1
|
Cheng C, Lu D, Sun H, Zhang K, Yin L, Luan G, Liu Y, Ma H, Lu X. Structural insight into the functional regulation of Elongation factor Tu by reactive oxygen species in Synechococcus elongatus PCC 7942. Int J Biol Macromol 2024; 277:133632. [PMID: 38971279 DOI: 10.1016/j.ijbiomac.2024.133632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In cyanobacteria, Elongation factor Tu (EF-Tu) plays a crucial role in the repair of photosystem II (PSII), which is highly susceptible to oxidative stress induced by light exposure and regulated by reactive oxygen species (ROS). However, the specific molecular mechanism governing the functional regulation of EF-Tu by ROS remains unclear. Previous research has shown that a mutated EF-Tu, where C82 is substituted with a Ser residue, can alleviate photoinhibition, highlighting the important role of C82 in EF-Tu photosensitivity. In this study, we elucidated how ROS deactivate EF-Tu by examining the crystal structures of EF-Tu in both wild-type and mutated form (C82S) individually at resolutions of 1.7 Å and 2.0 Å in Synechococcus elongatus PCC 7942 complexed with GDP. Specifically, the GDP-bound form of EF-Tu adopts an open conformation with C82 located internally, making it resistant to oxidation. Coordinated conformational changes in switches I and II create a tunnel that positions C82 for ROS interaction, revealing the vulnerability of the closed conformation of EF-Tu to oxidation. An analysis of these two structures reveals that the precise spatial arrangement of C82 plays a crucial role in modulating EF-Tu's response to ROS, serving as a regulatory element that governs photosynthetic biosynthesis.
Collapse
Affiliation(s)
- Chen Cheng
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China
| | - Di Lu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Keke Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Lei Yin
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - YaJun Liu
- School of Chemical Engineering, Marine and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Honglei Ma
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| |
Collapse
|
2
|
Morea V, Angelucci F, Bellelli A. Is allostery a fuzzy concept? FEBS Open Bio 2024; 14:1040-1056. [PMID: 38783588 PMCID: PMC11216940 DOI: 10.1002/2211-5463.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/25/2024] Open
Abstract
Allostery is an important property of biological macromolecules which regulates diverse biological functions such as catalysis, signal transduction, transport, and molecular recognition. However, the concept was expressed using two different definitions by J. Monod and, over time, more have been added by different authors, making it fuzzy. Here, we reviewed the different meanings of allostery in the current literature and found that it has been used to indicate that the function of a protein is regulated by heterotropic ligands, and/or that the binding of ligands and substrates presents homotropic positive or negative cooperativity, whatever the hypothesized or demonstrated reaction mechanism might be. Thus, proteins defined to be allosteric include not only those that obey the two-state concerted model, but also those that obey different reaction mechanisms such as ligand-induced fit, possibly coupled to sequential structure changes, and ligand-linked dissociation-association. Since each reaction mechanism requires its own mathematical description and is defined by it, there are many possible 'allosteries'. This lack of clarity is made even fuzzier by the fact that the reaction mechanism is often assigned imprecisely and/or implicitly in the absence of the necessary experimental evidence. In this review, we examine a list of proteins that have been defined to be allosteric and attempt to assign a reaction mechanism to as many as possible.
Collapse
Affiliation(s)
- Veronica Morea
- Institute of Molecular Biology and Pathology, CNRRomeItaly
| | - Francesco Angelucci
- Department of Life, Health, and Environmental SciencesUniversity of L'AquilaItaly
| | - Andrea Bellelli
- Department of Biochemical Sciences “A. Rossi Fanelli”Sapienza University of RomeItaly
| |
Collapse
|
3
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
5
|
Sun Y, Wang X, Li J, Xue F, Tang F, Dai J. Extraintestinal pathogenic Escherichia coli utilizes the surface-expressed elongation factor Tu to bind and acquire iron from holo-transferrin. Virulence 2022; 13:698-713. [PMID: 35443872 PMCID: PMC9037478 DOI: 10.1080/21505594.2022.2066274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a common anthropozoonotic pathogen that causes systemic infections. To establish infection, ExPEC must utilize essential nutrients including iron from the host. Transferrin is an important iron source for multiple bacteria. However, the mechanism by which ExPEC utilizes transferrin remains unclear. In this study, we found that iron-saturated holo-transferrin rather than iron-free apo-transferrin promoted the vitality of ExPEC in heat-inactivated human serum. The multifunctional protein Elongation factor Tu (EFTu) worked as a holo-transferrin binding protein. EFTu not only bound holo-transferrin rather than apo-transferrin but also released transferrin-related iron, with all domains of EFTu involved in holo-transferrin binding and iron release events. We also identified the surface location of EFTu on ExPEC. Overexpression of EFTu on the surface of nonpathogenic E. coli not only promoted the binding of bacteria to holo-transferrin but also facilitated the uptake of transferrin-related iron. More importantly, it significantly enhanced the survival of E. coli in heat-inactivated human serum, which was positively correlated with holo-transferrin but not apo-transferrin. Our research revealed a novel function of EFTu in binding holo-transferrin to promote iron uptake by bacteria, suggesting that EFTu was a potential virulence factor of ExPEC. In addition, our study provided research avenues into the iron acquisition and pathogenicity mechanisms of ExPEC.
Collapse
Affiliation(s)
- Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuhang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jin Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
7
|
Suzuki T, Ito K, Miyoshi T, Murakami R, Uchiumi T. Structural insights into the Switching Off of the Interaction between the Archaeal Ribosomal Stalk and aEF1A by Nucleotide Exchange Factor aEF1B. J Mol Biol 2021; 433:167046. [PMID: 33971210 DOI: 10.1016/j.jmb.2021.167046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
The ribosomal stalk protein plays a crucial role in functional interactions with translational GTPase factors. It has been shown that the archaeal stalk aP1 binds to both GDP- and GTP-bound conformations of aEF1A through its C-terminal region in two different modes. To obtain an insight into how the aP1•aEF1A binding mode changes during the process of nucleotide exchange from GDP to GTP on aEF1A, we have analyzed structural changes in aEF1A upon binding of the nucleotide exchange factor aEF1B. The isolated archaeal aEF1B has nucleotide exchange ability in the presence of aa-tRNA but not deacylated tRNA, and increases activity of polyphenylalanine synthesis 4-fold. The aEF1B mutation, R90A, results in loss of its original nucleotide exchange activity but retains a remarkable ability to enhance polyphenylalanine synthesis. These results suggest an additional functional role for aEF1B other than in nucleotide exchange. The crystal structure of the aEF1A•aEF1B complex, resolved at 2.0 Å resolution, shows marked rotational movement of domain 1 of aEF1A compared to the structure of aEF1A•GDP•aP1, and this conformational change results in disruption of the original aP1 binding site between domains 1 and 3 of aEF1A. The loss of aP1 binding to the aEF1A•aEF1B complex was confirmed by native gel analysis. The results suggest that aEF1B plays a role in switching off the interaction between aP1 and aEF1A•GDP, as well as in nucleotide exchange, and promote translation elongation.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Tomohiro Miyoshi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Ryo Murakami
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan; The Institute of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
8
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
9
|
Rogne P, Dulko-Smith B, Goodman J, Rosselin M, Grundström C, Hedberg C, Nam K, Sauer-Eriksson AE, Wolf-Watz M. Structural Basis for GTP versus ATP Selectivity in the NMP Kinase AK3. Biochemistry 2020; 59:3570-3581. [PMID: 32822537 DOI: 10.1021/acs.biochem.0c00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ATP and GTP are exceptionally important molecules in biology with multiple, and often discrete, functions. Therefore, enzymes that bind to either of them must develop robust mechanisms to selectively utilize one or the other. Here, this specific problem is addressed by molecular studies of the human NMP kinase AK3, which uses GTP to phosphorylate AMP. AK3 plays an important role in the citric acid cycle, where it is responsible for GTP/GDP recycling. By combining a structural biology approach with functional experiments, we present a comprehensive structural and mechanistic understanding of the enzyme. We discovered that AK3 functions by recruitment of GTP to the active site, while ATP is rejected and nonproductively bound to the AMP binding site. Consequently, ATP acts as an inhibitor with respect to GTP and AMP. The overall features with specific recognition of the correct substrate and nonproductive binding by the incorrect substrate bear a strong similarity to previous findings for the ATP specific NMP kinase adenylate kinase. Taken together, we are now able to provide the fundamental principles for GTP and ATP selectivity in the large NMP kinase family. As a side-result originating from nonlinearity of chemical shifts in GTP and ATP titrations, we find that protein surfaces offer a general and weak binding affinity for both GTP and ATP. These nonspecific interactions likely act to lower the available intracellular GTP and ATP concentrations and may have driven evolution of the Michaelis constants of NMP kinases accordingly.
Collapse
Affiliation(s)
- Per Rogne
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Alington, Arlington, Texas 76019-0065, United States
| | - Jack Goodman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Marie Rosselin
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Alington, Arlington, Texas 76019-0065, United States
| | | | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
10
|
Loveland AB, Demo G, Korostelev AA. Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading. Nature 2020; 584:640-645. [PMID: 32612237 PMCID: PMC7483604 DOI: 10.1038/s41586-020-2447-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/13/2022]
Abstract
Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA delivered by elongation factor EF-Tu1. Understanding the molecular mechanism of proofreading requires visualizing GTP-catalyzed elongation, which has remained a challenge2–4. Here, time-resolved cryo-EM revealed 33 states following aminoacyl-tRNA delivery by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding center (DC) dynamically monitors codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis allows EF-Tu’s GTPase domain to extend away, releasing EF-Tu from tRNA. Then, the 30S subunit locks cognate tRNA in the DC, and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase center. By contrast, the DC fails to lock near-cognate tRNA, allowing dissociation of near-cognate tRNA during both initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between initial selection5,6 and the previously unseen proofreading, which together govern efficient rejection of incorrect tRNA.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Fenwick MK, Ealick SE. Structural basis of elongation factor 2 switching. Curr Res Struct Biol 2020; 2:25-34. [PMID: 34235467 PMCID: PMC8244253 DOI: 10.1016/j.crstbi.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Archaebacterial and eukaryotic elongation factor 2 (EF-2) and bacterial elongation factor G (EF-G) are five domain GTPases that catalyze the ribosomal translocation of tRNA and mRNA. In the classical mechanism of activation, GTPases are switched on through GDP/GTP exchange, which is accompanied by the ordering of two flexible segments called switch I and II. However, crystal structures of EF-2 and EF-G have thus far not revealed the conformations required by the classical mechanism. Here, we describe crystal structures of Methanoperedens nitroreducens EF-2 (MnEF-2) and MnEF-2-H595N bound to GMPPCP (GppCp) and magnesium displaying previously unreported compact conformations. Domain III forms interfaces with the other four domains and the overall conformations resemble that of SNU114, the eukaryotic spliceosomal GTPase. The gamma phosphate of GMPPCP is detected through interactions with switch I and a P-loop structural element. Switch II is highly ordered whereas switch I shows a variable degree of ordering. The ordered state results in a tight interdomain arrangement of domains I-III and the formation of a portion of a predicted monovalent cation site involving the P-loop and switch I. The side chain of an essential histidine residue in switch II is placed in the inactive conformation observed for the “on” state of elongation factor EF-Tu. The compact conformations of MnEF-2 and MnEF-2-H595N suggest an “on” ribosome-free conformational state. Crystal structures of ribosome-free elongation factor 2 (EF-2) bound to GTP analog and magnesium. Compact conformation and P-loop, switch I, and switch II structures suggest “on” state. Arrangement of domains I-III similar to that of ribosome-bound EF-2/EF-G complexed with GTP analog. Switch II histidine shows inactive conformation observed for “on” state of ribosome-free EF-Tu.
Collapse
Affiliation(s)
- Michael K Fenwick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven E Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
12
|
Girodat D, Blanchard SC, Wieden HJ, Sanbonmatsu KY. Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. J Mol Biol 2020; 432:3064-3077. [PMID: 32061931 DOI: 10.1016/j.jmb.2020.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a β-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; New Mexico Consortium, Los Alamos, NM, 87544.
| |
Collapse
|
13
|
Warias M, Grubmüller H, Bock LV. tRNA Dissociation from EF-Tu after GTP Hydrolysis: Primary Steps and Antibiotic Inhibition. Biophys J 2020; 118:151-161. [PMID: 31711607 PMCID: PMC6950810 DOI: 10.1016/j.bpj.2019.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 11/25/2022] Open
Abstract
In each round of ribosomal translation, the translational GTPase elongation factor Tu (EF-Tu) delivers a transfer RNA (tRNA) to the ribosome. After successful decoding, EF-Tu hydrolyzes GTP, which triggers a conformational change that ultimately results in the release of the tRNA from EF-Tu. To identify the primary steps of these conformational changes and how they are prevented by the antibiotic kirromycin, we employed all-atom explicit-solvent molecular dynamics simulations of the full ribosome-EF-Tu complex. Our results suggest that after GTP hydrolysis and Pi release, the loss of interactions between the nucleotide and the switch 1 loop of EF-Tu allows domain D1 of EF-Tu to rotate relative to domains D2 and D3 and leads to an increased flexibility of the switch 1 loop. This rotation induces a closing of the D1-D3 interface and an opening of the D1-D2 interface. We propose that the opening of the D1-D2 interface, which binds the CCA tail of the tRNA, weakens the crucial EF-Tu-tRNA interactions, which lowers tRNA binding affinity, representing the first step of tRNA release. Kirromycin binds within the D1-D3 interface, sterically blocking its closure, but does not prevent hydrolysis. The resulting increased flexibility of switch 1 explains why it is not resolved in kirromycin-bound structures.
Collapse
Affiliation(s)
- Malte Warias
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Lars V Bock
- Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
14
|
Ravasio R, Flatt SM, Yan L, Zamuner S, Brito C, Wyart M. Mechanics of Allostery: Contrasting the Induced Fit and Population Shift Scenarios. Biophys J 2019; 117:1954-1962. [PMID: 31653447 PMCID: PMC7031744 DOI: 10.1016/j.bpj.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
In allosteric proteins, binding a ligand can affect function at a distant location, for example, by changing the binding affinity of a substrate at the active site. The induced fit and population shift models, which differ by the assumed number of stable configurations, explain such cooperative binding from a thermodynamic viewpoint. Yet, understanding what mechanical principles constrain these models remains a challenge. Here, we provide an empirical study on 34 proteins supporting the idea that allosteric conformational change generally occurs along a soft elastic mode presenting extended regions of high shear. We argue, based on a detailed analysis of how the energy profile along such a mode depends on binding, that in the induced fit scenario, there is an optimal stiffness ka∗ ∼ 1/N for cooperative binding, where N is the number of residues. We find that the population shift scenario is more robust to mutations affecting stiffness because binding becomes more and more cooperative with stiffness up to the same characteristic value ka∗, beyond which cooperativity saturates instead of decaying. We numerically confirm these findings in a nonlinear mechanical model. Dynamical considerations suggest that a stiffness of order ka∗ is favorable in that scenario as well, supporting that for proper function, proteins must evolve a functional elastic mode that is softer as their size increases. In consistency with this view, we find a fair anticorrelation between the stiffness of the allosteric response and protein size in our data set.
Collapse
Affiliation(s)
- Riccardo Ravasio
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Solange Marie Flatt
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Le Yan
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California
| | - Stefano Zamuner
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, State of Rio Grande do Sul, Brazil
| | - Matthieu Wyart
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
16
|
Tanzawa T, Kato K, Girodat D, Ose T, Kumakura Y, Wieden HJ, Uchiumi T, Tanaka I, Yao M. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion. Nucleic Acids Res 2019; 46:3232-3244. [PMID: 29471537 PMCID: PMC5887453 DOI: 10.1093/nar/gky115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2018] [Indexed: 01/17/2023] Open
Abstract
Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G′ of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.
Collapse
Affiliation(s)
- Takehito Tanzawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toyoyuki Ose
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Kumakura
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
17
|
Kavaliauskas D, Chen C, Liu W, Cooperman BS, Goldman YE, Knudsen CR. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome. Nucleic Acids Res 2019; 46:8651-8661. [PMID: 30107527 PMCID: PMC6144866 DOI: 10.1093/nar/gky651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
The GTPase elongation factor EF-Tu delivers aminoacyl-tRNAs to the mRNA-programmed ribosome during translation. Cognate codon-anticodon interaction stimulates GTP hydrolysis within EF-Tu. It has been proposed that EF-Tu undergoes a large conformational change subsequent to GTP hydrolysis, which results in the accommodation of aminoacyl-tRNA into the ribosomal A-site. However, this proposal has never been tested directly. Here, we apply single-molecule total internal reflection fluorescence microscopy to study the conformational dynamics of EF-Tu when bound to the ribosome. Our studies show that GTP hydrolysis initiates a partial, comparatively small conformational change of EF-Tu on the ribosome, not directly along the path from the solution 'GTP' to the 'GDP' structure. The final motion is completed either concomitant with or following dissociation of EF-Tu from the ribosome. The structural transition of EF-Tu on the ribosome is slower when aa-tRNA binds to a cognate versus a near-cognate codon. The resulting longer residence time of EF-Tu on the ribosome may be important for promoting accommodation of the cognate aminoacyl-tRNA into the A-site.
Collapse
Affiliation(s)
- Darius Kavaliauskas
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Chunlai Chen
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Liu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Johansen JS, Kavaliauskas D, Pfeil SH, Blaise M, Cooperman BS, Goldman YE, Thirup SS, Knudsen CR. E. coli elongation factor Tu bound to a GTP analogue displays an open conformation equivalent to the GDP-bound form. Nucleic Acids Res 2019; 46:8641-8650. [PMID: 30107565 PMCID: PMC6144822 DOI: 10.1093/nar/gky697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/07/2018] [Indexed: 11/12/2022] Open
Abstract
According to the traditional view, GTPases act as molecular switches, which cycle between distinct ‘on’ and ‘off’ conformations bound to GTP and GDP, respectively. Translation elongation factor EF-Tu is a GTPase essential for prokaryotic protein synthesis. In its GTP-bound form, EF-Tu delivers aminoacylated tRNAs to the ribosome as a ternary complex. GTP hydrolysis is thought to cause the release of EF-Tu from aminoacyl-tRNA and the ribosome due to a dramatic conformational change following Pi release. Here, the crystal structure of Escherichia coli EF-Tu in complex with a non-hydrolysable GTP analogue (GDPNP) has been determined. Remarkably, the overall conformation of EF-Tu·GDPNP displays the classical, open GDP-bound conformation. This is in accordance with an emerging view that the identity of the bound guanine nucleotide is not ‘locking’ the GTPase in a fixed conformation. Using a single-molecule approach, the conformational dynamics of various ligand-bound forms of EF-Tu were probed in solution by fluorescence resonance energy transfer. The results suggest that EF-Tu, free in solution, may sample a wider set of conformations than the structurally well-defined GTP- and GDP-forms known from previous X-ray crystallographic studies. Only upon binding, as a ternary complex, to the mRNA-programmed ribosome, is the well-known, closed GTP-bound conformation, observed.
Collapse
Affiliation(s)
- Jesper S Johansen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Darius Kavaliauskas
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Shawn H Pfeil
- Department of Physics, West Chester University, West Chester, PA 19383, USA
| | - Mickaël Blaise
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yale E Goldman
- Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Søren S Thirup
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Department of Molecular Biology & Genetics, University of Aarhus, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Girodat D, Mercier E, Gzyl KE, Wieden HJ. Elongation Factor Tu's Nucleotide Binding Is Governed by a Thermodynamic Landscape Unique among Bacterial Translation Factors. J Am Chem Soc 2019; 141:10236-10246. [PMID: 31058500 DOI: 10.1021/jacs.9b01522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular switches such as GTPases are powerful devices turning "on" or "off" biomolecular processes at the core of critical biological pathways. To develop molecular switches de novo, an intimate understanding of how they function is required. Here we investigate the thermodynamic parameters that define the nucleotide-dependent switch mechanism of elongation factor (EF) Tu as a prototypical molecular switch. EF-Tu alternates between GTP- and GDP-bound conformations during its functional cycle, representing the "on" and "off" states, respectively. We report for the first time that the activation barriers for nucleotide association are the same for both nucleotides, suggesting a guanosine nucleoside or ribose-first mechanism for nucleotide association. Additionally, molecular dynamics (MD) simulations indicate that enthalpic stabilization of GDP binding compared to GTP binding originates in the backbone hydrogen bonding network of EF-Tu. In contrast, binding of GTP to EF-Tu is entropically driven by the liberation of bound water during the GDP- to GTP-bound transition. GDP binding to the apo conformation of EF-Tu is both enthalpically and entropically favored, a feature unique among translational GTPases. This indicates that the apo conformation does not resemble the GDP-bound state. Finally, we show that antibiotics and single amino acid substitutions can be used to target specific structural elements in EF-Tu to redesign the thermodynamic landscape. These findings demonstrate how, through evolution, EF-Tu has fine-tuned the structural and dynamic features that define nucleotide binding, providing insight into how altering these properties could be exploited for protein engineering.
Collapse
Affiliation(s)
- Dylan Girodat
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Evan Mercier
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Katherine E Gzyl
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| |
Collapse
|
20
|
Mustafi M, Weisshaar JC. Near Saturation of Ribosomal L7/L12 Binding Sites with Ternary Complexes in Slowly Growing E. coli. J Mol Biol 2019; 431:2343-2353. [PMID: 31051175 DOI: 10.1016/j.jmb.2019.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/26/2019] [Accepted: 04/21/2019] [Indexed: 11/26/2022]
Abstract
For Escherichia coli growing rapidly in rich medium at 37 °C, the doubling time can be as short as ~20 min and the average rate of translation (ktrl) can be as fast as ~20 amino acids/s. For slower growth arising from poor nutrient quality or from higher growth osmolality, ktrl decreases significantly. In earlier work from the Hwa lab, a simplified Michaelis-Menten model suggested that the decrease in ktrl arises from a shortage of ternary complexes (TCs) under nutrient limitation and from slower diffusion of TCs under high growth osmolality. Here we present a single-molecule tracking study of the diffusion of EF-Tu in E. coli growing with doubling times in the range 62-190 min at 37 °C due to nutrient limitation, high growth osmolality, or both. The diffusive properties of EF-Tu remain quantitatively indistinguishable across all growth conditions studied. Dissection of the total population into ribosome-bound and free sub-populations, combined with copy number estimates for EF-Tu and ribosomes, indicates that in all cases ~3.7 EF-Tu copies are bound on average to each translating 70S ribosome. Thus, the four L7/L12 binding sites adjacent to the ribosomal A-site in E. coli are essentially saturated with TCs in all conditions, facilitating rapid testing of aminoacyl-tRNAs for a codon match. Evidently, the average translation rate is not limited by either the supply of cognate TCs under nutrient limitation or by the diffusion of free TCs at high osmolality. Some other step or steps must be rate limiting for translation in slow growth.
Collapse
Affiliation(s)
- Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Cooperative energetic effects elicited by the yeast Shwachman-Diamond syndrome protein (Sdo1) and guanine nucleotides modulate the complex conformational landscape of the elongation factor-like 1 (Efl1) GTPase. Biophys Chem 2019; 247:13-24. [PMID: 30780079 DOI: 10.1016/j.bpc.2019.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022]
Abstract
One of the final maturation steps of the large ribosomal subunit requires the joint action of the elongation factor-like 1 (human EFL1, yeast Efl1) GTPase and the Shwachman-Diamond syndrome protein (human SBDS, yeast Sdo1) to release the eukaryotic translation initiation factor 6 (human eIF6, yeast Tif6) and allow the assembly of mature ribosomes. EFL1 function is driven by conformational changes. However, the nature of such conformational changes or the mechanism by which they are prompted are still largely unknown. In previous studies, it has been established that this GTPase interacts with its cofactor in solution in an inverted orientation with respect to the binding mode derived from 60S ribosome subunit cryo-EM data. To shed new light on this conundrum, we characterized calorimetrically the energetic basis describing the recognition of Efl1 to GT(D)P, Sdo1 and their intercommunication in solution. A structural-based analysis of the binding signatures indicates that Efl1 has a large structural flexibility. The mutual effects of Sdo1 and nucleotides on Efl1 modulate in a very specific and robust way the complex conformational landscape of Efl1, resembling the behavior observed with other GTPases and their cofactors.
Collapse
|
22
|
Yang J, Hong J, Luo L, Liu K, Meng C, Ji ZL, Lin D. Biophysical characterization and ligand-binding properties of the elongation factor Tu from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:139-149. [PMID: 30615070 DOI: 10.1093/abbs/gmy164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the key devastating bacterial pathogen responsible for tuberculosis. Increasing emergence of multi-drug-resistant, extensively drug-resistant, and rifampicin/isoniazid-resistant strains of Mtb makes the discovery of validated drug targets an urgent priority. As a vital translational component of the protein biosynthesis system, elongation factor Tu (EF-Tu) is an important molecular switch responsible for selection and binding of the cognate aminoacyl-tRNA to the acceptor site on the ribosome. In addition, EF-Tu from Mtb (MtbEF-Tu) is involved in the initial step of trans-translation which is an effective system for rescuing the stalled ribosomes from non-stop translation complexes under stress conditions. Given its crucial role in protein biosynthesis, EF-Tu is identified as an excellent molecular target for drug design. Here, we reported the recombinant expression, purification, biophysical characterization, and structural modeling of the MtbEF-Tu protein. Our results demonstrated that prokaryotic expression plasmids of pET28a-MtbEF-Tu could be expressed efficiently in Escherichia coli. We successfully purified the 6× His-tagged proteins with a yield of 16.8 mg from 1 l of Luria Bertani medium. Dynamic light scattering experiments showed that MtbEF-Tu existed in a monomeric form, and circular dichroism experiments indicated that MtbEF-Tu was well structured. Moreover, isothermal titration calorimetry experiments displayed that the purified MtbEF-Tu protein possessed intermediate binding affinities for guanosine-5'-triphosphate (GTP) and GDP. The GTP/GDP-binding sites were predicted by flexible molecular docking approach which reveals that GTP/GDP binds to MtbEF-Tu mainly through hydrogen bonds. Our work lays the essential basis for further structural and functional studies of MtbEF-Tu as well as MtbEF-Tu-related novel drug developments.
Collapse
Affiliation(s)
- Juanjuan Yang
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Jing Hong
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ling Luo
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Ke Liu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Chun Meng
- Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and Biotechnology, Fuzhou University, Fuzhou, China
| | - Zhi-liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Donghai Lin
- High-Field NMR Center, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
23
|
Kovács JK, Felső P, Horváth G, Schmidt J, Dorn Á, Ábrahám H, Cox A, Márk L, Emődy L, Kovács T, Schneider G. Stress Response and Virulence Potential Modulating Effect of Peppermint Essential Oil in Campylobacter jejuni. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2971741. [PMID: 30719441 PMCID: PMC6335803 DOI: 10.1155/2019/2971741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
Campylobacter jejuni is one of the most common food-borne bacteria that causes gastrointestinal symptoms. In the present study we have investigated the molecular basis of the anti-Campylobacter effect of peppermint essential oil (PEO), one of the oldest EO used to treat gastrointestinal diseases. Transcriptomic, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and proteomic, two-dimensional polyacryl amid gel electrophoresis (2D-PAGE) methods have revealed that, in the presence of a sublethal concentration of PEO, the expression of several virulence-associated genes was decreased (cheY 0.84x; flhB 0.79x; flgE 0.205x; cadF 0.08x; wlaB 0.89x; porA 0.25x; cbf2 4.3x) while impaired motility was revealed with a functional analysis. Scanning electron micrographs of the exposed cells showed that, unlike in the presence of other stresses, the originally curved C. jejuni cells straightened upon PEO exposure. Gaining insight into the molecular background of this stress response, we have revealed that in the presence of PEO C. jejuni dominantly exerts a general stress response that elevates the expression of general stress genes like dnaK, groEL, groES (10.41x, 3.63x, and 4.77x). The most important genes dps, sodB, and katA involved in oxidative stress responses showed however moderate transcriptional elevations (1,58x, 1,55x, and 1,85x).
Collapse
Affiliation(s)
- J. K. Kovács
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Hungary
| | - P. Felső
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Hungary
| | - Gy. Horváth
- Department of Pharmacognosy, University of Pécs Medical School, Hungary
| | - J. Schmidt
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Hungary
| | - Á. Dorn
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Hungary
| | - H. Ábrahám
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, Hungary
| | - A. Cox
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - L. Márk
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Hungary
| | - L. Emődy
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Hungary
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - T. Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Gy. Schneider
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Hungary
| |
Collapse
|
24
|
Bray MS, Lenz TK, Haynes JW, Bowman JC, Petrov AS, Reddi AR, Hud NV, Williams LD, Glass JB. Multiple prebiotic metals mediate translation. Proc Natl Acad Sci U S A 2018; 115:12164-12169. [PMID: 30413624 PMCID: PMC6275528 DOI: 10.1073/pnas.1803636115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Today, Mg2+ is an essential cofactor with diverse structural and functional roles in life's oldest macromolecular machine, the translation system. We tested whether ancient Earth conditions (low O2, high Fe2+, and high Mn2+) can revert the ribosome to a functional ancestral state. First, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) was used to compare the effect of Mg2+, Fe2+, and Mn2+ on the tertiary structure of rRNA. Then, we used in vitro translation reactions to test whether Fe2+ or Mn2+ could mediate protein production, and quantified ribosomal metal content. We found that (i) Mg2+, Fe2+, and Mn2+ had strikingly similar effects on rRNA folding; (ii) Fe2+ and Mn2+ can replace Mg2+ as the dominant divalent cation during translation of mRNA to functional protein; and (iii) Fe and Mn associate extensively with the ribosome. Given that the translation system originated and matured when Fe2+ and Mn2+ were abundant, these findings suggest that Fe2+ and Mn2+ played a role in early ribosomal evolution.
Collapse
Affiliation(s)
- Marcus S Bray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Timothy K Lenz
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jay William Haynes
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jessica C Bowman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332;
| | - Jennifer B Glass
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
25
|
Yang H, Perrier J, Whitford PC. Disorder guides domain rearrangement in elongation factor Tu. Proteins 2018; 86:1037-1046. [DOI: 10.1002/prot.25575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Yang
- Department of Physics Northeastern University Boston Massachusetts
| | - Jonathan Perrier
- Department of Physics Northeastern University Boston Massachusetts
| | - Paul C. Whitford
- Department of Physics Northeastern University Boston Massachusetts
| |
Collapse
|
26
|
On elongation factor eEFSec, its role and mechanism during selenium incorporation into nascent selenoproteins. Biochim Biophys Acta Gen Subj 2018; 1862:2463-2472. [PMID: 29555379 DOI: 10.1016/j.bbagen.2018.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Selenium, an essential dietary micronutrient, is incorporated into proteins as the amino acid selenocysteine (Sec) in response to in-frame UGA codons. Complex machinery ensures accurate recoding of Sec codons in higher organisms. A specialized elongation factor eEFSec is central to the process. SCOPE OF REVIEW Selenoprotein synthesis relies on selenocysteinyl-tRNASec (Sec-tRNASec), selenocysteine inserting sequence (SECIS) and other selenoprotein mRNA elements, an in-trans SECIS binding protein 2 (SBP2) protein factor, and eEFSec. The exact mechanisms of discrete steps of the Sec UGA recoding are not well understood. However, recent studies on mammalian model systems have revealed the first insights into these mechanisms. Herein, we summarize the current knowledge about the structure and role of mammalian eEFSec. MAJOR CONCLUSIONS eEFSec folds into a chalice-like structure resembling that of the archaeal and bacterial orthologues SelB and the initiation protein factor IF2/eIF5B. The three N-terminal domains harbor major functional sites and adopt an EF-Tu-like fold. The C-terminal domain 4 binds to Sec-tRNASec and SBP2, senses distinct binding domains, and modulates the GTPase activity. Remarkably, GTP hydrolysis does not induce a canonical conformational change in eEFSec, but instead promotes a slight ratchet of domains 1 and 2 and a lever-like movement of domain 4, which may be critical for the release of Sec-tRNASec on the ribosome. GENERAL SIGNIFICANCE Based on current findings, a non-canonical mechanism for elongation of selenoprotein synthesis at the Sec UGA codon is proposed. Although incomplete, our understanding of this fundamental biological process is significantly improved, and it is being harnessed for biomedical and synthetic biology initiatives. This article is part of a Special Issue entitled "Selenium research" in celebration of 200 years of selenium discovery, edited by Dr. Elias Arnér and Dr. Regina Brigelius-Flohe.
Collapse
|
27
|
Talavera A, Hendrix J, Versées W, Jurėnas D, Van Nerom K, Vandenberk N, Singh RK, Konijnenberg A, De Gieter S, Castro-Roa D, Barth A, De Greve H, Sobott F, Hofkens J, Zenkin N, Loris R, Garcia-Pino A. Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. SCIENCE ADVANCES 2018; 4:eaap9714. [PMID: 29546243 PMCID: PMC5851678 DOI: 10.1126/sciadv.aap9714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Bacterial protein synthesis is intricately connected to metabolic rate. One of the ways in which bacteria respond to environmental stress is through posttranslational modifications of translation factors. Translation elongation factor Tu (EF-Tu) is methylated and phosphorylated in response to nutrient starvation upon entering stationary phase, and its phosphorylation is a crucial step in the pathway toward sporulation. We analyze how phosphorylation leads to inactivation of Escherichia coli EF-Tu. We provide structural and biophysical evidence that phosphorylation of EF-Tu at T382 acts as an efficient switch that turns off protein synthesis by decoupling nucleotide binding from the EF-Tu conformational cycle. Direct modifications of the EF-Tu switch I region or modifications in other regions stabilizing the β-hairpin state of switch I result in an effective allosteric trap that restricts the normal dynamics of EF-Tu and enables the evasion of the control exerted by nucleotides on G proteins. These results highlight stabilization of a phosphorylation-induced conformational trap as an essential mechanism for phosphoregulation of bacterial translation and metabolism. We propose that this mechanism may lead to the multisite phosphorylation state observed during dormancy and stationary phase.
Collapse
Affiliation(s)
- Ariel Talavera
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Jelle Hendrix
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
- Biomedical Research Institute, Hasselt University, B-3590 Hasselt, Belgium
| | - Wim Versées
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Dukas Jurėnas
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Niels Vandenberk
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Steven De Gieter
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Anders Barth
- Fluorescence Applications in Biology Laboratory, Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Henri De Greve
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Johan Hofkens
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Remy Loris
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
28
|
Michalska K, Gucinski GC, Garza-Sánchez F, Johnson PM, Stols LM, Eschenfeldt WH, Babnigg G, Low DA, Goulding CW, Joachimiak A, Hayes CS. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs. Nucleic Acids Res 2017; 45:10306-10320. [PMID: 28973472 PMCID: PMC5737660 DOI: 10.1093/nar/gkx700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxin specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Together, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Grant C Gucinski
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - David A Low
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Christopher S Hayes
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
29
|
Tarbouriech N, Ducournau C, Hutin S, Mas PJ, Man P, Forest E, Hart DJ, Peyrefitte CN, Burmeister WP, Iseni F. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Nat Commun 2017; 8:1455. [PMID: 29129932 PMCID: PMC5682278 DOI: 10.1038/s41467-017-01542-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7 Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta–DNA complex. The catalytic subunit E9 of the vaccinia virus DNA polymerase forms a functional polymerase holoenzyme by interacting with the heterodimeric processivity factor A20/D4. Here the authors present the structure of full-length E9 and show that an insertion within its palm domain binds A20, in a mode different from other family B polymerases.
Collapse
Affiliation(s)
- Nicolas Tarbouriech
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Corinne Ducournau
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Stephanie Hutin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Philippe J Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Petr Man
- BioCeV-Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic.,Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Eric Forest
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christophe N Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France.,Emerging Pathogens Laboratory, Fondation Mérieux, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Wim P Burmeister
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| |
Collapse
|
30
|
Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci Rep 2017; 7:11227. [PMID: 28894125 PMCID: PMC5593925 DOI: 10.1038/s41598-017-10644-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/10/2017] [Indexed: 01/10/2023] Open
Abstract
Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.
Collapse
|
31
|
Tetracycline does not directly inhibit the function of bacterial elongation factor Tu. PLoS One 2017; 12:e0178523. [PMID: 28552981 PMCID: PMC5446176 DOI: 10.1371/journal.pone.0178523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 12/02/2022] Open
Abstract
Understanding the molecular mechanism of antibiotics that are currently in use is important for the development of new antimicrobials. The tetracyclines, discovered in the 1940s, are a well-established class of antibiotics that still have a role in treating microbial infections in humans. It is generally accepted that the main target of their action is the ribosome. The estimated affinity for tetracycline binding to the ribosome is relatively low compared to the actual potency of the drug in vivo. Therefore, additional inhibitory effects of tetracycline on the translation machinery have been discussed. Structural evidence suggests that tetracycline inhibits the function of the essential bacterial GTPase Elongation Factor (EF)-Tu through interaction with the bound nucleotide. Based on this, tetracycline has been predicted to impede the nucleotide-binding properties of EF-Tu. However, detailed kinetic studies addressing the effect of tetracycline on nucleotide binding have been prevented by the fluorescence properties of the antibiotic. Here, we report a fluorescence-based kinetic assay that minimizes the effect of tetracycline autofluorescence, enabling the detailed kinetic analysis of the nucleotide-binding properties of Escherichia coli EF-Tu. Furthermore, using physiologically relevant conditions, we demonstrate that tetracycline does not affect EF-Tu’s intrinsic or ribosome-stimulated GTPase activity, nor the stability of the EF-Tu•GTP•Phe-tRNAPhe complex. We therefore provide clear evidence that tetracycline does not directly impede the function of EF-Tu.
Collapse
|
32
|
Duplication of Drosophila melanogaster mitochondrial EF-Tu: pre-adaptation to T-arm truncation and exclusion of bulky aminoacyl residues. Biochem J 2017; 474:957-969. [PMID: 28130490 DOI: 10.1042/bcj20160929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 11/17/2022]
Abstract
Translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNA (aa-tRNA) to ribosomes in protein synthesis. EF-Tu generally recognizes aminoacyl moieties and acceptor- and T-stems of aa-tRNAs. However, nematode mitochondrial (mt) tRNAs frequently lack all or part of the T-arm that is recognized by canonical EF-Tu. We previously reported that two distinct EF-Tu species, EF-Tu1 and EF-Tu2, respectively, recognize mt tRNAs lacking T-arms and D-arms in the mitochondria of the chromadorean nematode Caenorhabditis elegansC. elegans EF-Tu2 specifically recognizes the seryl moiety of serylated D-armless tRNAs. Mitochondria of the enoplean nematode Trichinella possess three structural types of tRNAs: T-armless tRNAs, D-armless tRNAs, and cloverleaf tRNAs with a short T-arm. Trichinella mt EF-Tu1 binds to all three types and EF-Tu2 binds only to D-armless Ser-tRNAs, showing an evolutionary intermediate state from canonical EF-Tu to chromadorean nematode (e.g. C. elegans) EF-Tu species. We report here that two EF-Tu species also participate in Drosophila melanogaster mitochondria. Both D. melanogaster EF-Tu1 and EF-Tu2 bound to cloverleaf and D-armless tRNAs. D. melanogaster EF-Tu1 has the ability to recognize T-armless tRNAs that do not evidently exist in D. melanogaster mitochondria, but do exist in related arthropod species. In addition, D. melanogaster EF-Tu2 preferentially bound to aa-tRNAs carrying small amino acids, but not to aa-tRNAs carrying bulky amino acids. These results suggest that the Drosophila mt translation system could be another intermediate state between the canonical and nematode mitochondria-type translation systems.
Collapse
|
33
|
Maracci C, Rodnina MV. Review: Translational GTPases. Biopolymers 2017; 105:463-75. [PMID: 26971860 PMCID: PMC5084732 DOI: 10.1002/bip.22832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/26/2023]
Abstract
Translational GTPases (trGTPases) play key roles in facilitating protein synthesis on the ribosome. Despite the high degree of evolutionary conservation in the sequences of their GTP-binding domains, the rates of GTP hydrolysis and nucleotide exchange vary broadly between different trGTPases. EF-Tu, one of the best-characterized model G proteins, evolved an exceptionally rapid and tightly regulated GTPase activity, which ensures rapid and accurate incorporation of amino acids into the nascent chain. Other trGTPases instead use the energy of GTP hydrolysis to promote movement or to ensure the forward commitment of translation reactions. Recent data suggest the GTPase mechanism of EF-Tu and provide an insight in the catalysis of GTP hydrolysis by its unusual activator, the ribosome. Here we summarize these advances in understanding the functional cycle and the regulation of trGTPases, stimulated by the elucidation of their structures on the ribosome and the progress in dissecting the reaction mechanism of GTPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 463-475, 2016.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, 37077, Germany
| |
Collapse
|
34
|
Di Nottia M, Montanari A, Verrigni D, Oliva R, Torraco A, Fernandez-Vizarra E, Diodato D, Rizza T, Bianchi M, Catteruccia M, Zeviani M, Dionisi-Vici C, Francisci S, Bertini E, Carrozzo R. Novel mutation in mitochondrial Elongation Factor EF-Tu associated to dysplastic leukoencephalopathy and defective mitochondrial DNA translation. Biochim Biophys Acta Mol Basis Dis 2017; 1863:961-967. [PMID: 28132884 PMCID: PMC5335904 DOI: 10.1016/j.bbadis.2017.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/20/2016] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
The mitochondrial Elongation Factor Tu (EF-Tu), encoded by the TUFM gene, is a highly conserved GTPase, which is part of the mitochondrial protein translation machinery. In its activated form it delivers the aminoacyl-tRNAs to the A site of the mitochondrial ribosome. We report here on a baby girl with severe infantile macrocystic leukodystrophy with micropolygyria and a combined defect of complexes I and IV in muscle biopsy, caused by a novel mutation identified in TUFM. Using human mutant cells and the yeast model, we demonstrate the pathological role of the novel variant. Moreover, results of a molecular modeling study suggest that the mutant is inactive in mitochondrial polypeptide chain elongation, probably as a consequence of its reduced ability to bind mitochondrial aa-tRNAs. Four patients have so far been described with mutations in TUFM, and, following the first description of the disease in a single patient, we describe similar clinical and neuroradiological features in an additional patient.
Collapse
Affiliation(s)
- Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arianna Montanari
- Pasteur Institute Italy - Cenci Bolognetti Foundation, Italy; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Daniela Verrigni
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Daria Diodato
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Teresa Rizza
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marzia Bianchi
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Massimo Zeviani
- Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Francisci
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
35
|
Fan B, Li YL, Li L, Peng XJ, Bu C, Wu XQ, Borriss R. Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions. J Proteomics 2016; 154:1-12. [PMID: 27939684 DOI: 10.1016/j.jprot.2016.11.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
Using the combination of affinity enrichment and high-resolution LC-MS/MS analysis, we performed a large-scale lysine malonylation analysis in the model representative of Gram-positive plant growth-promoting rhizobacteria (PGPR), Bacillus amyloliquefaciens FZB42. Altogether, 809 malonyllysine sites in 382 proteins were identified. The bioinformatic analysis revealed that lysine malonylation occurs on the proteins involved in a variety of biological functions including central carbon metabolism, fatty acid biosynthesis and metabolism, NAD(P) binding and translation machinery. A group of proteins known to be implicated in rhizobacterium-plant interaction were also malonylated; especially, the enzymes responsible for antibiotic production including polyketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) were highly malonylated. Furthermore, our analysis showed malonylation occurred on proteins structure with higher surface accessibility and appeared to be conserved in many bacteria but not in archaea. The results provide us valuable insights into the potential roles of lysine malonylation in governing bacterial metabolism and cellular processes. BIOLOGICAL SIGNIFICANCE Although in mammalian cells some important findings have been discovered that protein malonylation is related to basic metabolism and chronic disease, few studies have been performed on prokaryotic malonylome. In this study, we determined the malonylation profiles of Bacillus amyloliquefaciens FZB42, a model organism of Gram-positive plant growth-promoting rhizobacteria. FZB42 is known for the extensive investigations on its strong ability of producing antimicrobial polyketides and its potent activities of stimulating plant growth. Our analysis shows that malonylation is highly related to the polyketide synthases and the proteins involved bacterial interactions with plants. The results not only provide one of the first malonylomes for exploring the biochemical nature of bacterial proteins, but also shed light on the better understanding of bacterial antibiotic biosynthesis and plant-microbe interaction.
Collapse
Affiliation(s)
- Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Yu-Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Lei Li
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany.
| | - Xiao-Jun Peng
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China.
| | - Chen Bu
- Jingjie PTM Biolabs (Hangzhou) Co. Ltd., Hangzhou 310018, China.
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 210037 Nanjing, China.
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Albrecht Daniel Thaer Institut für Agrar- und Gartenbauwissenschaften, Lebenswissenschaftliche Fakultät, Humboldt Universität zu Berlin, 14195 Berlin, Germany.
| |
Collapse
|
36
|
Shroder DY, Lippert LG, Goldman YE. Single molecule optical measurements of orientation and rotations of biological macromolecules. Methods Appl Fluoresc 2016; 4:042004. [PMID: 28192292 PMCID: PMC5308470 DOI: 10.1088/2050-6120/4/4/042004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Subdomains of macromolecules often undergo large orientation changes during their catalytic cycles that are essential for their activity. Tracking these rearrangements in real time opens a powerful window into the link between protein structure and functional output. Site-specific labeling of individual molecules with polarized optical probes and measurement of their spatial orientation can give insight into the crucial conformational changes, dynamics, and fluctuations of macromolecules. Here we describe the range of single molecule optical technologies that can extract orientation information from these probes, review the relevant types of probes and labeling techniques, and highlight the advantages and disadvantages of these technologies for addressing specific inquiries.
Collapse
|
37
|
Crystal structures of the human elongation factor eEFSec suggest a non-canonical mechanism for selenocysteine incorporation. Nat Commun 2016; 7:12941. [PMID: 27708257 PMCID: PMC5059743 DOI: 10.1038/ncomms12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2016] [Indexed: 01/07/2023] Open
Abstract
Selenocysteine is the only proteinogenic amino acid encoded by a recoded in-frame UGA codon that does not operate as the canonical opal stop codon. A specialized translation elongation factor, eEFSec in eukaryotes and SelB in prokaryotes, promotes selenocysteine incorporation into selenoproteins by a still poorly understood mechanism. Our structural and biochemical results reveal that four domains of human eEFSec fold into a chalice-like structure that has similar binding affinities for GDP, GTP and other guanine nucleotides. Surprisingly, unlike in eEF1A and EF-Tu, the guanine nucleotide exchange does not cause a major conformational change in domain 1 of eEFSec, but instead induces a swing of domain 4. We propose that eEFSec employs a non-canonical mechanism involving the distinct C-terminal domain 4 for the release of the selenocysteinyl-tRNA during decoding on the ribosome.
Collapse
|
38
|
Antimicrobial and Virulence-Modulating Effects of Clove Essential Oil on the Foodborne Pathogen Campylobacter jejuni. Appl Environ Microbiol 2016; 82:6158-6166. [PMID: 27520816 DOI: 10.1128/aem.01221-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 12/19/2022] Open
Abstract
Our study investigated the antimicrobial action of clove (Syzygium aromaticum) essential oil (EO) on the zoonotic pathogen Campylobacter jejuni After confirming the clove essential oil's general antibacterial effect, we analyzed the reference strain Campylobacter jejuni NCTC 11168. Phenotypic, proteomic, and transcriptomic methods were used to reveal changes in cell morphology and functions when exposed to sublethal concentrations of clove EO. The normally curved cells showed markedly straightened and shrunken morphology on the scanning electron micrographs as a result of stress. Although, oxidative stress, as a generally accepted response to essential oils, was also present, the dominance of a general stress response was demonstrated by reverse transcription-PCR (RT-PCR). The results of RT-PCR and two-dimensional (2D) PAGE revealed that clove oil perturbs the expression of virulence-associated genes taking part in the synthesis of flagella, PEB1, PEB4, lipopolysaccharide (LPS), and serine protease. Loss of motility was also detected by a phenotypic test. Bioautographic analysis revealed that besides its major component, eugenol, at least four other spots of clove EO possessed bactericidal activity against C. jejuni Our findings show that clove EO has a marked antibacterial and potential virulence-modulating effect on C. jejuni IMPORTANCE: This study demonstrates that the components of clove essential oil influence not only the expression of general stress genes but also the expression of virulence-associated genes. Based on this finding, alternative strategies can be worked on to control this important foodborne pathogen.
Collapse
|
39
|
Créchet JB, Malosse C, Hountondji C. EF-Tu from the enacyloxin producing Frateuria W-315 strain: Structure/activity relationship and antibiotic resistance. Biochimie 2016; 127:59-69. [PMID: 27126073 DOI: 10.1016/j.biochi.2016.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
In this report, we have demonstrated that the poly(U)-dependent poly(Phe) synthesis activity of elongator factor Tu (EF-Tu) from the enacyloxin producing strain Frateuria sp. W-315 is inhibited by the antibiotic similarly to that of Escherichia coli EF-Tu. The inhibitory effect of enacyloxin observed in a purified system was the same as that obtained with an S30 extract from E. coli or Frateuria sp. W-315, respectively, suggesting that antibiotic resistance of enacyloxin producing Frateuria sp. W-315 is not due neither to EF-Tu nor to other components of the translation machinery but to a still unknown mechanism. The EF-Tu gene, as PCR amplified from Frateuria W-315 genomic DNA and sequenced represented an ORF of 1191 nucleotides corresponding to 396 amino acids. This protein is larger than the product of tufA from E. coli by only two amino acid residues. Alignment of the amino acid sequence of EF-Tu from E. coli with those of Frateuria and Ralstonia solanacearum indicates on average 80% identical amino acid residues and 9.7% conservative replacements between EF-Tu Frateuria and EF-Tu E. coli, on one hand, and 97% identity and 1.7% conservative replacement between EF-Tu Frateuria and EF-Tu Ralstonia solanacearum, on the other hand. These strong primary structure similarities between EF-Tu from different origins are consistent with the fact that this factor is essential for the translation process in all kingdoms of life. Comparison of the effects of antibiotics on EF-Tu Frateuria and EF-Tu E. coli revealed that enacyloxin, kirromycin and pulvomycin exert a stronger stimulation of the GDP dissociation rate on EF-Tu Frateuria, while the effects of the antibiotics on the GDP association rate were comparable for the two EF-Tu species. Different mutants of EF-Tu E. coli were constructed with the help of site directed mutagenesis by changing one or several residues of EF-Tu E. coli by the corresponding residues of EF-Tu Frateuria. The single A45K substitution did not modify the intrinsic GTPase activity of EF-Tu E. coli. In contrast, a 2-3 fold stimulation of the intrinsic GTPase activity was observed with the single A42E, F46Y, Q48E and the double F46Y/Q48E substitution. Finally, up to a 7 fold stimulation was observed with the quadruple substitution (mutant A42E/A45K/F46Y/Q48E.
Collapse
Affiliation(s)
| | - Christian Malosse
- Institut Pasteur, Département de Biologie Structurale et Chimie, Unité Spectrométrie de Masse Structurale et Protéomique, CNRS UMR 3528, 28 rue du Dr Roux, 75724 PARIS Cedex 15 France
| | - Codjo Hountondji
- Sorbonne Universités UPMC Univ Paris 06, Unité de Recherche UPMC UR6 "Enzymologie de l'ARN", 4, Place Jussieu, F-75252 Paris Cedex 05, France
| |
Collapse
|
40
|
Katava M, Kalimeri M, Stirnemann G, Sterpone F. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J Phys Chem B 2016; 120:2721-30. [DOI: 10.1021/acs.jpcb.6b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Katava
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Department
of Physics, Tampere University of Technology, Tampere, Finland
| | - Guillaume Stirnemann
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
41
|
Yutthanasirikul R, Nagano T, Jimbo H, Hihara Y, Kanamori T, Ueda T, Haruyama T, Konno H, Yoshida K, Hisabori T, Nishiyama Y. Oxidation of a Cysteine Residue in Elongation Factor EF-Tu Reversibly Inhibits Translation in the Cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 2016; 291:5860-5870. [PMID: 26786107 DOI: 10.1074/jbc.m115.706424] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Indexed: 11/06/2022] Open
Abstract
Translational elongation is susceptible to inactivation by reactive oxygen species (ROS) in the cyanobacterium Synechocystis sp. PCC 6803, and elongation factor G has been identified as a target of oxidation by ROS. In the present study we examined the sensitivity to oxidation by ROS of another elongation factor, EF-Tu. The structure of EF-Tu changes dramatically depending on the bound nucleotide. Therefore, we investigated the sensitivity to oxidation in vitro of GTP- and GDP-bound EF-Tu as well as that of nucleotide-free EF-Tu. Assays of translational activity with a reconstituted translation system from Escherichia coli revealed that GTP-bound and nucleotide-free EF-Tu were sensitive to oxidation by H2O2, whereas GDP-bound EF-Tu was resistant to H2O2. The inactivation of EF-Tu was the result of oxidation of Cys-82, a single cysteine residue, and subsequent formation of both an intermolecular disulfide bond and sulfenic acid. Replacement of Cys-82 with serine rendered EF-Tu resistant to inactivation by H2O2, confirming that Cys-82 was a target of oxidation. Furthermore, oxidized EF-Tu was reduced and reactivated by thioredoxin. Gel-filtration chromatography revealed that some of the oxidized nucleotide-free EF-Tu formed large complexes of >30 molecules. Atomic force microscopy revealed that such large complexes dissociated into several smaller aggregates upon the addition of dithiothreitol. Immunological analysis of the redox state of EF-Tu in vivo showed that levels of oxidized EF-Tu increased under strong light. Thus, resembling elongation factor G, EF-Tu appears to be sensitive to ROS via oxidation of a cysteine residue, and its inactivation might be reversed in a redox-dependent manner.
Collapse
Affiliation(s)
- Rayakorn Yutthanasirikul
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takanori Nagano
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Haruhiko Jimbo
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yukako Hihara
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Takashi Kanamori
- GeneFrontier Corporation, Todai-Kashiwa Venture Plaza, 5-4-19 Kashiwanoha, Kashiwa 277-0882, Japan,; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Takamitsu Haruyama
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, and
| | - Hiroki Konno
- Bio-AFM Frontier Research Center, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan, and
| | - Keisuke Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | - Yoshitaka Nishiyama
- From the Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan,.
| |
Collapse
|
42
|
Xu J, He W, Li Y, Zhang D, Zhou J, Zhang C, Li Y, Wang R, Su X. Selective colonization mechanism of Shewanella putrefaciens in dyeing wastewater outlets. RSC Adv 2016. [DOI: 10.1039/c6ra18576b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The responses ofS. putrefaciensto dyeing wastewater have been investigated using differential proteomics, metabolomics, and real-time fluorescent quantitative PCR techniques.
Collapse
Affiliation(s)
- Jiajie Xu
- School of Marine Science
- Ningbo University
- People's Republic China
- College of Engineering
- China Agricultural University
| | - Weina He
- School of Marine Science
- Ningbo University
- People's Republic China
| | - Yanyan Li
- School of Marine Science
- Ningbo University
- People's Republic China
- Department of Food Science
- Cornell University
| | - DiJun Zhang
- School of Marine Science
- Ningbo University
- People's Republic China
| | - Jun Zhou
- School of Marine Science
- Ningbo University
- People's Republic China
| | - Chundan Zhang
- School of Marine Science
- Ningbo University
- People's Republic China
| | - Ye Li
- School of Marine Science
- Ningbo University
- People's Republic China
| | - Rixin Wang
- School of Marine Science
- Ningbo University
- People's Republic China
| | - Xiurong Su
- School of Marine Science
- Ningbo University
- People's Republic China
| |
Collapse
|
43
|
ConTemplate Suggests Possible Alternative Conformations for a Query Protein of Known Structure. Structure 2015; 23:2162-70. [DOI: 10.1016/j.str.2015.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 10/22/2022]
|
44
|
Abstract
The bacterial ribosome is a complex macromolecular machine that deciphers the genetic code with remarkable fidelity. During the elongation phase of protein synthesis, the ribosome selects aminoacyl-tRNAs as dictated by the canonical base pairing between the anticodon of the tRNA and the codon of the messenger RNA. The ribosome's participation in tRNA selection is active rather than passive, using conformational changes of conserved bases of 16S rRNA to directly monitor the geometry of codon-anticodon base pairing. The tRNA selection process is divided into an initial selection step and a subsequent proofreading step, with the utilization of two sequential steps increasing the discriminating power of the ribosome far beyond that which could be achieved based on the thermodynamics of codon-anticodon base pairing stability. The accuracy of decoding is impaired by a number of antibiotics and can be either increased or decreased by various mutations in either subunit of the ribosome, in elongation factor Tu, and in tRNA. In this chapter we will review our current understanding of various forces that determine the accuracy of decoding by the bacterial ribosome.
Collapse
|
45
|
Itoh Y, Sekine SI, Yokoyama S. Crystal structure of the full-length bacterial selenocysteine-specific elongation factor SelB. Nucleic Acids Res 2015; 43:9028-38. [PMID: 26304550 PMCID: PMC4605307 DOI: 10.1093/nar/gkv833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 01/23/2023] Open
Abstract
Selenocysteine (Sec), the 21st amino acid in translation, uses its specific tRNA (tRNASec) to recognize the UGA codon. The Sec-specific elongation factor SelB brings the selenocysteinyl-tRNASec (Sec-tRNASec) to the ribosome, dependent on both an in-frame UGA and a Sec-insertion sequence (SECIS) in the mRNA. The bacterial SelB binds mRNA through its C-terminal region, for which crystal structures have been reported. In this study, we determined the crystal structure of the full-length SelB from the bacterium Aquifex aeolicus, in complex with a GTP analog, at 3.2-Å resolution. SelB consists of three EF-Tu-like domains (D1–3), followed by four winged-helix domains (WHD1–4). The spacer region, connecting the N- and C-terminal halves, fixes the position of WHD1 relative to D3. The binding site for the Sec moiety of Sec-tRNASec is located on the interface between D1 and D2, where a cysteine molecule from the crystallization solution is coordinated by Arg residues, which may mimic Sec binding. The Sec-binding site is smaller and more exposed than the corresponding site of EF-Tu. Complex models of Sec-tRNASec, SECIS RNA, and the 70S ribosome suggest that the unique secondary structure of tRNASec allows SelB to specifically recognize tRNASec and characteristically place it at the ribosomal A-site.
Collapse
Affiliation(s)
- Yuzuru Itoh
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun-Ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
46
|
Thirup SS, Van LB, Nielsen TK, Knudsen CR. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu. J Struct Biol 2015; 191:10-21. [PMID: 26073967 DOI: 10.1016/j.jsb.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
Abstract
Translation elongation factor EF-Tu belongs to the superfamily of guanine-nucleotide binding proteins, which play key cellular roles as regulatory switches. All G-proteins require activation via exchange of GDP for GTP to carry out their respective tasks. Often, guanine-nucleotide exchange factors are essential to this process. During translation, EF-Tu:GTP transports aminoacylated tRNA to the ribosome. GTP is hydrolyzed during this process, and subsequent reactivation of EF-Tu is catalyzed by EF-Ts. The reaction path of guanine-nucleotide exchange is structurally poorly defined for EF-Tu and EF-Ts. We have determined the crystal structures of the following reaction intermediates: two structures of EF-Tu:GDP:EF-Ts (2.2 and 1.8Å resolution), EF-Tu:PO4:EF-Ts (1.9Å resolution), EF-Tu:GDPNP:EF-Ts (2.2Å resolution) and EF-Tu:GDPNP:pulvomycin:Mg(2+):EF-Ts (3.5Å resolution). These structures provide snapshots throughout the entire exchange reaction and suggest a mechanism for the release of EF-Tu in its GTP conformation. An inferred sequence of events during the exchange reaction is presented.
Collapse
Affiliation(s)
- Søren S Thirup
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark.
| | - Lan Bich Van
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark
| | - Tine K Nielsen
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark
| | - Charlotte R Knudsen
- Aarhus University, Department of Molecular Biology and Genetics, Center for Structural Biology, DK-8000 Aarhus C, Denmark
| |
Collapse
|
47
|
Protein synthesis during cellular quiescence is inhibited by phosphorylation of a translational elongation factor. Proc Natl Acad Sci U S A 2015; 112:E3274-81. [PMID: 26056311 DOI: 10.1073/pnas.1505297112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In nature, most organisms experience conditions that are suboptimal for growth. To survive, cells must fine-tune energy-demanding metabolic processes in response to nutrient availability. Here, we describe a novel mechanism by which protein synthesis in starved cells is down-regulated by phosphorylation of the universally conserved elongation factor Tu (EF-Tu). Phosphorylation impairs the essential GTPase activity of EF-Tu, thereby preventing its release from the ribosome. As a consequence, phosphorylated EF-Tu has a dominant-negative effect in elongation, resulting in the overall inhibition of protein synthesis. Importantly, this mechanism allows a quick and robust regulation of one of the most abundant cellular proteins. Given that the threonine that serves as the primary site of phosphorylation is conserved in all translational GTPases from bacteria to humans, this mechanism may have important implications for growth-rate control in phylogenetically diverse organisms.
Collapse
|
48
|
Kowalinski E, Schuller A, Green R, Conti E. Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases. Structure 2015; 23:1336-43. [PMID: 26051716 PMCID: PMC4509514 DOI: 10.1016/j.str.2015.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/04/2023]
Abstract
Ski7 is a cofactor of the cytoplasmic exosome in budding yeast, functioning in both mRNA turnover and non-stop decay (NSD), a surveillance pathway that degrades faulty mRNAs lacking a stop codon. The C-terminal region of Ski7 (Ski7C) shares overall sequence similarity with the translational GTPase (trGTPase) Hbs1, but whether Ski7 has retained the properties of a trGTPase is unclear. Here, we report the high-resolution structures of Ski7C bound to either intact guanosine triphosphate (GTP) or guanosine diphosphate-Pi. The individual domains of Ski7C adopt the conformation characteristic of active trGTPases. Furthermore, the nucleotide-binding site of Ski7C shares similar features compared with active trGTPases, notably the presence of a characteristic monovalent cation. However, a suboptimal polar residue at the putative catalytic site and an unusual polar residue that interacts with the γ-phosphate of GTP distinguish Ski7 from other trGTPases, suggesting it might function rather as a GTP-binding protein than as a GTP-hydrolyzing enzyme.
Collapse
Affiliation(s)
- Eva Kowalinski
- Department of Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Anthony Schuller
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Conti
- Department of Structural Cell Biology Department, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
49
|
Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine SI, Yokoyama S. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA(Cys.). JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2015; 16:25-41. [PMID: 25618148 PMCID: PMC4329189 DOI: 10.1007/s10969-015-9193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/10/2015] [Indexed: 11/15/2022]
Abstract
The putative translation elongation factor Mbar_A0971 from the methanogenic archaeon Methanosarcina barkeri was proposed to be the pyrrolysine-specific paralogue of EF-Tu ("EF-Pyl"). In the present study, the crystal structures of its homologue from Methanosarcina mazei (MM1309) were determined in the GMPPNP-bound, GDP-bound, and apo forms, by the single-wavelength anomalous dispersion phasing method. The three MM1309 structures are quite similar (r.m.s.d. < 0.1 Å). The three domains, corresponding to domains 1, 2, and 3 of EF-Tu/SelB/aIF2γ, are packed against one another to form a closed architecture. The MM1309 structures resemble those of bacterial/archaeal SelB, bacterial EF-Tu in the GTP-bound form, and archaeal initiation factor aIF2γ, in this order. The GMPPNP and GDP molecules are visible in their co-crystal structures. Isothermal titration calorimetry measurements of MM1309·GTP·Mg(2+), MM1309·GDP·Mg(2+), and MM1309·GMPPNP·Mg(2+) provided dissociation constants of 0.43, 26.2, and 222.2 μM, respectively. Therefore, the affinities of MM1309 for GTP and GDP are similar to those of SelB rather than those of EF-Tu. Furthermore, the switch I and II regions of MM1309 are involved in domain-domain interactions, rather than nucleotide binding. The putative binding pocket for the aminoacyl moiety on MM1309 is too small to accommodate the pyrrolysyl moiety, based on a comparison of the present MM1309 structures with that of the EF-Tu·GMPPNP·aminoacyl-tRNA ternary complex. A hydrolysis protection assay revealed that MM1309 binds cysteinyl (Cys)-tRNA(Cys) and protects the aminoacyl bond from non-enzymatic hydrolysis. Therefore, we propose that MM1309 functions as either a guardian protein that protects the Cys moiety from oxidation or an alternative translation factor for Cys-tRNA(Cys).
Collapse
Affiliation(s)
- Tatsuo Yanagisawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Ryohei Ishii
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasushi Hikida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ryuya Fukunaga
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Present Address: Department of Biochemistry, School of Medicine, Johns Hopkins University, 725 N. Wolfe Street, 521A Physiology Bldg., Baltimore, MD 21205 USA
| | - Toru Sengoku
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shun-ichi Sekine
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
50
|
Mercier E, Girodat D, Wieden HJ. A conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu. Sci Rep 2015; 5:7677. [PMID: 25566871 PMCID: PMC4286738 DOI: 10.1038/srep07677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
The phosphate-binding loop (P-loop) is a conserved sequence motif found in mononucleotide-binding proteins. Little is known about the structural dynamics of this region and its contribution to the observed nucleotide binding properties. Understanding the underlying design principles is of great interest for biomolecular engineering applications. We have used rapid-kinetics measurements in vitro and molecular dynamics (MD) simulations in silico to investigate the relationship between GTP-binding properties and P-loop structural dynamics in the universally conserved Elongation Factor (EF) Tu. Analysis of wild type EF-Tu and variants with substitutions at positions in or adjacent to the P-loop revealed a correlation between P-loop flexibility and the entropy of activation for GTP dissociation. The same variants demonstrate more backbone flexibility in two N-terminal amino acids of the P-loop during force-induced EF-Tu · GTP dissociation in Steered Molecular Dynamics simulations. Amino acids Gly18 and His19 are involved in stabilizing the P-loop backbone via interactions with the adjacent helix C. We propose that these P-loop/helix C interactions function as a conserved P-loop anchoring module and identify the presence of P-loop anchors within several GTPases and ATPases suggesting their evolutionary conservation.
Collapse
Affiliation(s)
- Evan Mercier
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|