-018-1579-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
Cancer is a broad term used to describe a large number of diseases characterized by uncontrolled cell proliferation that leads to tumor production. Cancer is associated with mutations in genes controlling proliferation and apoptosis, oxidative stress, fatty acid synthase (FAS) expression, and other mechanisms. Currently, most antineoplastic drugs have severe adverse effects and new effective and safe drugs are needed. This study aims to investigate the possible anticancer activity of rutin and orlistat which are both safely used clinically in humans against two breast cancer models (in vivo EAC and in vitro MCF7) and the pancreatic cancer cell line (PANC-1). Our results have shown that both rutin and orlistat exerted an in vivo anticancer activity as evidenced by the decrease in tumor volume, CEA level, cholesterol content, FAS, and the exerted antioxidant action (reduced MDA level and increased GSH content) and through histopathological examination. In addition, both were cytotoxic to MCF-7 and Panc-1 cell lines by promoting apoptosis. In conclusion, the anticancer activity of rutin and orlistat makes them promising candidates for cancer treatment alone or in combination with other anticancer drugs specially that they are used clinically with an acceptable safety profile.
Collapse
Affiliation(s)
- Amira Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hassan M ElFayoumi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Sinai University, Ismailia, Egypt
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Helwan, Egypt.,Department of Biochemistry, Oman Pharmacy Institute, Ministry of Health, Muscat, Oman
| | - Waleed Barakat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tabuk University, Tabuk, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Propofol Protects Rat Cardiomyocytes from Anthracycline-Induced Apoptosis by Regulating MicroRNA-181a In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2109216. [PMID: 29849870 PMCID: PMC5932430 DOI: 10.1155/2018/2109216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/11/2018] [Indexed: 01/30/2023]
Abstract
We aimed to evaluate the cardioprotective effect and mechanism of propofol in anthracycline-induced cardiomyocyte apoptosis. We selected the rat myocardial cell line, H9c2, and primary cardiomyocytes for in vitro study. The cardiomyocytes were treated with vehicle, Adriamycin® (ADM), propofol, or a combination of ADM and propofol. The proportion of apoptotic cells and the expression of miR-181a were detected by flow cytometry and real-time PCR, respectively. Luciferase assays were performed to explore the direct target gene of miR-181a. In vivo assay, rats were randomly divided into different treatment groups. The apoptosis index was determined by TUNEL staining, and the expression of miR-181a and STAT3 in heart tissue was detected. The antiproliferative effect of ADM alone was significantly greater than that of ADM plus propofol. A significantly greater decrease in the proportion of apoptotic cells and in miR-181a expression was observed in the combination treatment group compared with that in the ADM groups in vitro and in vivo. The loss-of-function of miR-181a in H9c2 of ADM treatment resulted in increased Bcl-2 and decreased Bax. MiR-181a suppressed Bcl-2 expression through direct targeting of the Bcl-2 transcript. Propofol reduced anthracycline-induced apoptosis in cardiomyocytes via targeting miR-181a/Bcl-2, and a negative correlation between miR-181a and Bcl-2 was observed.
Collapse
|
7
|
Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 2016; 90:2063-2076. [PMID: 27342245 DOI: 10.1007/s00204-016-1759-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/13/2016] [Indexed: 01/25/2023]
Abstract
Anthracyclines, e.g., doxorubicin (DOX), and anthracenediones, e.g., mitoxantrone (MTX), are drugs used in the chemotherapy of several cancer types, including solid and non-solid malignancies such as breast cancer, leukemia, lymphomas, and sarcomas. Although they are effective in tumor therapy, treatment with these two drugs may lead to side effects such as arrhythmia and heart failure. At the same clinically equivalent dose, MTX causes slightly reduced cardiotoxicity compared with DOX. These drugs interact with iron to generate reactive oxygen species (ROS), target topoisomerase 2 (Top2), and impair mitochondria. These are some of the mechanisms through which these drugs induce late cardiomyopathy. In this review, we compare the cardiotoxicities of these two chemotherapeutic drugs, DOX and MTX. As described here, even though they share similarities in their modes of toxicant action, DOX and MTX seem to differ in a key aspect. DOX is a more redox-interfering drug, while MTX induces energy imbalance. In addition, DOX toxicity can be explained by underlying mechanisms that include targeting of Top2 beta, mitochondrial impairment, and increases in ROS generation. These modes of action have not yet been demonstrated for MTX, and this knowledge gap needs to be filled.
Collapse
|
8
|
Štěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Šimůnek T. Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal 2013; 18:899-929. [PMID: 22794198 PMCID: PMC3557437 DOI: 10.1089/ars.2012.4795] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/15/2012] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Anthracyclines (doxorubicin, daunorubicin, or epirubicin) rank among the most effective anticancer drugs, but their clinical usefulness is hampered by the risk of cardiotoxicity. The most feared are the chronic forms of cardiotoxicity, characterized by irreversible cardiac damage and congestive heart failure. Although the pathogenesis of anthracycline cardiotoxicity seems to be complex, the pivotal role has been traditionally attributed to the iron-mediated formation of reactive oxygen species (ROS). In clinics, the bisdioxopiperazine agent dexrazoxane (ICRF-187) reduces the risk of anthracycline cardiotoxicity without a significant effect on response to chemotherapy. The prevailing concept describes dexrazoxane as a prodrug undergoing bioactivation to an iron-chelating agent ADR-925, which may inhibit anthracycline-induced ROS formation and oxidative damage to cardiomyocytes. RECENT ADVANCES A considerable body of evidence points to mitochondria as the key targets for anthracycline cardiotoxicity, and therefore it could be also crucial for effective cardioprotection. Numerous antioxidants and several iron chelators have been tested in vitro and in vivo with variable outcomes. None of these compounds have matched or even surpassed the effectiveness of dexrazoxane in chronic anthracycline cardiotoxicity settings, despite being stronger chelators and/or antioxidants. CRITICAL ISSUES The interpretation of many findings is complicated by the heterogeneity of experimental models and frequent employment of acute high-dose treatments with limited translatability to clinical practice. FUTURE DIRECTIONS Dexrazoxane may be the key to the enigma of anthracycline cardiotoxicity, and therefore it warrants further investigation, including the search for alternative/complementary modes of cardioprotective action beyond simple iron chelation.
Collapse
Affiliation(s)
- Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Olga Popelová
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Anna Vávrová
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Petra Kovaříková
- Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Vladimír Geršl
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University in Prague, Hradec Králové, Czech Republic
| | - Tomáš Šimůnek
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
9
|
Musa F, Blank S, Muggia F. A pharmacokinetic evaluation of topotecan as a cervical cancer therapy. Expert Opin Drug Metab Toxicol 2013; 9:215-24. [DOI: 10.1517/17425255.2013.758249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Theerasilp M, Nasongkla N. Comparative studies of poly(ε-caprolactone) and poly(D,L-lactide) as core materials of polymeric micelles. J Microencapsul 2012. [PMID: 23181625 DOI: 10.3109/02652048.2012.746746] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polymeric micelles have been successfully used to deliver a variety of therapeutic agents. Nonetheless, several limitations and considerations must be clarified and well-studied to achieve the highest therapeutic effect. In this study, a series of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) and methoxy poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PLA) with varying molecular weight (MW) of hydrophobic core segment were synthesized. These block copolymers can form micelle with PCL or PLA as core-forming blocks and PEG as a coronal material. The effect of MW on micelle size and critical micelle concentration (CMC) was studied. DOX (DOX) was encapsulated inside the micelle core. Drug-loading content and size of micelles were studied. Drug release studies inside cells were evaluated by confocal laser scanning microscopy. In summary, the PLA core which is less hydrophobic than PCL showed higher CMC, smaller micelle size and faster DOX release inside nucleus.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, 25/25 Phutthamonthon, Nakhon Pathom 73170, Thailand
| | | |
Collapse
|
11
|
Huang J, Yang J, Maity B, Mayuzumi D, Fisher RA. Regulator of G protein signaling 6 mediates doxorubicin-induced ATM and p53 activation by a reactive oxygen species-dependent mechanism. Cancer Res 2011; 71:6310-9. [PMID: 21859827 DOI: 10.1158/0008-5472.can-10-3397] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Doxorubicin (DXR), among the most widely used cancer chemotherapy agents, promotes cancer cell death via activation of ataxia telangiectasia mutated (ATM) and the resultant upregulation of tumor suppressor p53. The exact mechanism by which DXR activates ATM is not fully understood. Here, we discovered a novel role for regulator of G protein signaling 6 (RGS6) in mediating activation of ATM and p53 by DXR. RGS6 was robustly induced by DXR, and genetic loss of RGS6 dramatically impaired DXR-induced activation of ATM and p53, as well as its in vivo apoptotic actions in heart. The ability of RGS6 to promote p53 activation in response to DXR was independent of RGS6 interaction with G proteins but required ATM. RGS6 mediated activation of ATM and p53 by DXR via a reactive oxygen species (ROS)-dependent and DNA damage-independent mechanism. This mechanism represents the primary means by which DXR promotes activation of the ATM-p53 apoptosis pathway that underlies its cytotoxic activity. Our findings contradict the canonical theories that DXR activates ATM primarily by promoting DNA damage either directly or indirectly (via ROS) and that RGS6 function is mediated by its interactions with G proteins. These findings reveal a new mechanism for the chemotherapeutic actions of DXR and identify RGS6 as a novel target for cancer chemotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
12
|
Pyranonaphthoquinone derivatives of eleutherin, ventiloquinone L, thysanone and nanaomycin A possessing a diverse topoisomerase II inhibition and cytotoxicity spectrum. Bioorg Med Chem 2009; 17:7131-7. [DOI: 10.1016/j.bmc.2009.08.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/20/2009] [Accepted: 08/29/2009] [Indexed: 11/24/2022]
|
13
|
Dalla Via L, Magno SM, Gia O, Marini AM, Da Settimo F, Salerno S, La Motta C, Simorini F, Taliani S, Lavecchia A, Di Giovanni C, Brancato G, Barone V, Novellino E. Benzothiopyranoindole-based antiproliferative agents: synthesis, cytotoxicity, nucleic acids interaction, and topoisomerases inhibition properties. J Med Chem 2009; 52:5429-41. [PMID: 19725581 DOI: 10.1021/jm900627v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Novel benzo[3',2':5,6]thiopyrano[3,2-b]indol-10(11H)-ones 1a-v were synthesized and evaluated for their antiproliferative activity in an in vitro assay of human tumor cell lines (HL-60 and HeLa). Compounds 1e-v, substituted at the 11-position with a basic side chain, showed a significant ability to inhibit cell growth with IC(50) values in the low micromolar range. Linear dichroism measurements showed that all 11-dialkylaminoalkyl substituted derivatives 1e-v behave as DNA-intercalating agents. Fluorimetric titrations demonstrated their specificity in binding to A-T rich regions, and molecular modeling studies were performed on the most active derivatives (1e, 1i, 1p) to characterize in detail the complexation mechanism of these benzothiopyranoindoles to DNA. A relaxation assay evidenced a dose-dependent inhibition of topoisomerase II activity that appeared in accordance with the antiproliferative capacity. Finally, for the most cytotoxic derivative, 1e, a topoisomerase II poisoning effect was also demonstrated, along with a weak inhibition of topoisomerase I-mediated relaxation.
Collapse
Affiliation(s)
- Lisa Dalla Via
- Dipartimento di Scienze Farmaceutiche, Università di Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lorusso D, Pietragalla A, Mainenti S, Masciullo V, Di Vagno G, Scambia G. Review role of topotecan in gynaecological cancers: current indications and perspectives. Crit Rev Oncol Hematol 2009; 74:163-74. [PMID: 19766512 DOI: 10.1016/j.critrevonc.2009.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 07/09/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ovarian cancer is the fourth cause of death from gynaecological cancer and cervical cancer is the first in women <45 years old in developing countries. The aim of this article is to review the role of topotecan (Hycamtin), a semi-synthetic alkaloid derivative of camptothecin, in ovarian and cervical cancer in monotherapy and in combination. METHODS This article reviews the mechanism of action, pharmacokinetics, toxicity and efficacy of topotecan. The paper also reports the principal phases II and III studies of topotecan in advanced or recurrent ovarian and cervical cancer. RESULTS Topotecan (Hycamtin), currently indicated for the treatment of relapsed ovarian cancer, has demonstrated activity both in platinum-sensitive and in platinum-resistant disease. The combination cisplatin-topotecan for the treatment of advanced and recurrent cervical cancer has demonstrated a clinical benefit in terms of response rate, overall survival and progression free survival. Haematological toxicity of topotecan also is easy to manage and not cumulative, especially with the weekly scheduled recently introduced in clinical practice. CONCLUSION Topotecan (Hycamtin) will continue to play a role in the treatment of advanced ovarian and cervical cancer, in monotherapy or in combination with other cytotoxic agents.
Collapse
Affiliation(s)
- Domenica Lorusso
- Division of Gynecologic Oncology, Catholic University of the Sacred Heart, Largo Agostino Gemelli 8, IT-00168 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Jiménez-Alonso S, Orellana HC, Estévez-Braun A, Ravelo AG, Pérez-Sacau E, Machín F. Design and Synthesis of a Novel Series of Pyranonaphthoquinones as Topoisomerase II Catalytic Inhibitors. J Med Chem 2008; 51:6761-72. [DOI: 10.1021/jm800499x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sandra Jiménez-Alonso
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Haydee Chávez Orellana
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Angel G. Ravelo
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Elisa Pérez-Sacau
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| | - Felix Machín
- Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Avda. Astrofísico Fco, Sánchez 2, 38206 La Laguna, Tenerife, Spain, Instituto Canario de Investigaciones del Cáncer (ICIC) , Spain, Facultad de Farmacia Bioquímica, Universidad San Luis Gonzaga de Ica, Peru, and Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Carretera del Rosario, 145, 38010, Santa Cruz de Tenerife, Spain
| |
Collapse
|
16
|
Beretta GL, Zunino F. Molecular Mechanisms of Anthracycline Activity. Top Curr Chem (Cham) 2007; 283:1-19. [DOI: 10.1007/128_2007_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Awara WM, El-Sisi AE, El-Sayad ME, Goda AE. The potential role of cyclooxygenase-2 inhibitors in the treatment of experimentally-induced mammary tumour: does celecoxib enhance the anti-tumour activity of doxorubicin? Pharmacol Res 2005; 50:487-98. [PMID: 15458769 DOI: 10.1016/j.phrs.2004.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 12/21/2022]
Abstract
The potential anti-tumour activity of non-steroidal anti-inflammatory drugs (NSAIDS) has been previously discussed. This study was undertaken to assess the possible anti-tumour activity of the cyclooxygenase-2 (COX-2) inhibitor; celecoxib in an animal model of mammary carcinoma; the solid Ehrlich carcinoma (SEC). The possibility that celecoxib may modulate the anti-tumour activity of doxorubicin on the SEC was also studied. Some of the possible mechanisms underlying such modulation were investigated. The anti-tumour activity of celecoxib (25 mg kg(-1)), diclofenac (12.5 mg kg(-1)) and doxorubicin (2 mg kg(-1)) either alone or in combination were investigated on SEC in vivo through the assessment of tumour growth delay (TGD) and tumour volume (TV), changes in tumour DNA content and nitric oxide (NO) levels, immunohistochemical staining of the tumour suppressor gene product; p53 histopathological examination and determination of apoptotic index of SEC. In addition, the influence of these drugs on the DNA fragmentation pattern of Ehrlich carcinoma cells (ECC) was studied. It was found that both celecoxib and diclofenac lack the anti-tumour activity on SEC. In addition there was a significant increase in doxorubicin anti-tumour activity when administered in combination with celecoxib. Moreover, it was found that both celecoxib and diclofenac have the potential to inhibit the function of P-glycoprotein (P-gp) in ECC using rhodamine uptake and efflux assays. Therefore, the current study suggested the chemosensitizing potential of celecoxib in the SEC animal model of mammary tumour, which could be explained in part on the basis of inhibition of P-gp function, with possible enhancement of doxorubicin anti-tumour activity.
Collapse
Affiliation(s)
- Wageh M Awara
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt.
| | | | | | | |
Collapse
|
18
|
Christmann-Franck S, Bertrand HO, Goupil-Lamy A, der Garabedian PA, Mauffret O, Hoffmann R, Fermandjian S. Structure-Based Virtual Screening: An Application to Human Topoisomerase II α. J Med Chem 2004; 47:6840-53. [PMID: 15615533 DOI: 10.1021/jm049745w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eukaryotic topoisomerase II is involved in several vital processes, such as replication, transcription, and recombination. Many compounds interfering with the catalytic action of this enzyme are efficient in human cancer chemotherapy. We applied a methodology combining molecular modeling and virtual screening techniques to identify human topoisomerase II alphainhibitors. Data from structural biology and enzymatic assays together with a good background on the enzyme mechanism of action were helpful in the approach. A human topoisomerase II alpha model provided an insight into the structural features responsible for the activity of the enzyme. A protocol comprising several substructural and protein structure-based three-dimensional pharmacophore filters enabled the successful retrieving of inhibitors of the enzyme from large databases of compounds, thus validating the approach. A subset of protein structural features required for the enzyme inhibition at the protein-DNA interface were identified and incorporated into the pharmacophore models. Compounds sharing a DNA-intercalating chromophore and a moiety interfering with the protein active site emerged as good inhibitors.
Collapse
Affiliation(s)
- Serge Christmann-Franck
- Département de Biologie et Pharmacologie Structurales, UMR 8113 CNRS, LBPA, ENS Cachan, 61 avenue du Président Wilson, 94235 Cachan Cedex, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Relapsed ovarian cancer and small cell lung cancer are frequently treated with topotecan (Hycamtin), for which the standard dose and schedule are 1.5 mg/m(2) daily for five consecutive days every 3 weeks. Clinical experience has shown that this dose and schedule may be too toxic for some patients, especially those who have been heavily pretreated with platinum-based therapeutics, and it has been suggested that starting doses of topotecan be reduced to 1.0-1.25 mg/m(2)/d. Recently, multiple clinical trials have begun to evaluate the feasibility and preliminary antitumor activity of an alternative schedule based on weekly administration of topotecan. The potential benefits of weekly administration include not only reduced toxicity without significant compromise of antitumor activity, but also greater patient convenience and quality of life and greater potential for developing new topotecan-containing combination therapies. This report reviews the rationale for a weekly schedule, as well as a growing base of emerging clinical data. These preliminary data suggest that weekly topotecan is active; further evaluations are planned to confirm the activity and therapeutic index and to determine optimal dosing of a weekly schedule.
Collapse
Affiliation(s)
- Eric K Rowinsky
- Institute for Drug Development, The Cancer Therapy and Research Center, The University of Texas Health Science Center, San Antonio, Texas, USA.
| |
Collapse
|
20
|
Cipollone A, Berettoni M, Bigioni M, Binaschi M, Cermele C, Monteagudo E, Olivieri L, Palomba D, Animati F, Goso C, Maggi CA. Novel anthracycline oligosaccharides: influence of chemical modifications of the carbohydrate moiety on biological activity. Bioorg Med Chem 2002; 10:1459-70. [PMID: 11886808 DOI: 10.1016/s0968-0896(01)00411-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several observations highlight the importance of the carbohydrate moiety for the biological activity of antitumoural anthracyclines. Here is reported the synthesis, cytotoxicity and topoisomerase II-mediated DNA cleavage intensity of the new oligosaccharide anthracyclines 1--4 modified in the sugar residue. Evaluation of cytotoxic potency on different cell lines, resulted in quite similar values among the different analogues. On the other hand, topoisomerase II-mediated DNA breaks level was different for the various compounds, and was not related to cytotoxicity, thus supporting previous observations reported for some monosaccharide anthracyclines modified in the carbohydrate portion.
Collapse
Affiliation(s)
- A Cipollone
- Menarini Ricerche, via Tito Speri 10, 00040, Pomezia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boabang P, Kurbacher CM, Kohlhagen H, Waida A, Amo-Takyi BK. Anti-neoplastic activity of topotecan versus cisplatin, etoposide and paclitaxel in four squamous cell cancer cell lines of the female genital tract using an ATP-Tumor Chemosensitivity Assay. Anticancer Drugs 2000; 11:843-8. [PMID: 11142692 DOI: 10.1097/00001813-200011000-00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We evaluated the in vitro cytotoxicity of topotecan (TPT), versus cisplatin, etoposide (VP-16) and paclitaxel (PTX) in four squamous cell cancer cell lines of the cervix uteri and vulva. Four established human squamous cancer cell lines from the cervix uteri (A-431, Ca Ski and C-33) and vulva (CAL-39) were used. The cytotoxic effects of the agents were examined using the ATP-Tumor Chemosensitivity Assay (ATP-TCA). In addition to the single agents, the following combinations were tested: TPT+cisplatin, TPT+VP-16 and TPT+PTX. Three cell lines (C-33, Ca Ski and CAL-39) were highly sensitive to TPT, but one cell line (A-431) was less sensitive. Furthermore, the cytotoxic activity of TPT was superior to that of cisplatin in Ca Ski and C-33 cells, but inferior in CAL-39 and A-431. TPT was also more active than VP-16 in CAL-39 and Ca Ski. On the other hand, the cytotoxic activity of TPT was weaker than PTX in C-33, CAL-39 and A-431. TPT increased the cytotoxic activity of cisplatin and VP-16 in C-33, Ca Ski and A-431. However, synergistic features were observed only in A-431 cells. TPT also enhanced the cytotoxic activity of PTX in A-431 and Ca Ski. In CAL-39 and C-33, however, increased cytotoxic activity occurred only at higher drug concentrations, whereas antagonism was observed at lower drug concentrations. In conclusion, our results suggest that TPT has a significant cytotoxic effect on most squamous cell cancer cell lines which may be superior to cisplatin, VP-16 and PTX in some instances. Furthermore, TPT is likely to potentiate the cytotoxic activity of these agents in individual cell lines tested.
Collapse
Affiliation(s)
- P Boabang
- Department of Gynecology and Obstetrics, University of Cologne Medical Center, Germany
| | | | | | | | | |
Collapse
|
22
|
Ng A, Taylor GM, Eden OB. Treatment-related leukaemia--a clinical and scientific challenge. Cancer Treat Rev 2000; 26:377-91. [PMID: 11006138 DOI: 10.1053/ctrv.2000.0186] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of a second tumour, including treatment-related leukaemia (TRL), is the most devastating complication of intensive cancer chemotherapy. This is especially relevant in the paediatric population as over 70% of children diagnosed with a malignancy will now live at least 5 years. Most TRLs are myeloid leukaemias and carry an overall poor prognosis when compared with their de novo counterparts. Despite the well known association with specific cytotoxic agents, improved understanding of the pathogenesis and risk factors of TRL is ultimately essential if we are to develop successful strategies for prevention and treatment. Here we review these aspects, together with the clinical and diverse biological features of this complication and the efficacy of current therapy.
Collapse
Affiliation(s)
- A Ng
- Immunogenetics Laboratory, St Mary's Hospital, Hathersage Road, Manchester M13 OJH, UK
| | | | | |
Collapse
|
23
|
Jayaraju D, Gopal YN, Kondapi AK. Topoisomerase II is a cellular target for antiproliferative cobalt salicylaldoxime complex. Arch Biochem Biophys 1999; 369:68-77. [PMID: 10462441 DOI: 10.1006/abbi.1999.1327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Topoisomerase II is a cellular target for a number of clinically relevant antitumor drugs. To elucidate the possible cellular target for the antiproliferation activity of cobalt salicylaldoxime (CoSAL), which inhibits 50% of leukemic cell proliferation at a concentration of 60 microM, DNA binding studies and studies of the action of this complex on topoisomerase II catalytic activities were carried out. The results from DNA binding studies show that CoSAL binds DNA strongly with a stoichiometric ratio of two drug molecules for five nucleotide bases and shows a mode of interaction similar to that of DNA groove binding agents. The results from topoisomerase II inhibition studies show that the complex inhibits the relaxation activity of topoisomerase II in a dose-dependent manner and poisons its activity through cleavage complex formation. To see if the hydroxyl group present on imine nitrogen is involved in topoisomerase II poisoning, we synthesized an analogue of CoSAL in which the hydroxyl group was replaced with semicarbazone. This complex too binds DNA with an affinity similar to that of CoSAL, but with a small difference in the mode of interaction; however, it marginally inhibits leukemic cell proliferation and does not inhibit topoisomerase II activity, which suggests the involvement of a hydroxyl group. An immunoprecipitation assay was conducted which showed that the cleavage complex formed in the presence of CoSAL contained 75% of the complex, while the other complex shows only 7. 65%. Cyclic voltametric spectra of the complexes in the presence of DNA show that they do not oxidize DNA. These results suggest that CoSAL shows a bidirectional mode of interaction with enzyme and DNA and inhibits topoisomerase II activity by forming a drug-mediated cleavage complex. Our data strongly suggest that topoisomerase II may be one of the cellular targets for antiproliferation activity of CoSAL.
Collapse
Affiliation(s)
- D Jayaraju
- School of Life Sciences, University of Hyderabad, Hyderabad-, 46, India
| | | | | |
Collapse
|
24
|
Burden DA, Osheroff N. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:139-54. [PMID: 9748545 DOI: 10.1016/s0167-4781(98)00132-8] [Citation(s) in RCA: 378] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Topoisomerase II is a ubiquitous enzyme that is essential for the survival of all eukaryotic organisms and plays critical roles in virtually every aspect of DNA metabolism. The enzyme unknots and untangles DNA by passing an intact helix through a transient double-stranded break that it generates in a separate helix. Beyond its physiological functions, topoisomerase II is the target for some of the most active and widely prescribed anticancer drugs currently utilized for the treatment of human cancers. These drugs act in an insidious fashion and kill cells by increasing levels of covalent topoisomerase II-cleaved DNA complexes that are normally fleeting intermediates in the catalytic cycle of the enzyme. Over the past several years, we have made considerable strides in our understanding of the catalytic mechanism of topoisomerase II and the mechanism of action of drugs targeted to this enzyme. These advances have provided novel insights into the physiological functions of topoisomerase II and have led to the development of more efficacious chemotherapeutic regimens and novel anticancer drugs. Considering the importance of topoisomerase II to the eukaryotic cell and to cancer chemotherapy, it is essential to understand its enzymatic function and pharmacological properties. Therefore, this review will discuss the mechanism of action of eukaryotic topoisomerase II and topoisomerase II-targeted drugs.
Collapse
Affiliation(s)
- D A Burden
- Department of Biochemistry, 654 Medical Research Building I, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
25
|
Capranico G, Binaschi M. DNA sequence selectivity of topoisomerases and topoisomerase poisons. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:185-94. [PMID: 9748568 DOI: 10.1016/s0167-4781(98)00135-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemical agents able to interfere with DNA topoisomerases are widespread in nature, and some of them have clinical efficacy as antitumor or antibacterial drugs. Drugs which have as a target DNA topoisomerases could be divided into two categories: poisons and catalytic inhibitors. Classical topoisomerase poisons stimulate cleavage in a sequence-selective manner, yielding drug-specific cleavage intensity pattern. The mechanisms of drug interaction with DNA topoisomerases, the DNA sequence selectivity of the action of topoisomerase II poisons and the identification of structural determinants of their activity have suggested that topoisomerase II poisons may fit into a specific pharmacophore, constituted by a planar ring system with DNA intercalation or intercalation-like properties, and protruding side chains interfering with the protein side of the covalent enzyme-DNA complex. The complete definition of the diverse pharmacophores of topoisomerase II poisons will certainly be of value for the design of new agents directed to specific genomic sites, and more effective in the treatment of human cancer.
Collapse
Affiliation(s)
- G Capranico
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, via Venezian 1, 20133 Milan, Italy.
| | | |
Collapse
|
26
|
Settimo AD, Settimo FD, Marini AM, Primofiore G, Salerno S, Viola G, Via LD, Magno SM. Synthesis, DNA binding and in vitro antiproliferative activity of purinoquinazoline, pyridopyrimidopurine and pyridopyrimidobenzimidazole derivatives as potential antitumor agents. Eur J Med Chem 1998. [DOI: 10.1016/s0223-5234(98)80027-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Kingma PS, Osheroff N. Topoisomerase II-mediated DNA cleavage and religation in the absence of base pairing. Abasic lesions as a tool to dissect enzyme mechanism. J Biol Chem 1998; 273:17999-8002. [PMID: 9660751 DOI: 10.1074/jbc.273.29.17999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of topoisomerase II with its DNA cleavage site is critical to the physiological functions of the enzyme. Despite this importance, the specific enzyme-DNA interactions that drive topoisomerase II-mediated DNA cleavage and religation are poorly understood. Therefore, to dissect interactions between the enzyme and its cleavage site, abasic DNA lesions were incorporated into a bilaterally symmetrical and identical cleavage site. Results indicate that topoisomerase II has unique interactions with each position of the 4-base overhang generated by enzyme-mediated DNA cleavage. Lesions located 2 bases 3' to the point of scission stimulated cleavage the most, whereas those 3 bases from the point of scission stimulated cleavage the least. Moreover, an additive and in some cases synergistic cleavage enhancement was observed in oligonucleotides that contained multiple DNA lesions, with levels reaching >60-fold higher than the wild-type substrate. Finally, topoisomerase II efficiently cleaved and religated a DNA substrate in which apyrimidinic sites were simultaneously incorporated at every position on one strand of the 4-base overhang. Therefore, unlike classical DNA ligases in which base pairing is the driving force behind closure of the DNA break, it appears that for topoisomerase II, the enzyme is responsible for the spatial orientation of the DNA termini for ligation.
Collapse
Affiliation(s)
- P S Kingma
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
28
|
Pourquier P, Montaudon D, Huet S, Larrue A, Clary A, Robert J. Doxorubicin-induced alterations of c-myc and c-jun gene expression in rat glioblastoma cells: role of c-jun in drug resistance and cell death. Biochem Pharmacol 1998; 55:1963-71. [PMID: 9714316 DOI: 10.1016/s0006-2952(98)00006-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We studied the effect of doxorubicin on the expression of c-myc and c-jun in the rat glioblastoma cell line C6 and its doxorubicin-resistant variant C6 0.5, at equitoxic exposures. For quantitation, the mRNA levels of these oncogenes were related to those of two domestic genes, beta-actin and glyceraldehyde phosphate dehydrogenase. After a transient overexpression of the genes during the first hour of incubation, there was a selective, dose-dependent down-regulation of both genes by doxorubicin in the sensitive cells. In the resistant cell line, c-myc expression was also decreased in response to doxorubicin incubation, but the expression of c-jun remained unchanged over the whole range of concentrations. In contrast, vincristine had no effect on the amounts of c-myc and c-jun mRNAs in either line. The effect of doxorubicin on the mRNA levels of c-jun was also observed on the JUN proteins by immunoblotting, but the MYC protein levels remained unchanged upon doxorubicin treatment. There was a significant correlation between the levels of c-myc and c-jun gene expression and the degree of growth inhibition induced by doxorubicin. In addition, doxorubicin induced a fragmentation of DNA in sensitive cells, but not in resistant cells, thus revealing a resistance to apoptosis in this line. Doxorubicin-induced cell death did not appear to be mediated by p53 in either cell line.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Brain Neoplasms/genetics
- Brain Neoplasms/metabolism
- DNA Damage
- DNA Probes
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, jun/drug effects
- Genes, jun/genetics
- Genes, myc/drug effects
- Genes, myc/genetics
- Glioblastoma/genetics
- Glioblastoma/metabolism
- Rats
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- P Pourquier
- Universite Victor Segalen Bordeaux 2 and Institut Bergonie, France
| | | | | | | | | | | |
Collapse
|
29
|
Patel S, Sprung AU, Keller BA, Heaton VJ, Fisher LM. Identification of yeast DNA topoisomerase II mutants resistant to the antitumor drug doxorubicin: implications for the mechanisms of doxorubicin action and cytotoxicity. Mol Pharmacol 1997; 52:658-66. [PMID: 9380029 DOI: 10.1124/mol.52.4.658] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Doxorubicin is a therapeutically useful anticancer drug that exerts multiple biological effects. Its antitumor and cardiotoxic properties have been ascribed to anthracycline-mediated free radical damage to DNA and membranes. Evidence for this idea comes in part from the selection by doxorubicin from stationary phase yeast cells of mutants (petites) deficient in mitochondrial respiration and therefore defective in free radical generation. However, doxorubicin also binds to DNA topoisomerase II, converting the enzyme into a DNA damaging agent through the trapping of a covalent enzyme-DNA complex termed the 'cleavable complex.' We have used yeast to determine whether stabilization of cleavable complexes plays a role in doxorubicin action and cytotoxicity. A plasmid-borne yeast TOP2 gene was mutagenized with hydroxylamine and used to transform drug-permeable yeast strain JN394t2-4, which carries a temperature-sensitive top2-4 mutation in its chromosomal TOP2 gene. Selection in growth medium at the nonpermissive temperature of 35 degrees in the presence of doxorubicin resulted in the isolation of plasmid-borne top2 mutants specifying functional doxorubicin-resistant DNA topoisomerase II. Single-point changes of Gly748 to Glu or Ala642 to Ser in yeast topoisomerase II, which lie in and adjacent to the CAP-like DNA binding domain, respectively, were identified as responsible for resistance to doxorubicin, implicating these regions in drug action. None of the mutants selected in JN394t2-4, which has a rad52 defect in double-strand DNA break repair, was respiration-deficient. We conclude that topoisomerase II is an intracellular target for doxorubicin and that the genetic background and/or cell proliferation status can determine the relative importance of topoisomerase II- versus free radical-killing.
Collapse
Affiliation(s)
- S Patel
- Molecular Genetics Group, Department of Cellular and Molecular Sciences, St. George's Hospital Medical School, University of London, London SW17 0RE, UK
| | | | | | | | | |
Collapse
|
30
|
Capranico G, Binaschi M, Borgnetto ME, Zunino F, Palumbo M. A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons. Trends Pharmacol Sci 1997; 18:323-9. [PMID: 9345851 DOI: 10.1016/s0165-6147(97)01095-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemical agents able to interfere with DNA topoisomerases are widespread in nature, and some of them have outstanding therapeutic efficacy in human cancer and infectious diseases. DNA topoisomerases are essential enzymes that govern DNA topology during fundamental nuclear metabolic processes. Topoisomerase-interfering compounds can be divided into two general categories based on the mechanism of drug action: poisons and catalytic inhibitors. In past years, investigations of the DNA sequence selectivity of topoisomerase II poisons have identified structural and molecular determinants of drug activity, and indicated that the drug receptor is likely to be at the protein-DNA interface. Moreover, the available results indicate that the biologically relevant DNA-binding activity of topoisomerase poisons is basically protein-mediated and this is discussed in this issue by Giovanni Capranico and colleagues. This suggests that topoisomerase poisons may represent a useful paradigm for small compounds able to bind to protein-DNA interfaces in a site-selective manner, thus increasing the affinity of DNA-binding proteins for specific genomic sites.
Collapse
Affiliation(s)
- G Capranico
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | | | | | |
Collapse
|
31
|
Capranico G, Binaschi M, Borgnetto M, Zunino F, Palumbo M. A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons. Trends Pharmacol Sci 1997. [DOI: 10.1016/s0165-6147(97)90658-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Bases RE, Mendez F. Topoisomerase inhibition by lucanthone, an adjuvant in radiation therapy. Int J Radiat Oncol Biol Phys 1997; 37:1133-7. [PMID: 9169823 DOI: 10.1016/s0360-3016(97)00113-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE To determine whether lucanthone can inhibit human topoisomerases in vitro. METHODS AND MATERIALS Lucanthone was incubated with human topoisomerases II and I together with their plasmid substrates, to determine if lucanthone interfered with the catalytic activities of topoisomerases and if it enhanced the formation of DNA strand breaks, as determined by agarose gel electrophoresis of the resultant plasmid forms. RESULTS Incubation of the enzymes with lucanthone inhibited the catalytic activity of topoisomerases II and I. With topoisomerase II, it increased the abundance of DNA double strand breaks (cleavable complexes). CONCLUSION Lucanthone, like actinomycin D, inhibited topoisomerases II and I. It may act to enhance the yield of DNA double strand breaks in cells through a mechanism of topoisomerase II inhibition.
Collapse
Affiliation(s)
- R E Bases
- Department of Radiation Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | | |
Collapse
|
33
|
Gmünder H, Kuratli K, Keck W. In the presence of subunit A inhibitors DNA gyrase cleaves DNA fragments as short as 20 bp at specific sites. Nucleic Acids Res 1997; 25:604-11. [PMID: 9016602 PMCID: PMC146451 DOI: 10.1093/nar/25.3.604] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A key step in the supercoiling reaction is the DNA gyrase-mediated cleavage and religation step of double-stranded DNA. Footprinting studies suggest that the DNA gyrase binding site is 100-150 bp long and that the DNA is wrapped around the enzyme with the cleavage site located near the center of the fragment. Subunit A inhibitors interrupt this cleavage and resealing cycle and result in cleavage occurring at preferred sites. We have been able to show that even a 30 bp DNA fragment containing a 20 bp preferred cleavage sequence from the pBR322 plasmid was a substrate for the DNA gyrase-mediated cleavage reaction in the presence of inhibitors. This DNA fragment was cleaved, although with reduced efficiency, at the same sites as a 122 bp DNA fragment. A 20 bp DNA fragment was cleaved with low efficiency at one of these sites and a 10 bp DNA fragment was no longer a substrate. We therefore propose that subunit A inhibitors interact with DNA at inhibitor-specific positions, thus determining cleavage sites by forming ternary complexes between DNA, inhibitors and DNA gyrase.
Collapse
Affiliation(s)
- H Gmünder
- F. Hoffmann-La Roche Ltd, Pharmaceutical Research Preclinical Infectious Diseases, CH-4070 Basel, Switzerland.
| | | | | |
Collapse
|
34
|
Abstract
Many anticancer drugs "poison" topoisomerase II by enhancing its double-stranded DNA cleavage activity. To determine whether DNA lesions act as endogenous topoisomerase II poisons, we characterized the effects of position-specific apurinic sites on enzyme activity. Lesions located within the 4-base overhang generated by enzyme-mediated DNA scission stimulated cleavage approximately 10-18-fold without altering the specificity of topoisomerase II. DNA breaks were double-stranded in nature, protein-linked, and readily reversible. In contrast, apurinic sites located immediately outside the cleavage overhang were inhibitory. Thus, apurinic sites, which are the most commonly formed lesion in DNA, are position-specific topoisomerase II poisons. A model is proposed that encompasses the actions of endogenous and exogenous topoisomerase II poisons and provides a pre-existing pathway for the cellular actions of topoisomerase II-targeted anticancer drugs.
Collapse
Affiliation(s)
- P S Kingma
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
35
|
Burden DA, Kingma PS, Froelich-Ammon SJ, Bjornsti MA, Patchan MW, Thompson RB, Osheroff N. Topoisomerase II.etoposide interactions direct the formation of drug-induced enzyme-DNA cleavage complexes. J Biol Chem 1996; 271:29238-44. [PMID: 8910583 DOI: 10.1074/jbc.271.46.29238] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Topoisomerase II is the target for several highly active anticancer drugs that induce cell death by enhancing enzyme-mediated DNA scission. Although these agents dramatically increase levels of nucleic acid cleavage in a site-specific fashion, little is understood regarding the mechanism by which they alter the DNA site selectivity of topoisomerase II. Therefore, a series of kinetic and binding experiments were carried out to determine the mechanistic basis by which the anticancer drug, etoposide, enhances cleavage complex formation at 22 specific nucleic acid sequences. In general, maximal levels of DNA scission (i.e. Cmax) varied over a considerably larger range than did the apparent affinity of etoposide (i.e. Km) for these sites, and there was no correlation between these two kinetic parameters. Furthermore, enzyme.drug binding and order of addition experiments indicated that etoposide and topoisomerase II form a kinetically competent complex in the absence of DNA. These findings suggest that etoposide. topoisomerase II (rather than etoposide.DNA) interactions mediate cleavage complex formation. Finally, rates of religation at specific sites correlated inversely with Cmax values, indicating that maximal levels of etoposide-induced scission reflect the ability of the drug to inhibit religation at specific sequences rather than the affinity of the drug for site-specific enzyme-DNA complexes.
Collapse
Affiliation(s)
- D A Burden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Neece SH, Carles-Kinch K, Tomso DJ, Kreuzer KN. Role of recombinational repair in sensitivity to an antitumour agent that inhibits bacteriophage T4 type II DNA topoisomerase. Mol Microbiol 1996; 20:1145-54. [PMID: 8809767 DOI: 10.1111/j.1365-2958.1996.tb02635.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The bacteriophage T4-encoded type II DNA topoisomerase is the major target for the antitumour agent m-AMSA (4'-(9-acridinylamino)methanesulphonm-ansidide) in phage-infected bacterial cells. Inhibition of the purified enzyme by m-AMSA results in formation of a cleavage complex that contains the enzyme covalently attached to DNA on both sides of a double-strand break. In this article, we provide evidence that this cleavage complex is responsible for inhibition of phage growth and that recombinational repair can reduce sensitivity to the antitumour agent, presumably by eliminating the complex (or some derivative thereof). First, topoisomerase-deficient mutants were shown to be resistant to m-AMSA, indicating that m-AMSA inhibits growth by inducing the cleavage complex rather than by inhibiting enzyme activity. Second, mutations in several phage genes that encode recombination proteins (uvsX, uvsY, 46 and 59) increased the sensitivity of phage T4 to m-AMSA, strongly suggesting that recombination participates in the repair of topoisomerase-mediated damage. Third, m-AMSA stimulated recombination in phage-infected bacterial cells, as would be expected from the recombinational repair of DNA damage. Finally, m-AMSA induced the production of cleavage complexes involving the T4 topoisomerase within phage-infected cells.
Collapse
Affiliation(s)
- S H Neece
- Department of Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
37
|
Cutts SM, Parsons PG, Sturm RA, Phillips DR. Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 1996; 271:5422-9. [PMID: 8621397 DOI: 10.1074/jbc.271.10.5422] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adriamycin is known to specifically induce DNA interstrand cross-links at 5'-GC sequences. Because 5'-GC sequences are a predominant feature of 5'-untranslated regions (transcription factor-binding sites, promoter, and enhancer regions), it is likely that adriamycin adducts at GC sites would affect the binding of DNA-interacting proteins. Two model systems were chosen for the analysis: the octamer-binding proteins Oct-1, N-Oct-3 and N-Oct-5, which bind to ATGCAAAT and TAATGARAT recognition sites, and Escherichia coli RNA polymerase binding to the lac UV5 promoter. Electrophoretic mobility shift studies showed that adriamycin adducts at GC sites inhibited the binding of octamer proteins to their consensus motifs at drug levels as low as 1 micoM, but no effect was observed with a control sequence lacking a GC site. Adriamycin adducts at GC sites also inhibited the binding of RNA polymerase to the lac UV5 promoter. Adriamycin may therefore function by down-regulating the expression of specific genes by means of inactivation of short but critical motifs containing one or more GC sites.
Collapse
Affiliation(s)
- S M Cutts
- School of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia
| | | | | | | |
Collapse
|
38
|
Andrivon W, Saucier JM, Auclair C, Monneret C, Florent JC, Guillosson JJ, Nafziger J. Enhanced topoisomerase II-induced DNA breaks and free radical production by a new anthracycline with potent antileukemic activity. Leuk Res 1996; 20:119-26. [PMID: 8628010 DOI: 10.1016/0145-2126(95)00155-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In a previous study we reported that a new anthracycline derivative (moflomycin) exhibited a higher antileukemic activity compared to other anthracyclines, such as daunorubicin and doxorubicin. To explain the superior antileukemic effect of moflomycin and to disclose a possible structure-activity relationship, we investigated the three main mechanisms by which anthracyclines are though to exert their antitumor effect: DNA binding, free radical production and topoisomerase II inhibition. The DNA interaction was assessed both by DNA binding and DNA unwinding assays, free radical generation was studied by electron spin resonance, and topoisomerase II interaction by analysis of the stimulation of enzyme-induced DNA breaks. The results showed a higher free radical production and a greater stimulation of topoisomerase II-mediated DNA cleavage by moflomycin than doxorubicin, associated with a lower DNA affinity. The different biochemical characteristics of moflomycin, particularly its interaction with topoisomerase II, are related to the structural modifications performed on the chromophore. These properties, associated with a higher stability of the molecule induced by the presence of an iodine atom on the sugar moiety, are probably responsible for the higher antileukemic activity of this compound.
Collapse
Affiliation(s)
- W Andrivon
- Laboratoire d'Hématologie Cellulaire et Moléculaire, UFR des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Bigioni M, Zunino F, Tinelli S, Austin CA, Willmore E, Capranico G. Position-specific effects of base mismatch on mammalian topoisomerase II DNA cleaving activity. Biochemistry 1996; 35:153-9. [PMID: 8555169 DOI: 10.1021/bi951736p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To further define the nucleic acid determinants of DNA site recognition by mammalian topoisomerase II, base mismatch effects on the enzyme DNA cleavage activity were determined in a 36-bp synthetic oligonucleotide corresponding to SV40 DNA. DNA cleavage sites induced by topoisomerase II without or with the antitumor drugs teniposide, idarubicin, or amsacrine were mapped using sequencing gels. Selected mismatches were studied, and always one of the two strands had the wild-type sequence. The effects of base mismatches were independent from the studied drugs. Mismatches introduced at the -4, -3, -2, or -1 positions, relative to the enzyme cleavage site, often abolished, or much reduced, DNA cleavage, whereas those at +1 and +2 positions often increased DNA breakage or were without influence. Mismatches at more distant positions, e.g., -7, -8, etc., had no effect. Those at positions -5 and -6 sometimes increased cleavage levels. These effects were always observed at sites already cleaved in the wild-type oligomer; new sites of cleavage were not induced by the studied mismatches. These results were obtained both for the native murine topoisomerase II and for the two recombinant human isozymes. No difference between topoisomerases II alpha(p170) and beta(p180) was seen in their response to mismatches. The results demonstrate that topoisomerase II recognition of the DNA site of cleavage requires fully paired nucleotides at the 3' terminus. Nevertheless, similarly to other DNA strand transferase enzymes, both topoisomerase II isoforms may have a sequence-specific nicking activity at the 5' side of unpaired bases.
Collapse
Affiliation(s)
- M Bigioni
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Houlbrook S, Addison CM, Davies SL, Carmichael J, Stratford IJ, Harris AL, Hickson ID. Relationship between expression of topoisomerase II isoforms and intrinsic sensitivity to topoisomerase II inhibitors in breast cancer cell lines. Br J Cancer 1995; 72:1454-61. [PMID: 8519659 PMCID: PMC2034103 DOI: 10.1038/bjc.1995.529] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Topoisomerase II is a key target for many anti-cancer drugs used to treat breast cancer. In human cells there are two closely related, but differentially expressed, topoisomerase II isoforms, designated topoisomerase II alpha and beta. Here, we report the production of a new polyclonal antibody raised against a fragment of the C-terminal domain of the 180 kDa form of topoisomerase II (the beta isoform), which does not cross-react with the 170 kDa form (the alpha isoform). Using this antibody, together with a polyclonal antibody specific for the 170 kDa isoform of topoisomerase II, we have examined the relationship between the sensitivity of a panel of human breast cancer cell lines to different classes of topoisomerase II inhibitors and cellular levels of the topoisomerase II alpha and beta proteins. We found that sensitivity to amsacrine showed a correlation with the level of expression of topoisomerase II alpha protein, and that sensitivity to etoposide showed a similar correlation with the level of expression of topoisomerase II beta protein. There was also a relationship between sensitivity of these cell lines to mitoxantrone and the cellular level of both isoforms of topoisomerase II. No relationship was found between the level of mRNA for topoisomerase II alpha or beta, and either sensitivity of breast cancer cell lines to topoisomerase II inhibitors or the level of topoisomerase II protein expression.
Collapse
Affiliation(s)
- S Houlbrook
- Molecular Oncology Laboratories, Imperial Cancer Research Fund, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Froelich-Ammon SJ, Osheroff N. Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J Biol Chem 1995; 270:21429-32. [PMID: 7665550 DOI: 10.1074/jbc.270.37.21429] [Citation(s) in RCA: 466] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- S J Froelich-Ammon
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
42
|
Cutts SM, Phillips DR. Use of oligonucleotides to define the site of interstrand cross-links induced by Adriamycin. Nucleic Acids Res 1995; 23:2450-6. [PMID: 7630722 PMCID: PMC307050 DOI: 10.1093/nar/23.13.2450] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It has been known for several years that Adriamycin forms adducts and interstrand cross-links when reacted for long periods of time with bacterial and mammalian DNA in vitro, with the cross-link being restricted to 2 bp elements containing GpC sequences. The self-complementary 20mer deoxyoligonucleotide TA4T4GCA4T4A has been used in this study as a model of the apparent G-G cross-linking site at GpC sequences. The rate of formation of cross-links, as well as the dependence on both Adriamycin and Fe(III) concentration, were similar with this oligonucleotide as compared with calf thymus DNA. The cross-linking was demonstrated on both denaturing and non-denaturing sequencing gels. The half-life of the G-G cross-link was 40 h, consistent with that implied with high molecular weight, heterogeneous sequence DNA. Exonuclease III digests of adducts formed with 20mer deoxyoligonucleotides containing single, central G-G, G-I and I-I potential cross-links revealed that a guanine residue is required at both ends of the cross-link. No cross-linking was observed with a similar oligonucleotide containing only a single central (G.C) bp.
Collapse
Affiliation(s)
- S M Cutts
- School of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
43
|
Abstract
DNA topoisomerases are enzymes that regulate DNA topology and are essential for the integrity of the genetic material during transcription, replication and recombination processes. Inhibitors of the mammalian enzymes are widely used antitumor drugs. They stabilize topoisomerase-DNA cleavable complexes by hindering the DNA relegating step of the catalytic reaction, thus resulting in DNA cleavage stimulation. Investigations on the sequence selectivity of DNA cleavage stimulated by chemically unrelated compounds established that specific nucleotides flanking strand cuts are required for drug action. Moreover, structure-activity relationship studies have identified structural determinants of drug sequence specificities, thus eventually allowing the design of new agents targeted at selected genomic regions. The initial cellular lesion, i.e., the drug-stabilized cleavable complex, is a reversible molecular event; however, how it may lead to cell death remains to be fully clarified. Several laboratories focused in past years on molecular and genetic aspects of drug-activated apoptosis. Irreversible double-stranded DNA breaks, generated from collisions between cleavable complexes and advancing replication forks, were suggested to increase p53 protein levels, thus triggering the cell death program. Other genes were also shown to cooperate in modulating the cell response to drug treatments. Recently, several groups have evaluated the possible prognostic value of topoisomerase II levels in solid tumors and hematopoietic neoplasms. Topoisomerase II inhibitors may also have genotoxic effects. Secondary leukemias, characterized by a translocation between chromosomes 11 and 9, have been reported in disease-free patients after treatments with drug regimens that included anti-topoisomerase II agents. It has been proposed that an impairment of topoisomerase activity may be involved in the molecular pathogenesis of secondary leukemias.
Collapse
Affiliation(s)
- M Binaschi
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | |
Collapse
|
44
|
Abstract
Chemotherapy is rather ineffective in non-small cell lung cancer. However, in the last few years, a number of new anticancer agents have been developed which have definite activity in this disease. Among them are the taxanes and CPT-11, drugs with novel mechanisms of action, new antimetabolites (edatrexate and gemcitabine), and a new vinca alkaloid (vinorelbine). Furthermore, in the near future, the better understanding of lung cancer biology will help in devising new treatment strategies.
Collapse
Affiliation(s)
- G Giaccone
- Free University Hospital, Department of Oncology, Amsterdam, The Netherlands
| |
Collapse
|
45
|
De Isabella P, Zunino F, Capranico G. Base sequence determinants of amonafide stimulation of topoisomerase II DNA cleavage. Nucleic Acids Res 1995; 23:223-9. [PMID: 7862525 PMCID: PMC306658 DOI: 10.1093/nar/23.2.223] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A number of antitumor drugs including naphthalimides, a new class of intercalating agents, interfere with the DNA breakage-reunion activity of mammalian DNA topoisomerase II resulting in DNA cleavage stimulation. In this work, the sequence specificity of a lead compound of this series, amonafide, in stimulating DNA cleavage by murine topoisomerase II has been studied. Amonafide-stimulated cleavage intensity patterns were markedly different from those of other antitumor drugs by using pBR322 and SV40 DNAs. This drug had an unusually high site selectivity since about 60% of DNA cleavage was observed at only one site in pBR322 DNA, and at two sites in SV40 DNA. A total of ninety-four drug-stimulated sites were collected, and a statistical analysis of their sequences showed that amonafide highly prefers a cytosine, and excludes guanines and thymines instead, at position -1. A lower preference for an adenine at position +1 was also noted. In agreement with the statistical analysis, the DNA sequences of the three sites stimulated by amonafide at exceptionally high levels showed that the drug requirements of a cytosine (-1) and adenine (+1) were present in both the two strands. In addition, a particular feature of these prominent cleavage sites was the presence of an inverted repeat from position -3 to +7. Comparison of amonafide stimulation of DNA cleavage in oligonucleotides bearing base mutations at positions -2, -3 and/or +6, +7 suggested that DNA sequence, and not a putative cruciform structure, was critical for drug action. Moreover, the results showed that, for strong cleavage stimulation, the primary drug requirements at -1 and +1 positions were not sufficient and that the sequence 5'-WRC decreases A-3' (W, A or T; R, A or G) is required from -3 to +1 positions at both strands. The results suggest that the exceptionally high sequence specificity of amonafide is the result of optimal drug interactions with both the two enzyme subunits.
Collapse
Affiliation(s)
- P De Isabella
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | |
Collapse
|
46
|
Freudenreich CH, Kreuzer KN. Localization of an aminoacridine antitumor agent in a type II topoisomerase-DNA complex. Proc Natl Acad Sci U S A 1994; 91:11007-11. [PMID: 7971998 PMCID: PMC45155 DOI: 10.1073/pnas.91.23.11007] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Type II topoisomerases are the targets of several classes of chemotherapeutic agents that stabilize an intermediate of the catalytic cycle with the enzyme covalently linked to cleaved DNA. We have used 3-azido-AMSA [4'-(3-azido-9-acridinylamino)methanesulfon-m-anisidide], a photo-activatible analog of the inhibitor m-AMSA [4'-(9-acridinylamino)methanesulfon-m-anisidide], to localize the inhibitor binding site in a cleavage complex consisting of an oligonucleotide substrate and the bacteriophage T4 type II DNA topoisomerase. Upon photoactivation, the inhibitor covalently attached to the substrate only in the presence of topoisomerase. Sites of inhibitor attachment were detected by primer-extension analysis and by piperidine-induced cleavage of the covalently modified substrate. 3-Azido-AMSA reacted with bases immediately adjacent to the two phosphodiester bonds cleaved by the enzyme. Therefore, topoisomerase creates or stabilizes preferential binding sites for the inhibitor precisely at the two sites of DNA cleavage.
Collapse
Affiliation(s)
- C H Freudenreich
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
47
|
Affiliation(s)
- P M Watt
- Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, U.K
| | | |
Collapse
|
48
|
Palumbo M, Mabilia M, Pozzan A, Capranico G, Tinelli S, Zunino F. Conformational properties of topoisomerase II inhibitors and sequence specificity of DNA cleavage. J Mol Recognit 1994; 7:227-31. [PMID: 7880548 DOI: 10.1002/jmr.300070312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sequence specificity of topoisomerase-II-mediated DNA cleavage, stimulated by 2-methyl-9-hydroxy ellipticinium and 4',5,7-trihydroxyflavone (genistein) was investigated by sequencing analysis of DNA cleavage sites and molecular modeling techniques. The former drug exhibits a marked preference for a T base at the position immediately preceding the cleavage site (-1). The latter shares the preference for the same base, with an additional preference for a thymine at position +1. The cleavage intensity patterns in the presence of the two drugs differ considerably. From a conformational point of view, ellipticinium and genistein exhibit similar overall shape and dimensions. However, the fused ring system in the former generates a planar structure whereas the single bond, connecting the two aromatic portions in the latter, allows internal rotation. The most stable conformation of genistein corresponds to a deviation of about 40 degrees from planarity. A computer-assisted analysis was carried out to compare the steric and electrostatic properties of the two compounds. Two types of preferred (energetically almost degenerate) alignment for the two molecules were found. One corresponds to overlapping of the 9-hydroxyl containing ring of ellipticinium with the 4'-hydroxyphenyl moiety of genistein, the other envisages the same moiety of ellipticine superimposed to the hydroxyl-benzopyrone portion of genistein. The structural similarities of the test drugs might account for the common preference for stimulation of DNA cleavage at position +1, whereas the different possible arrangements of genistein in the cleavable complex could explain both the additional +1 specificity exhibited by this compound and the differences in cleavage intensity patterns observed in comparison to ellipticinium.
Collapse
Affiliation(s)
- M Palumbo
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Bigioni M, Zunino F, Capranico G. Base mutation analysis of topoisomerase II-idarubicin-DNA ternary complex formation. Evidence for enzyme subunit cooperativity in DNA cleavage. Nucleic Acids Res 1994; 22:2274-81. [PMID: 8036155 PMCID: PMC523684 DOI: 10.1093/nar/22.12.2274] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antitumor drugs, such as anthracyclines, interfere with mammalian DNA topoisomerase II by forming a ternary complex, DNA-drug-enzyme, in which DNA strands are cleaved and covalently linked to the enzyme. In this work, a synthetic 36-bp DNA oligomer derived from SV40 and mutated variants were used to determine the effects of base mutations on DNA cleavage levels produced by murine topoisomerase II with and without idarubicin. Although site competition could affect cleavage levels, mutation effects were rather similar among several cleavage sites. The major sequence determinants of topoisomerase II DNA cleavage without drugs are up to five base pairs apart from the strand cut, suggesting that DNA protein contacts involving these bases are particularly critical for DNA site recognition. Cleavage sites with adenines at positions -1 were detected without idarubicin only under conditions favouring enzyme binding to DNA, showing that these sites are low affinity sites for topoisomerase II DNA cleavage and/or binding. Moreover, the results indicated that the sequence 5'-(A)TA/(A)-3' (the slash indicates the cleaved bond, parenthesis indicate conditioned preference) from -3 to +1 positions constitutes the complete base sequence preferred by anthracyclines. An important finding was that mutations that improve the fit to the above consensus on one strand can also increase cleavage on the opposite strand, suggesting that a drug molecule may effectively interact with one enzyme subunit only and trap the whole dimeric enzyme. These findings documented that DNA recognition by topoisomerase II may occur at one or the other strand, and not necessarily at both of them, and that the two subunits can act cooperatively to cleave a double helix.
Collapse
Affiliation(s)
- M Bigioni
- Division of Experimental Oncology B, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy
| | | | | |
Collapse
|
50
|
Cullinane C, Cutts SM, van Rosmalen A, Phillips DR. Formation of adriamycin--DNA adducts in vitro. Nucleic Acids Res 1994; 22:2296-303. [PMID: 8036157 PMCID: PMC523687 DOI: 10.1093/nar/22.12.2296] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Adriamycin is known to induce the formation of adducts with DNA when reacted under in vitro transcription conditions. The factors affecting the extent of adduct formation were examined in order to establish the critical components and optimal conditions required for the reaction, and to gain insight into the nature of the DNA-adduct complex. There was a strong dependence on reaction temperature (with a 40-fold increase of adducts at 40-50 degrees C compared to 10 degrees C), pH (maximum adducts at pH 7), but little dependence on the oxygen level. There was an absolute requirement for a reducing agent, with adducts detected with DTT, beta-mercaptoethanol and glutathione, maximal adducts were formed at high levels of DTT (5-10 mM). Adducts were also formed with a xanthine oxidase/NADH reducing system, with increasing amounts of adducts detected with increasing NADH; no adducts were detected in the absence of either the enzyme or NADH. Of fourteen derivatives studied, only four yielded a similar extent of adduct formation as adriamycin; there was no absolute requirement for a carbonyl at C13 or hydroxyl at C14. Adducts were also observed with ssDNA but required a longer reaction time compared to dsDNA. The sequence specificity of adduct formation with ssDNA was examined using a primer-extension assay; almost all adducts were associated with a guanine residue. Overall, the results are consistent with a two-step reaction mechanism involving reductive activation of adriamycin, with the activated species then reacting with the guanine residues of either dsDNA or ssDNA.
Collapse
Affiliation(s)
- C Cullinane
- Department of Biochemistry, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | |
Collapse
|